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Abstract

Local models have emerged as one of the most accurate methods of time series pre-
diction, but their performance is sensitive to the choice of user-specified parameters
such as the size of the neighborhood, the embedding dimension, and the distance
metric. This paper describes a new method of optimizing these parameters to mini-
mize the multi-step cross-validation error. Empirical results indicate that multi-step
optimization is susceptible to shallow local minima unless the optimization is lim-
ited to ten or fewer steps ahead. The models optimized using the new method
consistently performed better than those optimized with adaptive analog forecasts.
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1 Introduction

Local models generate predictions by finding local portions of the time series
that closely resemble a portion of the points immediately preceding the point
to be predicted. The prediction is estimated as an average of the changes that
occurred immediately after these similar portions of points.

One of the most vexing problems facing users who wish to construct a local
model is how to choose appropriate values for the model parameters. Since the
best parameter values depend on the properties of the data set in a manner
that is generally unknown, there is little to guide users in making this deci-
sion. This paper describes a new method for optimizing these parameters to
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Fig. 1. System equivalent of a deterministic dynamic system. Takens’ theorem im-
plies that, under general conditions, a function g(·) exists such that perfect predic-
tion is possible given a sufficient segment of points preceding the prediction. A unit
delay is denoted by �−1.

minimize the multi-step prediction error. This relieves the user of having to
specify critical parameter values, it gives the user control of the computation
used to build and optimize the model, and it generally improves the model
accuracy.

The next section discusses the importance of Takens theorem and the effect
of embedding parameters on prediction accuracy. Section 3 describes local
averaging models. Section 4 discusses iterated prediction models and how to
assess the accuracy of multi-step predictions. Section 5 describes a new method
of local averaging optimization and Section 6 summarizes the results from some
empirical studies of model performance and sensitivity to local minima.

2 Takens’ Theorem

Given a time series of points, [y1, y2, . . . , yny ], sampled from a dynamic sys-
tem, the goal of the model is to predict the next na points in the series,
[yny+1, . . . , yny+na ]. Nonlinear autoregressive models are the most popular ap-
proach to this problem because Takens has shown that, under very general
conditions, the state of a deterministic dynamic system can be accurately
reconstructed by a finite window of the time series [32]. This window,

xt � [yt, yt−δ, . . . , yt−(nd−1)], (1)

is called a time delay embedding, where yt is the value of the time series at
time t and nd is the embedding dimension. Takens’ work was later generalized
and shown to apply to a broader class of systems [29]. This is an important
theorem because it implies that if general assumptions are satisfied, there
exists a function g(xt) such that yt+1 = g(xt). This idea is illustrated by
Fig. 1.
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Since perfect predictions would be possible if the function g(xt) were known
and since a time series provides many examples of the mapping yt+1 = g(xt),
the time series prediction problem can be naturally framed as a autoregressive
modeling problem where the goal is to construct an estimate ŷt+1 = ĝ(xt).

Takens’ theorem requires the time series to be noise-free and the function g(xt)
to be known. In practice, these conditions are rarely satisfied and the selection
of the embedding dimension, nd, and other model parameters may have a
strong impact on the prediction accuracy. Many researchers have recognized
this problem and proposed methods to find nd for time series with and without
noise [8–10, 21]. The goal of these methods is usually to minimize nd without
sacrificing the accuracy of the reconstructed state xt. Although a compact
reconstruction is efficient computationally, it does not necessarily maximize
the model prediction accuracy. Section 5 describes a new approach to finding
nd based on optimization of the local modeling metric.

3 Local Averaging Models

Local averaging models estimate g(xt) with a weighted average of outputs in
the training set with similar input vectors,

ĝ(xt) =

∑np

i=1w
2
i yi+1∑np

i=1w
2
i

, (2)

where np is the number of data set points that can be constructed from the
time series, yi+1 is the ith output in the training set, and w2

i is a weighting
function that controls how much influence the point yi+1 has on the model
output.

