Polynomials and the Fast Fourier Transform (FFT)

Algorithm Design and Analysis (Week 7)

Battle Plan

• Polynomials
 – Algorithms to add, multiply and evaluate polynomials
 – Coefficient and point-value representation

• Fourier Transform
 – Discrete Fourier Transform (DFT) and inverse DFT to translate between polynomial representations
 – “A Short Digression on Complex Roots of Unity”
 – Fast Fourier Transform (FFT) is a divide-and-conquer algorithm based on properties of complex roots of unity
Polynomials

- A polynomial in the variable x is a representation of a function
 \[A(x) = a_{n-1}x^{n-1} + \cdots + a_2x^2 + a_1x + a_0 \]
 as a formal sum $A(x) = \sum_{j=0}^{n-1} a_j x^j$.
- We call the values $a_0, a_1, \ldots, a_{n-1}$ the coefficients of the polynomial.
- $A(x)$ is said to have degree k if its highest nonzero coefficient is a_k.
- Any integer strictly greater than the degree of a polynomial is a degree-bound of that polynomial.

Examples

- $A(x) = x^3 - 2x - 1$
 - $A(x)$ has degree 3
 - $A(x)$ has degree-bounds 4, 5, 6, ... or all values $> $ degree
 - $A(x)$ has coefficients $(-1, -2, 0, 1)$
- $B(x) = x^3 + x^2 + 1$
 - $B(x)$ has degree 3
 - $B(x)$ has degree bounds 4, 5, 6, ... or all values $> $ degree
 - $B(x)$ has coefficients $(1, 0, 1, 1)$
Coefficient Representation

• A coefficient representation of a polynomial $A(x) = \sum_{j=0}^{n-1} a_j x^j$ of degree-bound n is a vector of coefficients $a = (a_0, a_1, ..., a_{n-1})$.

• More examples
 \begin{align*}
 - A(x) &= 6x^3 + 7x^2 - 10x + 9 \quad (9, -10, 7, 6) \\
 - B(x) &= -2x^3 + 4x - 5 \quad (-5, 4, 0, -2)
 \end{align*}

• The operation of evaluating the polynomial $A(x)$ at point x_0 consists of computing the value of $A(x_0)$.

• Evaluation takes time $\Theta(n)$ using Horner’s rule
 \[A(x_0) = a_0 + x_0(a_1 + x_0(a_2 + \cdots + x_0(a_{n-2} + x_0(a_{n-1})\cdots))) \]

Adding Polynomials

• Adding two polynomials represented by the coefficient vectors $a = (a_0, a_1, ..., a_{n-1})$ and $b = (b_0, b_1, ..., b_{n-1})$ takes time $\Theta(n)$.

• Sum is the coefficient vector $c = (c_0, c_1, ..., c_{n-1})$, where $c_j = a_j + b_j$ for $j = 0, 1, ..., n - 1$.

• Example
 \begin{align*}
 A(x) &= 6x^3 + 7x^2 - 10x + 9 \quad (9, -10, 7, 6) \\
 B(x) &= -2x^3 + 4x - 5 \quad (-5, 4, 0, -2) \\
 C(x) &= 4x^3 + 7x^2 - 6x + 4 \quad (4, -6, 7, 4)
 \end{align*}
Multiplying Polynomials

- For **polynomial multiplication**, if $A(x)$ and $B(x)$ are polynomials of degree-bound n, we say their **product** $C(x)$ is a polynomial of degree-bound $2n - 1$.

- **Example**

 \[
 \begin{align*}
 &6x^3 + 7x^2 - 10x + 9 \\
 &-2x^3 + 4x - 5 \\
 &\hline
 &-30x^3 - 35x^2 + 50x - 45 \\
 &24x^4 + 28x^3 - 40x^2 + 36x \\
 &-12x^6 - 14x^5 + 20x^4 - 18x^3 \\
 &-12x^6 - 14x^5 + 44x^4 - 20x^3 - 75x^2 + 86x - 45
 \end{align*}
 \]

Multiplying Polynomials

- **Multiplication** of two degree-bound n polynomials $A(x)$ and $B(x)$ takes time $\Theta(n^2)$, since each coefficient in vector a must be multiplied by each coefficient in vector b.

