Question 9A (10 points): Consider the following two similar problems.

\[\text{LONG}(G, v, w, k) \]: Is there a simple path of \textbf{length at least} \(k \) from node \(v \) to node \(w \) in directed graph \(G \)?

\[\text{LONGEST}(G, v, w, k) \]: Does the \textbf{longest} simple path from node \(v \) to node \(w \) in directed graph \(G \) have length \(k \)?

In both cases, assume length is just the number of edges in the path.

Suppose \(A \) is a polynomial-time algorithm for the \text{LONG} problem. Explain why there then must be a polynomial-time algorithm \(B \) for the \text{LONGEST} problem. Assume for both \(A \) and \(B \) that the graph \(G \) is given as a list of nodes plus a list of edges.

\textit{Given algorithm} \(A \), \textit{we can construct} \(B \) \textit{using two calls to} \(A \):

\[
B\text{-Longest}(G, v, w, k) \\
\text{if } A\text{-Long}(G, v, w, k) \text{ and not } A\text{-Long}(G, v, w, k+1) \text{ then return true} \\
\text{else return false}
\]

The longest \(v \)–\(w \) path in \(G \) has length \(k \) if there is a path of length at least \(k \), but no path of length \(k+1 \) or longer. The conversion of input to \(B \) to inputs to \(A \) is trivial: \(O(1) \). Thus we have a polynomial-time reduction to two calls of a polynomial-time algorithm, so \(B \) runs in polynomial time.