Typically, w2
i is a function of the distance between the current input vector

and the ith input vector in the data set. The accuracy of local models is not
strongly affected by the shape of the weighting function so long as it is a
non-negative, monotonically decreasing, smooth function of the distance [1].
A good choice is the biweight function shown in Fig. 2 and defined as

w2
i � B(d2

i , d
2
k+1) =




(
1−

(
d2

i

d2
k+1

))2

d2
i ≤ d2

k+1,

0 otherwise,
(3)

where di is the distance to the ith nearest neighbor and dk+1 is the distance
to the (k + 1)th nearest neighbor. Since this function has a continuous first
derivative that decays to zero for distances greater than or equal to dk+1, the
model ĝ(xt) is also guaranteed to have a continuous first partial derivative
with respect to the model inputs. It has the further advantage of reducing
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Fig. 2. The biweight function.

computation since only k terms in the sums of Equation 2 are non-zero. Goutte
and Larsen give a concise summary of other popular weighting functions and
their derivatives [18].

Most of the computation required for local models is used to find the k + 1
nearest neighbors. Fortunately, this is not prohibitive as long as an efficient
nearest neighbor algorithm is used [16,20].

3.1 Distance Metrics

Choosing an appropriate measure of distance for local models is an important
decision. The Euclidean distance,

D2
E (xt, xi) = (xt − xi)

T(xt − xi) =
nd∑
j=1

(xt,j − xi,j)
2, (4)

where xt is the model input vector and xi is the input vector of the ith nearest
neighbor, is the most common choice, but there is no reason to believe this
is the best choice in general. This metric is chosen primarily because of its
simplicity and intuitive geometric appeal. Choosing a more general distance
measure with more parameters can substantially improve the model accuracy.
The weighted Euclidean distance,

D2
E (xt, xi) = (xt − xi)

TΛ(xt − xi), (5)
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where Λ is a positive-semidefinite matrix, is much more flexible. The local
averaging model described here uses a diagonal weighting matrix,

D2
WE(xt, xi) =

nd∑
j=1

λ2
j(xt,j − xi,j)

2, (6)

where λ2
j are the elements on the diagonal of Λ. This is the same metric that

is optimized for time series prediction by an algorithm developed by Fraedrich
and Rückert called Adaptive Analog Forecasts (AAF) [15]. Section 6 compares
their method of prediction with the one described here.

Several variations on the weighted Euclidean metric have been considered for
time series prediction. Tanaka et al. developed an elegant approximation to
an optimal metric based on a rank-1 matrix Λ [33]. This metric is based on
a first order approximation of the system dynamics, has no user-specified pa-
rameters, and is computationally inexpensive. The same metric was developed
independently by Garcia et al. [17].

Farmer and Sidorowich recommended a diagonal matrix for time series pre-
diction with λi = e−hi, where h is the metric entropy, and claimed that this
metric is in some sense linearly optimal [13]. Murray examined the perfor-
mance of this type of metric and a tridiagonal metric on several chaotic time
series for various rates of decay, h, and found that they consistently outper-
formed the Euclidean metric [28]. The author generated the winning entry
in the Lueven time series prediction competition by jointly optimizing the
rate of exponential decay, h, and the number of neighbors, k, to minimize the
multi-step cross-validation error [25,27].

Kugiumtzis reported that there was not a significant difference between three
types of norms in a brief analysis of linear models for time series prediction [22].
Casdagli divided the training set into a training segment and a test segment
and selected the embedding dimension of the Euclidean metric based on the
model performance on the test segment [10]. Casdagli and Weigend reported
that model accuracy is very sensitive to the choice of the embedding dimension
when the Euclidean metric is used [12].