- Another way to express the product $C(x)$ is $\sum_{j=0}^{2n-1} c_j x^j$, where $c_j = \sum_{k=0}^{j} a_k b_{j-k}$.

- The resulting coefficient vector $c = (c_0, c_1, \ldots, c_{2n-1})$ is also called the **convolution** of the input vectors a and b, denoted as $c = a \otimes b$.
Point-Value Representation

• A **point-value representation** of a polynomial $A(x)$ of degree-bound n is a set of n **point-value pairs**
 $$\{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\}$$
 such that all of the x_k are distinct and $y_k = A(x_k)$ for $k = 0, 1, \ldots, n - 1$.

• Example $A(x) = x^3 - 2x + 1$

 $\begin{align*}
 x_k & \quad 0, 1, 2, 3 \\
 A(x_k) & \quad 1, 0, 5, 22
 \end{align*}$
 $$\{(0, 1), (1, 0), (2, 5), (3, 22)\}$$

• Using Horner’s method, **n-point evaluation** takes time $\Theta(n^2)$.

Point-Value Representation

• The inverse of evaluation is called **interpolation**

 – determines coefficient form of polynomial from point-value representation

 – For any set $\{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\}$ of n point-value pairs such that all the x_k values are distinct, there is a **unique** polynomial $A(x)$ of degree-bound n such that $y_k = A(x_k)$ for $k = 0, 1, \ldots, n - 1$.

• Lagrange’s formula

 $$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k}(x - x_j)}{\prod_{j \neq k}(x_k - x_j)}$$

• Using Lagrange’s formula, interpolation takes time $\Theta(n^2)$.
Example

• Using Lagrange’s formula, we interpolate the point-value representation \{ (0, 1), (1, 0), (2, 5), (3, 22) \}.

\[
\begin{align*}
- 1 \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} &= \frac{x^3 - 6x^2 + 11x - 6}{-6} = \frac{-x^3 + 6x^2 - 11x + 6}{6} \\
- 0 \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)} &= 0 \\
- 5 \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)} &= 5 \frac{x^3 - 4x^2 + 3x}{-2} = \frac{-15x^3 + 60x^2 - 45x}{6} \\
- 22 \frac{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)} &= 22 \frac{x^3 - 3x^2 + 2x}{6} = \frac{22x^3 - 66x^2 + 44x}{6} \\
- \frac{1}{6} (6x^3 + 0x^2 - 12x + 6) \\
- x^3 - 2x + 1
\end{align*}
\]

Adding Polynomials

• In point-value form, addition \(C(x) = A(x) + B(x) \) is given by \(C(x_k) = A(x_k) + B(x_k) \) for any point \(x_k \).

- \(A \): \{ (x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1}) \}
- \(B \): \{ (x_0, y'_0), (x_1, y'_1), \ldots, (x_{n-1}, y'_{n-1}) \}
- \(C \): \{ (x_0, y_0 + y'_0), (x_1, y_1 + y'_1), \ldots, (x_{n-1}, y_{n-1} + y'_{n-1}) \}

- \(A \) and \(B \) are evaluated for the same \(n \) points.
- The time to add two polynomials of degree-bound \(n \) in point-value form is \(\Theta(n) \).
Example

• We add $C(x) = A(x) + B(x)$ in point-value form

 $A(x) = x^3 - 2x + 1$

 $B(x) = x^3 + x^2 + 1$

 $x_k = (0, 1, 2, 3)$

 $A: \{(0, 1), (1, 0), (2, 5), (3, 22)\}$

 $B: \{(0, 1), (1, 3), (2, 13), (3, 37)\}$

 $C: \{(0, 2), (1, 3), (2, 18), (3, 59)\}$

Multiplying Polynomials

• In point-value form, multiplication $C(x) = A(x)B(x)$ is given by $C(x_k) = A(x_k)B(x_k)$ for any point x_k.

• **Problem:** if A and B are of degree-bound n, then C is of degree-bound $2n$.

• Need to start with “extended” point-value forms for A and B consisting of $2n$ point-value pairs each.

