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Algorithm Design & Analysis

Ford-Fulkerson Method

Flow maximization in a network (graph) 
with capacities

Basic idea:
• Find a path from source to target that still 

has flow capacity (augmenting path) 
• Add the maximum flow allowed along this 

path
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p
• Repeat until

Algorithm Design & Analysis

Issues

1. How do we account for flow by

2. Does adding an augmenting path 
lead to a legal flow?

3. Will this process converge?
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4. If so, will it lead to
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Problem Formulation

Directed graph G = (N, E)
Two special nodes: s t
Assume for any node v  N  there are pathsAssume for any node v  N, there are paths

Capacity c(v,w) ≥ 0
If (v, w) not an edge, then

Flow f(v, w) can be
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Flow ( , ) can be

wv

f:c

wv

6
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Detail

Assume no “useless” flows between 
nodes
P iti  fl  i  l   di tiPositive flow in only one direction

wv

12:20

wv

:20
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Legal Flow f

1.f(v, w) ≤ c(v, w)

2.f(v, w) = -f(w, v)

3.For any v ≠ s, t

Σ
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Σf(v, w) = 0

Algorithm Design & Analysis

Inputs = Outputs

Consider node 6
f(6,16) + f(6,12) + f(6,8) + f(6,3)

3
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6
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1:2 2:5
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Value of Flow f

Total flow out of source

|f| Σf( )|f| = Σf(s, w) 

3

s 8

2:18

3:10
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s 8

9
4:4
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Residual Capacity for a Flow

Residual Capacity between nodes v and w:

r(u,v) = c(u,v) – f(u,v)

r(3,7) = c(3,7) – f(3,7)

3 7
6:10
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r(7,3) = c(7,3) – f(7,3)
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Residual Graph for Flow f

R = (N, E’)
E’ = {(v,w) | r(v,w)        }

C i i   id l i i  f  Capacities are residual capacities for f
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Example
s1

s

2:25

s2

0:20

0:9

s4

2:12

0:15

7:7 0:7
0:10

s62:4

6:6

s7

0:6

t

8:20

4:15

s3

10:25
7:10 s5

s8

4:101:2

3:3

s1

s4

s6
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s s2

s3

s4

s5

s7

s8
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Capacity of a Path

Minimum capacity edge
Add a flow of   along the path

s1

s

2:25

s2

0:20

0:9

s4

2:12

0:15

0:10

s62:4

6:6

s7

0:6

t

8:20
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s s2

s3

10:25
7:10 s5

7:7 0:7
s7

s8

4:101:2

3:3

t4:15
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Is the Result a Legal Flow?

• Capacity?

• Skew symmetry?

• Conservation?

s6
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s2

s40:15

s62:4
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Example 2
s1

s

2:25

s2

2:20

0:9

s4

2:12

2:15

7:7 0:7
0:10

s64:4

6:6

s7

0:6

t

10:20

4:15

s3

10:25
7:10 s5

s8

4:101:2

3:3

s1

s4

s6

23
2

2
10

69
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Example 3
s1

s

2:25

s2

2:20

0:9

s4

2:12

2:15

7:7 0:7
0:10

s64:4

6:6

s7

0:6

t

10:20

4:15

s3

10:25
7:10 s5

s8

4:101:2

3:3

s1

s4

s6

23
2

2
10

6

4

10
29
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Is it a Maximum Flow?

Would seem so:
Have a group of edges that divides s from t

and

s1

2:25

3:20

0:9

s4

2:12

3:15

0

s64:4

6:6

0:6 10:20

and
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s s2

s3

10:25
7:10 s5

7:7 0:7
1:10 s7

s8

5:102:2

3:3

t5:15
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Cut of a Graph

Divide nodes of N into two groups S, T
s1 2:12 s64:4

s

2:25

s2

3:20

0:9

s3

10:25
7:10

s4

s5

3:15

7:7 0:7
1:10

6:6

s7

0:6

s8

5:102:2

3:3

t

10:20

5:15
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Net flow across cut Σf(v, w)

Capacity across cut Σc(v, w) 
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Results

• Net flow across any cut
• |f| is bounded above by|f| is bounded above by
• Max-flow/min-cut theorem

1. f is maximum flow
2. residual graph has no
3. |f| is capacity of
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2  3

Consider residual graph R with no 
augmenting path
S = {v|        } T = N - S
Must have

Claim that for (v,w) with v  S, t  T, 
must have
Suppose not. Then r(v,w) > 0. Then R has
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s v w t
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Basic Implementation

Start with 0 flow
Repeatp

Add flow along an augmenting path

Does it always converge?
Yes, if capacities are integers. Flow grows by 

at least
How long does it take?
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How long does it take?
If you pick augmenting paths arbitrarily
O(|E||f*|)
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Edmonds-Karp Algorithm

Start with 0 flow
Repeat

Add fl  l   ti  th ithAdd flow along an augmenting path with

Time complexity no longer depends on 
value of maximum flow
O(|N||E|2) time
Intuition: Length of shortest path to a node 

i  id l h
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g p
v in residual graph

• Each addition of flow increases distance 
to one node

• Distance to a node v can be increased at 
most
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Edmonds-Karp Example

s1

s

25

s2

20

9

25
10

s4

s5

12

15

7 7
10

s64

6

s7

6

102

t

20

15
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s3 s83