Investigation of alternatives to the Euclidean metric have been more thorough
for the applications of classification and nonlinear modeling than for time series
prediction. For example, Lowe investigated a method of using gradient-based
optimization of the leave-one-out cross-validation error to optimize the diag-
onally weighted Euclidean metric of a nearest neighbor classifier [23]. Hastie
and Tibshirani describe a method of k-nearest neighbor classification that op-
timizes the diagonal distance metric individually for each input [19]. Schaal
and Atkeson described a local model akin to radial basis functions in which
Λ is a full rank matrix that is optimized to minimize a stochastic approxi-
mation of the leave-one-out cross-validation error for nonlinear modeling [30].
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This method is not suitable for models with a large number of inputs, nd,
because the number of free parameters is proportional to n2

d. Goutte and
Larsen described a method of optimizing the diagonal distance metric for ker-
nel smoothers to minimize the v-fold cross-validation error [18].

3.2 Effective Embedding Dimension

One advantage of optimizing the diagonal weighted Euclidean metric is that
it effectively eliminates the problem of choosing the embedding dimension,
nd [28]. Since nd only affects the model output ĝ(xt) through the distance
equation (Equation 6), if λnd

= 0, the effective embedding dimension is re-
duced to nd −1 since the last element of the input vector would have no effect
on the model output. Thus, if the embedding dimension is chosen to be large
enough, the optimization of λ will result in an effective embedding dimension
that maximizes the model accuracy. This is an attractive alternative to em-
ploying one of the many methods developed to find the minimum embedding
dimension because it directly achieves the end goal of maximizing the model
accuracy, rather than minimizing the size of the reconstructed state vector xt.

4 Multi-Step Predictions

This section discusses two different approaches to generating predictions for
more than one step ahead, discusses the importance of picking an appropriate
error measure for models that use iterated prediction, and describes a method
of recursively calculating the gradient of the multi-step cross-validation error
with respect to the metric parameters.

4.1 Iterated versus Direct Prediction

Suppose we are given a time series, [y1, y2, . . . , yny ], and asked to predict na

steps ahead. Direct prediction is a method in which a model is built to directly
predict yt+na . Iterated prediction is a method in which a model is built to pre-
dict one step ahead. To predict more than one step ahead, earlier predictions
are used as model inputs. In each step, the model estimates yt+i+1 from x̂t+i
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and this is then used to estimate xt+i+1. For example,

xt =
[
yt, yt−1, yt−2, . . . , yt−(nd−1)

]
,

ŷt+1 = ĝ(xt),

x̂t+1 =
[
ŷt+1, yt, yt−1, . . . , yt−(nd−2)

]
,

ŷt+2 = ĝ(x̂t+1),

x̂t+2 =
[
ŷt+2, ŷt+1, yt, . . . , yt−(nd−3)

]
,

ŷt+3 = ĝ(x̂t+2), (7)
...

This process is iterated for na steps finally producing the prediction ŷt+na .

There has been much debate over which method is better. Direct prediction is
questionable because a function that maps na steps into the future will usually
be more complicated and thereby harder to model than one that predicts a
single step into the future [14]. Iterated prediction is questionable because
it does not take into account the accumulated errors in the input vector,
ĝ(xt+c) �= ĝ(x̂t+c) [26]. Most researchers have found that iterated prediction
is more accurate than direct prediction [10, 11, 13, 14]. The following sections
describe a method of optimizing local models that use iterated prediction.

4.2 One-Step Cross-Validation Error

Having an accurate and efficient means of measuring the model accuracy is
necessary for optimization to be effective. Local models have a distinct advan-
tage over other methods in this regard because they can efficiently calculate
the leave-one-out cross-validation error, C. This measure of model accuracy
is calculated by taking a single point out of the data set, building a model
using the remaining np − 1 points, and then using the model to estimate the
output at the removed point. The process is repeated for nc selected points in
the data set and the average error is calculated. Mathematically, the average
C is defined as

C � 1
nc

nc∑
i=1

p
(
yc(i)+1 − ĝ−(xc(i))

)
, (8)

where nc controls the accuracy of the estimated error, c(i) is the data set index
of the ith cross-validation point, and p(·) is a user-specified penalty function 1 .