 $A: \{(x_0, y_0), (x_1, y_1), \ldots, (x_{2n-1}, y_{2n-1})\}$

 $B: \{(x_0, y'_0), (x_1, y'_1), \ldots, (x_{2n-1}, y'_{2n-1})\}$

 $C: \{(x_0, y_0y'_0), (x_1, y_1y'_1), \ldots, (x_{2n-1}, y_{2n-1}y'_{2n-1})\}$

• The time to multiply two polynomials of degree-bound n in point-value form is $\Theta(n)$.
Example

- We multiply $C(x) = A(x)B(x)$ in point-value form
 - $A(x) = x^3 - 2x + 1$
 - $B(x) = x^3 + x^2 + 1$
 - $x_k = (-3, -2, -1, 0, 1, 2, 3)$ \textit{We need 7 coefficients!}
 - A: $\{(-3, -17), (-2, -3), (-1, 1), (0, 1), (1, 0), (2, 5), (3, 22)\}$
 - B: $\{(-3, -20), (-2, -3), (-1, 2), (0, 1), (1, 3), (2, 13), (3, 37)\}$
 - C: $\{(-3,340), (-2,9), (-1,2), (0, 1), (1, 0), (2, 65), (3, 814)\}$

The Road So Far

- Can we do better?
 - Using Fast Fourier Transform (FFT) and its inverse, we can do evaluation and interpolation in time $\Theta(n \log n)$.
- The product of two polynomials of degree-bound n can be computed in time $\Theta(n \log n)$, with both the input and output in coefficient form.
Fourier Transform

• Fourier Transforms originate from **signal processing**
 – Transform signal from **time domain** to **frequency domain**
 – Input signal is a function mapping time to amplitude
 – Output is a weighted sum of phase-shifted sinusoids of varying frequencies

Fast Multiplication of Polynomials

• Using complex roots of unity
 – Evaluation by taking the Discrete Fourier Transform (DFT) of a coefficient vector
 – Interpolation by taking the “inverse DFT” of point-value pairs, yielding a coefficient vector
 – Fast Fourier Transform (FFT) can perform DFT and inverse DFT in time $\Theta(n \log n)$

• Algorithm
 1. Add n higher-order zero coefficients to $A(x)$ and $B(x)$
 2. Evaluate $A(x)$ and $B(x)$ using FFT for $2n$ points
 3. Pointwise multiplication of point-value forms
 4. Interpolate $C(x)$ using FFT to compute inverse DFT
Complex Roots of Unity

• A **complex nth root of unity** (1) is a complex number \(\omega\) such that \(\omega^n = 1\).

• There are exactly \(n\) complex \(nth\) root of unity

 \[e^{2\pi ik/n} \text{ for } k = 0, 1, \ldots, n - 1 \]

 where \(e^{iu} = \cos(u) + i\sin(u)\). Here \(u\) represents an angle in **radians**.

• Using \(e^{2\pi ik/n} = \cos(2\pi k/n) + i\sin(2\pi k/n)\), we can check that it is a root

 \[\left(e^{2\pi ik/n}\right)^n = e^{2\pi ik} = \frac{\cos(2\pi k)}{1} + i\frac{\sin(2\pi k)}{0} = 1 \]

Examples

• The complex 4th roots of unity are

 \(1, -1, i, -i\)

 where \(\sqrt{-1} = i\).

• The complex 8th roots of unity are all of the above, plus four more

 \(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}, -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, \text{ and } -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\)

• For example

 \[
 \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{2i}{2} + \frac{i^2}{2} = i
 \]
Principal n^{th} Root of Unity

- The value
 \[
 \omega_n = e^{2\pi i/n}
 \]
 is called the **principal n^{th} root of unity**.
- All of the other complex n^{th} roots of unity are powers of ω_n.
- The n complex n^{th} roots of unity, $\omega_n^0, \omega_n^1, \ldots, \omega_n^{n-1}$, form a group under multiplication that has the same structure as $(\mathbb{Z}_n, +)$ modulo n.
- $\omega_n^n = \omega_n^0 = 1$ implies
 - $\omega_n^j \omega_n^k = \omega_n^{j+k} = \omega_n^{(j+k) \mod n}$
 - $\omega_n^{-1} = \omega_n^{n-1}$

Visualizing 8 Complex 8th Roots of Unity

\[
\begin{align*}
\omega_8^0 &= 1 \\
\omega_8^1 &= \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \\
\omega_8^2 &= i \\
\omega_8^3 &= -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \\
\omega_8^4 &= -1 \\
\omega_8^5 &= -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \\
\omega_8^6 &= -i \\
\omega_8^7 &= \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}
\end{align*}
\]
Cancellation Lemma

- For any integers $n \geq 0$, $k \geq 0$, and $b > 0$,
 \[\omega_{dn}^{dk} = \omega_n^k. \]

- Proof
 \[\omega_{dn}^{dk} = \left(e^{2\pi i/dn} \right)^{dk} = \left(e^{2\pi i/n} \right)^k = \omega_n^k \]

- For any even integer $n > 0$, $\omega_n^{n/2} = \omega_2 = -1$.

