Amortized Cost

- Not an algorithm design mechanism per se
- For analyzing cost of algorithms

Example: Exercise 17.3-6
Implement a queue with two stacks
Why?

Queue Operations

enqueue(x, Q)

dequeue(Q)
return ()

pop(SO)

Q

G
F
E
D

SI

SO

A
B
C

David Maier 1
Lecture 3

David Maier
A Complication

decode(Q)
 if empty(SO) then
 while not empty(SI) do

 return(top(SO))
 pop(SO)

 SI SO
 R
 Q
 P

Complexity

- operation enqueue is always
- in a sequence of n queue ops, one dequeue could be as bad as
- but total cost of sequence isn’t so bad as

Consider: each element has $4
- pay $1 for
- pay $2 for
- pay $1 for
Union-Find

Assumptions
1.
2.
3.
4.
Naming by an element is not a limitation
Usually want to know if

Critical Assumption: the number of ops is proportional to

First Hack

Array \(R[1..n] \)
\(R[i] \equiv \text{name of set} \)
Initially, \(R[i] = \)

Union\((i,j)\): Scan \(R \). For every element \(k \) with \(R[k] = i \), set

\[
\begin{array}{cccccc}
i & 1 & 2 & 3 & 4 & 5 \\
R[i] & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

Each union costs
Improving Efficiency

More efficiency
- find just the elements of the set
- always choose R[i] as before

If j is a "name", then LIST[j] points to

and SIZE[j] =
Union(i,j) {assume i= , j= }

1. Assume SIZE[i] SIZE[j]
2. Traverse LIST[i] and
3. Add LIST[i] to
4. Adjust SIZE[j]

Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R[i]</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>SIZE</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

LIST

Union(2,4)
Theorem: Can execute \(n-1 \) Union operations in \(O(n \cdot \log n) \) time.

- Time for Union is proportional to
- Charge the cost to the elements moved when they go
- How many times may a single element be moved?

Tree-Structured Union-Find

Data structure: forest of trees, one per
Almost linear time for \(n \) ops

\[
\begin{align*}
&7 \\
&\quad \quad 6 \\
&\quad \quad 3 \\
&\quad \quad 2 \\
&\quad \quad 9 \\
&8 \\
&\quad \quad 4 \\
&\quad \quad 1 \\
&\quad \quad 5
\end{align*}
\]

Find(i) -

Union(i,j) -
Balancing

Can get bad trees
Keep trees somewhat balanced:
always merge

Lemma: If for every `Union`, the smaller tree is made a subtree of the larger, then any tree of height h has at least 2^h nodes.
Proof: If $h = 0$, then the tree must be

Proof, Continued

If $h > 0$, choose height h tree formed by `Union`'s that has

Look at last tree added, must have height

Before the addition, T_j has height
Path Compression

Further improvement on Find time

![Binary tree diagram]

Complexity

Need funny functions to prove complexity

\[
F(0) = 0 \\
F(i) = i \\
G(n) = \text{the least } k \text{ such that } F(k)
\]

In this universe, \(G(n) \leq k \) for all practical \(n \)
Complexity 2

Show that a sequence \(\sigma \) of \(c \cdot n \) Union/Find's can be done in

Assume: Union takes

Find takes "units" proportional to

Definition: The \(u \)-height (union height) of an element relative to

1. Let \(\sigma' \) be \(\sigma \) with
2. Construct a forest using
3. \(u \)-height \((v)\) is height of \(v \) in

Complexity 3

Lemma: There are at most

Proof: Node of \(u \)-height = \(r \) has at least descendents in forest \(F \).

If \(u \)-height \((v)\) = \(u \)-height \((w)\), sets of descendents are

There are at most distinct sets of \(2^r \) elements, so

Corollary:
Complexity 4

Lemma: If during execution of σ (not τ), w is a proper descendent of v, then

Proof: w a proper descendent of v under σ implies

Put nodes into groups by u-height

u-height = r goes in
u-height 0-1 2 3-4 5-16 17-65536 65537-2^{65536}$
group

Complexity 5

How to count cost of Find's in $c \cdot n$
of operations.

Split cost of Find between

1.

2. certain nodes

In the end have

sum over

$+$

sum over

Suppose $\text{Find}(i)$ traverses k nodes

- How to split up k "units"?
Consider each node v on path:
1. If v is root
 - w is root
 - v,w in different groups
2. If v,w in same group and w not the root,

Along any upward path, u-heights increase.

At most different groups
so case 1 applies to at most

So a Find operation gets charged at most
Complexity 8

What happens when case 2 applies?
\(v \) gets a new parent \(x \)
and \(u\text{-height}(x) \neq u\text{-height}(w) \)
• How many times can \(v \) get a new parent before its parent is in a higher group, and case 1 applies?
At most

Complexity 9

Charges to nodes:
\[\sum (\text{max nodes in } G) \times (\text{max moves for } g) \]
\[N(g) \leq \sum_{r=F(g-1)+1}^{F(g)} \]

max moves for a node in a group \(\leq \)
An undirected graph G is a pair (N, E)

Example

$N = \{a, b, c, d\}$

$E = \{\{a, b\}, \{b, c\}, \{a, c\}, \{b, d\}, \{c, d\}\}$

A path in graph $G = (N, E)$

A sequence n_1, n_2, \ldots, n_k $k \geq 2$ of nodes

A path is simple if
A path is a cycle if $k \geq 3$
Directed Graphs

In a directed graph (digraph) E is

Example

$E = \{(a, b), (b, c), (a, c), (b, d), (c, d), (d, c)\}$

![Graph Diagram]

Representation

Time and space complexity depends on how we capture the graph.

Edge list

$\{a, b\}, \{b, c\}, \{a, c\}, \{b, d\}, \{c, d\}$

Adjacency List

- $a \rightarrow$
- $b \rightarrow$
- $c \rightarrow$
- $d \rightarrow$
Representation 2

Adjacency matrix

\[
\begin{array}{cccc}
 & a & b & c & d \\
 a & 1 & 0 & 0 & 0 \\
 b & 0 & 1 & 0 & 0 \\
 c & 0 & 0 & 1 & 0 \\
 d & 0 & 0 & 0 & 0 \\
\end{array}
\]

Depth-First Search–Undirected Graphs

A means to visit all nodes of an undirected graph

at node x
pick edge \(\{x, y\} \)
\[\text{if } y \text{ visited, pick another edge} \]
\[\text{else} \]
\[\text{if no more edges, we're done} \]
Algorithm Design & Analysis

Example DFS

1 → 2 → 3 → 7
 ↓ ↓
 4 ← 5 ← 6 8

DFS Algorithm

DFS(v)
mark v
for each edge \{v, w\} do
 if w not marked then

"saved" edges form the depth-first spanning tree
T -
B -

DFS number
DFNum[v]
Time Complexity

Theorem: DFS requires $O(\max(n, e))$ steps on a graph with n nodes and e edges (given as an adjacency list).

Time spent looking for unmarked nodes

DFS(v) is called once for each node.

Time spent, apart from recursive calls, is

$$\sum_{v \in N} (#\text{nodes adjacent to } v)$$

Back Edges

If $\{v, w\} \in B$, then v is an ancestor of w in the spanning forest (or vice versa).

If v an ancestor of w in DFS tree, then

DFNum[v] > DFNum[w].