1 The squared error penalty function, p(ε) = ε2, is the most common choice, but
any smooth function could be used.
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The local model output, ĝ−(xc(i)), is from a model constructed with the c(i)th
point omitted from the data set and then used as the model input.

Local models can calculate the cross-validation error almost as efficiently as
they can calculate the local model outputs. The number of nearest neighbors
is increased by one and after the k+2 nearest neighbors have been found, the
nearest neighbor, which is identical to the model input vector, is discarded
and the model is constructed using the remaining k + 1 neighbors.

4.3 Multi-Step Cross-Validation Error

In framing the time-series prediction problem as a nonlinear modeling prob-
lem, the natural error measure for local models is the cross-validation error
(Equation 8). Since the error is estimated using points that are not included in
each of the nc training sets, this is an elegant measure of prediction error that
penalizes overfitting and ensures good generalization. An extensive discussion
of the merits and pitfalls of cross-validation and other measures of prediction
error for linear model selection can be found in [6, 7].

Since C is an estimate of the error of predicting one-step ahead, it is often
called the one-step cross-validation error (OSCVE). A crucial disadvantage of
the OSCVE is that it does not take into account the effect of the errors in the
input vector that occur with iterated prediction; the parameter values that
minimize the OSCVE are generally not the same values that maximize the
model performance for predicting na steps ahead [5, 27].

A more appropriate choice is an error measure that reflects the true cost for
making iterated predictions where the true cost depends on the application.
In many cases an average (possibly weighted) model accuracy over ns-steps
ahead is appropriate,

C � 1

ncns

nc∑
i=1

ns∑
j=1

p
(
yc(i)+j+1 − ĝ−(xc(i)+j)

)
, (9)

where ns is the number of steps ahead over which the average error is measured.
This error measure is called multi-step cross validation error. Minimization of
this error is similar to backpropagation through time and real time recurrent
learning, but here the leave-one-out cross-validation error is minimized rather
than the average training set error [34,35].

C has the disadvantage of requiring significantly more computation than the
OSCVE. The user can tradeoff reduced accuracy of the estimated C for re-
duced computation by specifying nc, the number of cross-validation segments,
and ns, the number of steps ahead the C is estimated.
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4.4 Multi-Step Error Gradient

Many of the most efficient optimization algorithms require the gradient of an
error function with respect to the model parameters. This section describes a
derivation of the C gradient with respect to the metric weights λ. In this section
the model output is denoted as ĝλ(·) and the multi-step cross-validation error
is denoted by Cλ to explicitly show the dependence on the metric weights.
Section 5 describes a method that uses the multi-step error gradient derived
in this section to jointly optimize λ and k, the number of neighbors.

Both the model output ĝλ(·) and, if iterated prediction is used, the model
input vector 2 ,

x̂t =
[
ŷt, ŷt−1, . . . , yt−(nd−1)

]T
=

[
ĝλ(x̂t−1), ĝλ(x̂t−2), . . . , yt−(nd−1)

]T
,

depend on the metric weights λ. The gradient of C is then given by

∇λ Cλ =
1

ncns

nc∑
i=1

ns∑
j=1

∇λp
(
yc(i)+j+1 − ĝ−λ (x̂c(i)+j)

)
. (10)

If we define a new variable, ε � yc(i)+j+1 − ĝ−λ (xc(i)+j), the gradient can be
written compactly as

∇λ Cλ = − 1

ncns

nc∑
i=1

ns∑
j=1

dp(ε)

dε
∇λĝ

−
λ (x̂c(i)+j). (11)

The lth element of the gradient of the model output, ∇λĝ
−
λ (x̂c(i)+j), is

∂ĝ−λ (x̂c(i)+j)

∂λl

=
∂ĝ−λ (u)
∂λl

∣∣∣∣∣
u=x̂c(i)+j︸ ︷︷ ︸

�

+
min(nd,j−1)∑

m=1

∂ĝ−λ (x̂c(i)+j)

∂x̂c(i)+j,m︸ ︷︷ ︸
�

∂x̂c(i)+j,m

∂λl︸ ︷︷ ︸
�

. (12)

The first term, �, accounts for the effect of λl on the model estimate ĝλ(u) for
a constant input, u. The second term, �, is the partial derivative of the model
output with respect to the mth element of the model input vector. Both of
these derivatives are derived in Appendix A.