- Example $\omega_{24}^6 = \omega_4$

 $- \omega_{24}^6 \left(e^{2\pi i/24} \right)^6 = e^{2\pi i 6/24} = e^{2\pi i/4} = \omega_4$

Halving Lemma

- If $n > 0$ is even, then the squares of the n complex n^{th} roots of unity are the $n/2$ complex $n/2^{th}$ roots of unity.

- Proof

 - By the cancellation lemma, we have $(\omega_n^k)^2 = \omega_n^{k/2}$ for any nonnegative integer k.

 - If we square all of the complex n^{th} roots of unity, then each $n/2^{th}$ root of unity is obtained exactly twice

 \[(\omega_n^{k+n/2})^2 = \omega_n^{2k+n} = \omega_n^{2k} \omega_n^n = \omega_n^{2k} = (\omega_n^k)^2 \]

 - Thus, ω_n^k and $\omega_n^{k+n/2}$ have the same square
Summation Lemma

• For any integer \(n \geq 1 \) and nonzero integer \(k \) not divisible by \(n \), \(\sum_{j=0}^{n-1} (\omega_n^k)^j = 0 \).

• Proof

 – Geometric series \(\sum_{j=0}^{n-1} x^j = \frac{x^{n-1}}{x-1} \)

 – \(\sum_{j=0}^{n-1} (\omega_n^k)^j = \frac{(\omega_n^k)^n-1}{\omega_n^k-1} = \frac{(\omega_n^k)^{k-1}}{\omega_n^{k-1}} = \frac{(1)^{k-1}}{\omega_n^{k-1}} = 0 \)

 – Requiring that \(k \) not be divisible by \(n \) ensures that the denominator is not 0, since \(\omega_n^k = 1 \) only when \(k \) is divisible by \(n \)

Discrete Fourier Transform (DFT)

• Evaluate a polynomial \(A(x) \) of degree-bound \(n \) at the \(n \) complex \(n^{th} \) roots of unity, \(\omega_n^0, \omega_n^1, \omega_n^2, \ldots, \omega_n^{n-1} \).

 – assume that \(n \) is a power of 2

 – assume \(A \) is given in coefficient form \(a = (a_0, a_1, \ldots, a_{n-1}) \)

• We define the results \(y_k \), for \(k = 0, 1, \ldots, n - 1 \), by

\[
y_k = A(\omega_n^k) = \sum_{j=0}^{n-1} a_j \omega_n^{kj}.
\]

• The vector \(y = (y_0, y_1, \ldots, y_{n-1}) \) is the Discrete Fourier Transform (DFT) of the coefficient vector \(a = (a_0, a_1, \ldots, a_{n-1}) \), denoted as \(y = \text{DFT}_n(a) \).
Fast Fourier Transform (FFT)

- **Fast Fourier Transform (FFT)** takes advantage of the special properties of the complex roots of unity to compute \(\text{DFT}_n(a) \) in time \(\Theta(n \log n) \).

- Divide-and-conquer strategy
 - define two new polynomials of degree-bound \(n/2 \), using even-index and odd-index coefficients of \(A(x) \) separately
 - \(A^{[0]}(x) = a_0 + a_2 x + a_4 x^2 + \cdots + a_{n-2} x^{n/2-1} \)
 - \(A^{[1]}(x) = a_1 + a_3 x + a_5 x^2 + \cdots + a_{n-1} x^{n/2-1} \)
 - \(A(x) = A^{[0]}(x^2) + x A^{[1]}(x^2) \)

