Computational Geometry

Algorithms for manipulation of geometric objects
We will concentrate on 2-D geometry
Numerically robust – try to avoid division
 - Round-off error
 - Divide-by-0 checks
Techniques

Basics

Point \(p \) =
Line segment \(p_1 - p_2 \)
Can represent different things
Relative Orientation of Segments

How do we know which case it is?
Could compare slopes

But that has division problems

Cross Product

Can compare slopes without division
\[\frac{y_1}{x_1} < \frac{y_2}{x_2} \]
\[x_2 \cdot y_1 < x_1 \cdot y_2 \]
Examples

\[(3, 2) \times (2, 4) =
\]

\[(3, 2) \times (4, 1) =
\]

\[(3, 2) \times (2, -2) =
\]

\[(3, 2) \times (-3, 1) =
\]

\[(3, 2) \times (-6, -4) =
\]

Left Turn, Right Turn

How do we know if a sequence of two line segments turns to left or right?

\[p_1 p_2 p_3 \]

\[p_1 p_2 p_3 \]
Use Cross Product

Translate p2 to origin, along with other points. Look at relative position of p1, p3

\[p1 = (3, 6) \quad p1' = (3-4, 6-3) \]
\[p2 = (4, 3) \quad p2' = (4-4, 3-3) \]
\[p3 = (6, 1) \quad p3' = (6-4, 1-3) \]

Intersection: Cases

Main conditions
- p1, p2 on different sides of
- p3, p4 on different sides of
How Do You Tell Different Sides?

One is a left turn and one is a right turn.

If 0 Change in Direction

Then the point is on the p1–p2 line somewhere.

`OnSegment(p1, p2, p3)`

1. \(\min(x1, x2) \leq x3 \leq \max(x1, x2) \)
2. \(\min(y1, y2) \leq y3 \leq \max(y1, y2) \)
Beware of Boundary Conditions

- Co-linear points, points on line
- Multiple intersections

- Vertical, horizontal lines
- $p_1 - p_2$ versus $p_2 - p_1$
- Degenerate objects
 What about intersection with the degenerate line segment $p_3 - p_3$

Polygon

Polygon - closed sequence of sides

Simple polygon if edges don’t cross
Exercise 33.1-7

Find out if point p is in simple polygon P
P has n points p1, p2, ..., pn, want O(n)
1. Assume no 3 consecutive points on the same line
2. Make sure p doesn't lie on any edge of P
3. Construct a segment p—q where q is for sure
4. Count number of segments of P that intersect p—q

How to Find a Point Outside of P

Let \(x' = \max x_i \)
If \(p = (x, y) \), let \(q = \)
Cases to Watch out For

p—q passes through a vertex

What’s the Difference in These Cases

Do previous and next points lie on the same side of p—q or not?

Case I

Case II

Case III

Case IV
In Cases III & IV, need to test if p_{i-1} and p_{i+2} are same side of $p-q$ or not

In $O(n)$ time, can head around polygon, counting number of intersections with $p-q$, taking into account

Pairwise Intersection

Have a collection of n line segments, want to know if there is a pair that intersect
Perhaps they represent traces on a circuit layer

Sweep = A vertical line moving left to right over the segments (conceptually)
Interested in Intersections with Sweep Line

Want the intersection points in top-to-bottom order

Intersecting Segments

Intersecting segments adjacent in some sweep list

Assumptions:
- No 3 segments intersect
- No vertical segments
Where Does Sweep List Change?

Sweep list changes at segment endpoints.
Update sweep list “just after” encountering each endpoint
- after it enters for
- after it leaves for

Maintaining Sweep List

Keep sweep list as a structure that supports $O(\log n)$ operations

Operations:
- Insert segment
- Delete segment
- Above:
- Below:

Some kind of balanced tree, ordered on
How to Order New Segment on Sweep Line

Need to know where new segment B is relative to each segment A already in sweep line.