Since the estimated input vector is created from previous model outputs,
x̂c(i)+j,m = ĝ−λ (x̂c(i)+j−m), the last term, �, is the lth element of the gradi-
ent of the model output at earlier times. Thus, the gradient can be calculated
recursively,

2 Recall from Equation 7 that each element of xt is estimated only when the true
value is not known.
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∂ĝ−λ (xc(i))

∂λl

=
∂ĝ−λ (u)
∂λl

∣∣∣∣∣
u=xc(i)

,

∂ĝ−λ (x̂c(i)+1)

∂λl

=
∂ĝ−λ (u)
∂λl

∣∣∣∣∣
u=x̂c(i)+1

+
∂ĝ−λ (x̂c(i)+1)

∂x̂c(i)+1,1

∂ĝ−λ (xc(i))

∂λl

,

∂ĝ−λ (x̂c(i)+2)

∂λl

=
∂ĝ−λ (u)
∂λl

∣∣∣∣∣
u=x̂c(i)+2

+
∂ĝ−λ (x̂c(i)+2)

∂x̂c(i)+2,1

∂ĝ−λ (x̂c(i)+1)

∂λl

+
∂ĝ−λ (x̂c(i)+2)

∂x̂c(i)+2,2

∂ĝ−λ (xc(i))

∂λl

.

...

This recursive approach enables the multi-step-ahead cross-validation error
gradient in Equation 11 to be calculated efficiently.

5 Local Averaging Optimization (LAO)

This section describes a method of optimizing the local averaging model pa-
rameters. The model is described by Equations 2, 3, and 6. The model param-
eters are the metric weights λ, the number of neighbors k, and the maximum
embedding dimension nd.

Smith described a method of optimizing k for each input using local linear
least-squares models to minimize the one-step cross-validation error [31]. Bi-
rattari et al. generalized this method to use weighted least squares and re-
duced the computation by using recursive least squares [3]. Bontempi et al.
described a more general method of adapting k to each input so as to mini-
mize the multi-step cross-validation error of local linear models [4,5]. For the
Lueven time series prediction competition, I jointly optimized k globally and
the exponentially weighted metric to minimize the multi-step cross-validation
error [25,27]. To my knowledge, this is the first description of an algorithm to
jointly optimize the multi-step cross-validation error of the metric weights, λ,
and the number of neighbors, k.

Gradient-based optimization algorithms can greatly improve the initial pa-
rameter values provided by the user, but this approach cannot be used to
optimize integer-valued parameters, such as the number of neighbors, or other
parameters for which the gradient cannot be calculated. To optimize these pa-
rameters, an algorithm that does not require the gradient must be used. One
of the simplest of these algorithms is the cyclic coordinate method (CCM)
which performs a global optimization of each parameter one at a time, and
then repeats until convergence [2, pp. 283–5].
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CCM’s rate of convergence is much slower than gradient-based optimization
methods. If the gradient can be calculated for only some of the model pa-
rameters, the rate of convergence can be increased by combining CCM with a
gradient-based algorithm. Here a generalization of CCM is described that com-
bines cyclic optimization with gradient-based optimization. During each cycle,
k is found by an exhaustive search and the metric parameters are jointly opti-
mized by a gradient-based optimization algorithm for a user-specified number
of steps. This approach is substantially faster than using CCM to optimize
each of the parameters one at a time. This generalized algorithm is described
in detail below.

Generalized Cyclic Coordinate Method

1. Initialize the stopping criterion:
ni := 0.

2. Store the current value of C:
Cprev := C(λ, k).

3. Perform an exhaustive search for k:
k := argmin

1≤α≤kmax

C(λ, α).