- Why bother?
 - The list \(\omega_n^{0}, \omega_n^{1}, \ldots, \omega_n^{n-1} \) does not contain \(n \) distinct values, but \(n/2 \) complex \(n/2 \)th roots of unity
 - Polynomials \(A^{[0]} \) and \(A^{[1]} \) are recursively evaluated at the \(n/2 \) complex \(n/2 \)th roots of unity
 - Subproblems have exactly the same form as the original problem, but are half the size
Example

- \(A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \) of degree-bound 4
 - \(A(\omega_4^0) = A(1) = a_0 + a_1 + a_2 + a_3 \)
 - \(A(\omega_4^1) = A(i) = a_0 + a_1 i - a_2 - a_3 i \)
 - \(A(\omega_4^2) = A(-1) = a_0 - a_1 + a_2 - a_3 \)
 - \(A(\omega_4^3) = A(-i) = a_0 - a_1 i + a_2 + a_3 i \)

- Using \(A(x) = A^{[0]}(x^2) + x A^{[1]}(x^2) \)
 - \(A(x) = a_0 + a_2 x^2 + x(a_1 + a_3 x^2) \)
 - \(A(\omega_4^0) = A(1) = a_0 + 2(a_1 + a_3) \)
 - \(A(\omega_4^1) = A(i) = a_0 - a_2 + i(a_1 - a_3) \)
 - \(A(\omega_4^2) = A(-1) = a_0 + 2(a_1 + a_3) \)
 - \(A(\omega_4^3) = A(-i) = a_0 - a_2 - i(a_1 - a_3) \)

Recursive FFT Algorithm

Recursive-FFT

1. \(n \leftarrow \text{length}[a] \)
2. if \(n = 1 \) then return \(a \)
3. \(\omega_n \leftarrow e^{2\pi i/n} \)
4. \(\omega \leftarrow 1 \)
5. \(a^{[0]} \leftarrow (a_0, a_2, ..., a_{n-2}) \)
6. \(a^{[1]} \leftarrow (a_1, a_3, ..., a_{n-1}) \)
7. \(y^{[0]} \leftarrow \text{Recursive-FFT}(a^{[0]}) \)
8. \(y^{[1]} \leftarrow \text{Recursive-FFT}(a^{[1]}) \)
9. for \(k \leftarrow 0 \) to \(n/2 - 1 \) do
10. \(y_k \leftarrow y^{[0]}_k + \omega y^{[1]}_k \)
11. \(y_{k+(n/2)} \leftarrow y^{[0]}_k - \omega y^{[1]}_k \)
12. \(\omega \leftarrow \omega \omega_n \)
13. return \(y \)

- \(n \) is a power of 2
- basis of recursion
- \(\omega_n \) is principal \(n^{\text{th}} \) root of unity
- \(y^{[0]}_k = A^{[0]}(\omega_n^{k/2}) = A^{[0]}(\omega_n^{2k}) \)
- \(y^{[1]}_k = A^{[1]}(\omega_n^{k/2}) = A^{[1]}(\omega_n^{2k}) \)
- since \(-\omega_n^k = \omega_n^{k+(n/2)} \)
- compute \(\omega_n^k \) iteratively
Why Does It Work?

• For $y_0, y_1, \ldots, y_{n/2-1}$
 \[y_k = y_k^0 + \omega_n^k y_k^1 \]
 \[= A^0(\omega_n^{2k}) + \omega_n^k A^1(\omega_n^{2k}) \]
 \[= A(\omega_n^k) \]

• For $y_{n/2}, y_{n/2+1}, \ldots, y_{n-1}$
 \[y_{k+n/2} = y_k^0 - \omega_n^k y_k^1 \]
 \[= y_k^0 + \omega_n^{k+n/2} y_k^1 \]
 \[= A^0(\omega_n^{2k}) + \omega_n^{k+n/2} A^1(\omega_n^{2k}) \]
 \[= A^0(\omega_n^{2k+n}) + \omega_n^{k+n/2} A^1(\omega_n^{2k+n}) \]
 \[= A(\omega_n^{k+n/2}) \]

Input Vector Tree of RECURSIVEFFT(a)
Interpolation

• Interpolation by computing the inverse DFT, denoted by $a = \text{DFT}_n^{-1}(y)$.

• By modifying the FFT algorithm, we can compute DFT_n^{-1} in time $\Theta(n \log n)$.
 – switch the roles of a and y
 – replace ω_n by ω_n^{-1}
 – divide each element of the result by n