Feature Selection

What is feature selection? Why do it?

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 – 1,000,000 unique words … and more
- May make using a particular classifier feasible
 - Some classifiers can’t deal with 100,000 of features
- Reduces training time
 - Training time for some methods is quadratic or worse in the number of features
- Can improve generalization (performance)
 - Eliminates noise features
 - Avoids overfitting
General idea:

For each term \(t \) in vocabulary \(V \) and each class \(c \), compute “utility measure” \(A(t,c) \)

Select the \(k \) terms with highest \(A(t,c) \)

Feature selection via Mutual Information

• In training set, choose \(k \) words which best discriminate (give most info on) the categories.

• The Mutual Information between a word, class is:

\[
I(t,c) = \sum_{e_t \in \{0,1\}} \sum_{e_c \in \{0,1\}} p(e_t, e_c) \log_2 \frac{p(e_t, e_c)}{p(e_t) p(e_c)}
\]

for each term \(t \) and each category \(c \),

where \(e_t = 1 \) if term \(t \) is in document, 0 otherwise

and \(e_c = 1 \) if the document is class \(c \), 0 otherwise
Example

- Suppose we have 100 documents, 60 of which contain the term “dollar” and 50 of which don’t. Of the 60 that contain “dollar”, 45 are class “spam”. Of the 50 that do not contain “dollar”, 20 are spam.

What is $I(\text{“dollar”}, \text{spam})$?

$$I(\text{“dollar”}, \text{spam}) = \sum_{e_{\text{dollar}} \in \{0,1\}} \sum_{e_{\text{spam}} \in \{0,1\}} p(e_{\text{dollar}} \cdot e_{\text{spam}}) \log_2 \frac{p(e_{\text{dollar}} \cdot e_{\text{spam}})}{p(e_{\text{dollar}} \cdot p(e_{\text{spam}}))}$$

Figure 13.7 Features with high mutual information scores for six Reuters-RCV1 classes.
Feature selection via χ^2 statistic (CHI)

- χ^2 is interested in $\frac{(f_o - f_e)^2}{f_e}$ summed over all table entries: is the observed number what you’d expect given the marginals?

$$\chi^2(j,a) = \sum (O - E)^2 / E = (2 - .25)^2 / .25 + (3 - 4.75)^2 / 4.75 + (500 - 502)^2 / 502 + (9500 - 9498)^2 / 9498 = 12.9 \ (p < .001)$$

- The null hypothesis is rejected with confidence .999.
- since $12.9 > 10.83$ (the value for .999 confidence).

<table>
<thead>
<tr>
<th></th>
<th>Term = jaguar</th>
<th>Term ≠ jaguar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class = auto</td>
<td>2 (0.25)</td>
<td>500 (502)</td>
</tr>
<tr>
<td>Class ≠ auto</td>
<td>3 (4.75)</td>
<td>9500 (9498)</td>
</tr>
</tbody>
</table>
Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
 - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data).

- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).

- Measures: precision, recall, F1, classification accuracy

- **Classification accuracy**: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
 - Adequate if one class per document
 - Otherwise F measure for each class