4. Perform gradient-based optimization for λ:
For i = 1 to nu,
4.1 Calculate ∇λ C(λ, k).
4.2 Calculate a new direction of descent, g.
4.3 Perform a line search:

α := argmin
α≥0

C(λ+ αg, k).

4.4 Update the metric weights:
λ := λ+ αg.

4.5 Next i.
5. Update the count of iterations:
ni := ni + 1.

6. If ni = ni,max or Cprev(λ, k)−C(λ, k) < ε, then the algorithm has reached
the allowed number of iterations or converged. Exit function.

7. Goto 2.

Since each step in the loop can only decrease the cross-validation error, this
method can only improve the model performance. Under very general condi-
tions the algorithm is guaranteed to converge [2, p. 285].

The user-specified parameters of this optimization algorithm are the range of
values of k considered, kmax, the number of gradient-based updates per itera-
tion, nu, the maximum number of iterations, ni, and the minimum reduction
in C to continue the optimization, ε. Each of these parameters enables the user
to control the tradeoff between the amount of computation used for parameter
optimization and the final accuracy of the model.
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Table 1
List of the user-specified parameters for LAO with the Lorenz time series.

Parameter Label Value

ny Length of time series 3000

ni,max Maximum number of iterations 100

nd Maximum embedding dimension 20

ns Number of steps ahead 1

nu Gradient updates per iteration 5

ε Reduction of C for convergence 0

kmax Maximum number of neighbors 15

p(x) Penalty Function x2

All of the results reported in this paper used PARTAN, a conjugate gradient
optimization algorithm, to calculate the directions of descent in Step 4.2 and
the golden section method for the line search in Step 4.3 [2, 24].

6 Empirical Results

Although it is not possible to illustrate how much the optimization improves
model performance compared to user-specified parameter values, the results
in this section illustrate some of the benefits and limitations of local averaging
optimization (LAO).

6.1 Metric Weights

To determine the sensitivity of LAO to the initial choice of the metric param-
eters, the algorithm was applied to the Lorenz 3 time series with four different
initial metric weight vectors. The user-specified parameter values are listed in
Table 1. Fig. 3 shows both the initial and optimized metric weights for each
case.

The optimized weights were nearly indistinguishable from one another, regard-
less of the initial weights. Similar results were obtained on many other time
series. This indicates that for one-step ahead optimization, the algorithm is

3 All of the data sets used in this work are available online at
http://ece.pdx.edu/∼mcnames.

12



2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i

λ
i

(a) Exponential Decay

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i

λ
i

(b) Exponential Growth

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i

λ
i

(c) Euclidean

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i

λ
i

(d) Random

Fig. 3. The initial metric weights before optimization are shown by the line and
the final metric weights after optimization are shown by the stem plot. The models
were optimized to predict one step ahead (ns = 1) on the Lorenz time series.

insensitive to local minima and tolerant of the user picking poor initial param-
eter values. These results also demonstrate that the best metric weights are
similar to a decaying exponential, which has been assumed, but not demon-
strated in previous work [13,17,27].

The models were optimized a second time to predict ten steps ahead (ns = 10)
with the same initial weight vectors. Fig. 4 shows the initial and optimized
weights for each case. LAO was unable to improve the weights that were
initialized as a decaying exponential in this case. This type of local minimum
becomes more prevalent as the number of steps ahead, ns, increases. In the
other three cases, the optimized weights were insensitive to the initial values.
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Fig. 4. The initial metric weights before optimization are shown by the line and
the final metric weights after optimization are shown by the stem plot. The models
were optimized to predict ten steps ahead (ns = 10) on the Lorenz time series.

6.2 Iterated Prediction Performance

Local averaging models were optimized to predict 1, 5, 10, 20, and 40 steps
ahead on four different time series. Their performance was then measured on
later sections of the time series not used for optimization. The user-specified
parameters are listed in Table 1.