Order Endpoint List

Need to have the endpoints in the order that the sweep line encounters them

Sort on x-coordinate

What about ties?
Left endpoints win over
Lower y-coordinate wins over
Algorithm

EP (endpoints):
SL (sweep list)

for each p in EP in order

- insert s into SL
- check if segments above and below s intersect each other
- check if s intersects lines above and below
- delete s from SL

Example

EP SL
aL cL
bL cl
bL aR
dL dL
bR dR
dR cR
aR
Polar Angle

Next couple algorithms, need to order points by polar angle.

Discussion Problems

Have Q = {p1, p2, ..., pn}

1. Given p, find point pi in Q with smallest positive polar angle from p.
2. Sort points in Q by increasing polar angle from x axis.

Try to solve these problems using only cross product.
Convex Hull

Given $Q = \{p_1, p_2, \ldots, p_n\}$, what is the smallest convex polygon P such that

Vertices of P will be in Q

Consider Q with 100 points.
- What is the most that can be on convex hull?
- What is the fewest that can be on convex hull?

Uses of Convex Hull

Approximate more complicated shape by convex hull, for intersection "pre-check"
Multiple Convex Hull Algorithms

Some algorithms are good when the number of points on the hull is low. Others perform same on any number of points.
Can often use heuristics to speed up either.
Make any convex polygon R using points in Q.
Then points on interior of R

One Way to Choose R
Let pa, pb, pc, pd be the points with min x, max x, min y, max y.
Let R be polygon pa—pd—pb—pc—pa
Will this always remove points?
Jarvis’s March

Package wrapping:
Of points not on hull so far, which is at least angle with the last point on the hull

Co-linear points: What if several points on same edge of convex hull?
Want most points:
Want least points:
How to find distance?
Issues, Continued

Where to start:

What line to use through first point:

Complexity

At each point, do an $O(n)$ process to find point with minimum positive polar angle.

How many times do we need to do that search?

So, $O(n \cdot h)$ where $h =$
Graham Scan

Start with "angle sweep" and remove points

- Find point p_0 with minimum y-coordinate
- Sort points by polar angle from horizontal line through p
- Always $O(n \log n)$, no matter how many points on hull

Candidate Hull on Stack

Push points on stack in order
- Before you push, check angle with top two points on stack

Left turn:
- p_1

Right turn:
- p_1
May be Several Pops in a Row

Can have several points popped because of p_i

• p_i

Graham Scan: Start-up

Input:
1. Let $p[0]$ have
2. sort $p[1]$...$p[n]$ by angle with
3. Have stack S
4. Push()
 Push()
 Push()
Graham Scan: Body

```plaintext
for i = 3 to N
    while NEXT-TO-TOP—TOP—p[i] is POP
    PUSH(    )
S holds the convex hull when done
```

Complexity

- $O(n \log n)$ to sort points
- $O(n)$ for rest
 - Each point gets pushed once
 - Can do multiple pops in while-loop, but each is of a previously pushed point
Planar Minimal Spanning Tree

Suppose I give you points in the plane to represent nodes in a graph. All edges exist, weight is distance between end points. What is the first edge to add?

Closest Pair

Use divide and conquer.
Split points in half by x-coordinate. Find closest pair on each side. Let $\delta =$
Closer Pair

Can there be a pair of points closer than \(\delta \)?

Yes! Near the boundary
So check

Avoid Too Many Comparisons

Don't want to compare all pairs of points near the boundary, otherwise get

Only compare each point near boundary to next 7 in order of y-coordinate
For n points, have two sub-problems of size $n/2$

How much other work outside of the recursive calls?
- Might seem like $O(n \log n)$ because of the sorting
- That would give complexity

However, make two lists of the points at the very beginning, one sorted on x and the other on y
- Can construct ordered lists for sub-problems in linear time.
- $T(n) = 2T(n/2) + O(n)$