The performance was measured using the square root of the normalized mean

squared error, Rj =
√
Nj, where Nj is defined as

Nj �
1
nt

∑nt
i=1

(
yυ(i)+j+1 − ĝ(x̂υ(i)+j)

)2

1
n

∑n
i=1 (yi − ȳ)2

.

In this equation yt is the tth point in the time-series, υ(i) is the index of the
first point in the ith test set, ȳ is the sample mean of the time series, and
ĝ(x̂υ(i)+j) is the prediction of a model that has been iterated j times.
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Table 2
Root normalized mean squared error for local averaging models optimized to predict
1, 5, 10, 20, and 40 steps ahead.

ns 1 5 10 20 40

Euclidean 0.054 0.086 0.152 0.266 0.474

1 Step 0.026 0.049 0.097 0.293 0.570

5 Steps 0.029 0.040 0.075 0.232 0.449

10 Steps 0.033 0.042 0.069 0.193 0.441

20 Steps 0.057 0.069 0.118 0.234 0.444

40 Steps 0.055 0.067 0.113 0.230 0.440

Rj is a convenient measure of error because it is independent of the scale of
the time series and Rj = 1 can be interpreted as meaning the model prediction
error is no better than predicting the sample mean ȳ, on average.

Tables 2 and 3 show the average R, R� =
1
�

∑�
j=1 Rj, for � = 1, 5, 10, 20, and

40 steps ahead for the Lorenz and Mackey-Glass time series. The Euclidean
weights were used to initialize the optimization algorithm in all cases.

For both data sets, the model optimized to predict one step ahead (ns = 1)
performed best on the test set for predicting one step ahead. However, the
models optimized to predict multiple steps ahead (ns > 1) did not always
perform best at predicting ns steps ahead on the test set. This is due to the
presence of local minima in the multi-step cross-validation error surface.

These results indicate that although it is possible to optimize the models to
predict multiple steps ahead, these models are sometimes not as accurate as
models optimized to predict fewer steps ahead (ns < na). However, models
optimized to predict five or ten steps ahead often performed better on long
term predictions than the models optimized to predict one step ahead. Similar
results were obtained on other time series. This demonstrates that multi-step
optimization produces more accurate long term predictions.

6.3 Direct Prediction Performance

Fraedrich and Rückert were the first to describe a method of optimizing a
diagonal metric for local models [15]. This method, called adaptive analog
forecasts (AAF), is more limited than local averaging optimization (LAO).
AAF only works with k = 1 neighbor models, which are discontinuous and
less general than local averaging models. Unlike LAO, AAF is incapable of
jointly optimizing many model parameters, discrete and continuous-valued.
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Table 3
Root normalized mean squared error for local averaging models optimized to predict
1, 5, 10, 20, and 40 steps ahead on the Mackey-Glass time series.

ns 1 5 10 20 40

Euclidean 0.021 0.026 0.029 0.038 0.060

1 Step 0.012 0.020 0.023 0.032 0.052

5 Steps 0.018 0.018 0.019 0.027 0.044

10 Steps 0.019 0.019 0.019 0.027 0.043

20 Steps 0.019 0.019 0.019 0.027 0.042

40 Steps 0.035 0.037 0.038 0.045 0.062
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Fig. 5. The prediction error horizon of local averaging optimization (LAO) and
adaptive analog forecasts (AAF) applied to the Lorenz time series.

LAO achieves this through the generalized cyclic coordinate method. AAF is
also limited to direct prediction whereas the new method can be used for either
direct or iterated prediction. In the latter case, LAO minimizes the multi-step
cross-validation error.

To compare the performance of these two methods of prediction, both al-
gorithms were optimized for one hundred iterations on the same time series
segment and then applied to the same test segments. Both algorithms were
applied to the Lorenz and Mackey-Glass time series. Figs. 5 and 6 show the
prediction horizons for one to fifteen steps ahead. In all cases LAO performed
better than AAF.
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Fig. 6. The prediction error horizon of local averaging optimization (LAO) and
adaptive analog forecasts (AAF) applied to the Mackey-Glass time series.

7 Conclusion

This paper describes a new method of local averaging optimization (LAO) for
time series prediction. This relieves the user from the common practice of spec-
ifying critical parameter values and gives the user control of the computation
used for optimization.

One of the benefits of LAO is that the effective embedding dimension is au-
tomatically optimized to maximize model accuracy along with the metric
weights. This is a different approach than most previous methods that seek a
minimal embedding dimension without consideration of model accuracy.

LAO incorporates an efficient optimization algorithm that blends the cyclic
coordinate method for discrete-valued parameters with efficient gradient-based
optimization algorithms for continuous-valued parameters. This optimization
can be applied to an iterated predictor through a recursive algorithm that
efficient calculates the gradient of the multi-step-ahead cross-validation error.

Numerous empirical simulations were performed to determine how sensitive
the algorithm is to shallow local minima. As long as the number of steps
ahead is reasonable (ns ≤ 10), the optimized parameters are not sensitive to
the initial values 4 .

4 This method of optimization has also been applied to local linear models to jointly
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LAO was compared to adaptive analog forecasts (AAF), the only other algo-
rithm that has been proposed for metric optimization of local models for time
series prediction. LAO consistently generated more accurate predictions than
AAF.

A Local Average Gradients

This appendix describes a derivation of the gradient of the local averaging
model output with respect to the metric parameters and with respect to the
model inputs. These gradients are used to calculate the gradient of the multi-
step cross-validation error (Equation 9) with respect to the metric parameters,
as expressed by Equation 12.

A.1 Metric Gradient

The expression for ∇λĝ
−(xt) can be obtained from Equation 2 as

∇λĝ
−(xt) = ∇λ

∑np

i=1,i�=tw
2
i yi+1∑np

i=1,i�=tw
2
i

,

=
1∑np

i=1,i�=tw
2
i


 np∑

i=1,i�=t

yi∇λw
2
i − ĝ−(xt)

np∑
i=1,i�=j

∇λw
2
i


 .

This reduces the problem to finding the gradient of the weighting function w2
i

with respect to the metric parameters λ. Assuming the biweight function is
used, this gradient can be obtained from Equations 3 and 6,

∇λw
2
i = ∇λB(d

2
i , d

2
k+1) =

∂B(d2
i , d

2
k+1)

∂d2
i

∇λd
2
i +

∂B(d2
i , d

2
k+1)

∂d2
k+1

∇λd
2
k+1.

The jth element of the gradient ∇λd
2
i can be obtained by calculating the

partial derivative

∂d2
i

∂λj

=
∂

∂λj

nd∑
�=1

λ2
�(xt,� − xi,�)

2 = 2λj(xt,j − xi,j)
2.

These equations collectively describe how to calculate the gradient of the
model output g−λ (xt) respect to the metric parameters λ.

optimize the ridge regression parameters [26]. The optimization is less effective on
these models because local minima are more numerous.
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A.2 Input Gradient

The steps for finding the input gradient are very similar to those for finding the
metric gradient. The expression for∇xt ĝ

−(xt) can be obtained from Equation 2
as

∇xt ĝ
−
λ (xt) =

1∑np

i=1,i�=tw
2
i


 np∑

i=1,i�=t

yi∇xtw
2
i − ĝ−λ (xt)

np∑
i=1,i�=t

∇xtw
2
i


 ,

and the gradient of the metric weighting function w2
i can be obtained from

Equations 3 and 6,

∇xtw
2
i =

∂B(d2
i , d

2
k+1)

∂d2
i

∇xtd
2
i +

∂B(d2
i , d

2
k+1)

∂d2
k+1

∇xtd
2
k+1.

The jth element of the gradient ∇xtd
2
i is then given by

∂d2
i

∂xt,j

=
∂

∂xt,j

nd∑
�=1

λ2
�(xt,� − xi,�)

2 = 2λ2
j(xt,j − xi,j).

These equations collectively describe how to calculate the gradient of the
model output with respect to the model inputs xt.
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