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Network Structure of the Web

Chapter 21 

(plus additional references)

The Web as a Graph

• Nodes: static Web pages 

• Links: directed hyperlinks

• Notion of “in-links”, “out-links”, “in-degree”, “out-degree”.  

• Questions: 

– What is the structure of this graph?

– How did this structure come about? 

– How to best search, given this structure? 

– How to best crawl, given this structure? 

– How to mine the structure to find communities, themes? 
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Sidetrack: 

The Science of Networks

Neural Network 
(C. Elegans)

Examples of Complex Networks

http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png
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Food Web

http://www.coolantarctica.com/Antarctica%20fact%20file/wildlife/whales/foodweb.gif

Metabolic Network

http://www.funpecrp.com.br/gmr/year2005/vol3-4/wob01_full_text.htm
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Genetic Regulatory Network

http://expertvoices.nsdl.org/cornell-info204/files/2009/03/figure-3.jpeg

Airline Routes

http://virtualskies.arc.nasa.gov/research/tutorial/images/12routemap.gif



6/1/2010

5

US Power Grid

http://images.encarta.msn.com/xrefmedia/aencmed/targets/maps/map/000a5302.gif

Internet

http://www.visualcomplexity.com/vc/images/270_big01.jpg
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World Wide Web (small part)

From M. E. J. Newman and M. Girvin, Physical Review Letters E, 69, 026113, 2004. 

Social Network

http://ucsdnews.ucsd.edu/graphics/images/2007/07-07socialnetworkmapLG.jpg
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Are there properties common to all complex 

networks?   

If so, why? 

The Science of Networks

Observed common properties: 

– Small world property

– Scale-free structure

– Clustering and community structure

– Robustness to random node failure

– Vulnerability to targeted hub attacks

– Vulnerability to cascading failures
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Small-World Property

(Watts and Strogatz, 1998)

Small-World Property

(Watts and Strogatz, 1998)

me

Barack
Obama

my mother

Nancy Bekavac

Hillary
Clinton
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Stanley Milgram

On average: “six degrees 
of separation”

Nebraska farmer

Boston stockbroker

The Small-World Property

(Watts and Strogatz)

The network has relatively few “long-distance” 

links but there are short paths between most pairs 

of nodes, usually created by “hubs”. 

Notion of average path length

Notion of clustering coefficient

Netlogo Demo
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The network has relatively few “long-distance” 

links but there are short paths between most pairs 

of nodes, usually created by “hubs”. 

Most real-world complex networks seem to have 

the small-world property, and thus have short 

average path lengths and high clustering.

Why?  

The Small-World Property

(Watts and Strogatz)

Scale-Free Structure

(Albert and Barabási, 1998)

Typical structure of 

World Wide Web

(nodes = web pages, links = 
links between pages) 

Typical structure of 

a randomly connected 

network

http://www.dichotomistic.com/images/rando

m%20network.gif

part of WWW
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part of WWW
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Degree distributions

The Web’s approximate Degree Distribution
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The Web’s approximate Degree Distribution
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Degree

“Scale-free” distribution

The Web’s approximate Degree Distribution
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“Scale-free” distribution

= “power law” distribution

The probability that a node will have degree k is 
proportional to 

“power law”

2.1k
1

Degree distribution of the Web

• Out and in degree distributions (from sampling)  with 

exponents 2.45 and 2.1 respectively, from  Albert et al., 

“Diameter of the World-Wide Web”. 
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Path length: Average of 

shortest path between 

two documents as 

function of  system size.  

<d> = 0.35 + 2.06 log(N)

The Web as a small-world network

From  Albert et al., “Diameter of 

the World-Wide Web”. 

Average distance over all pairs of vertices: approx  19.     

As N grows, d won’t change much, given logarithmic dependence.  

E.g., if web increases 1000%, d will change from 19 to 21. 

Problem:  how to find shortest paths? 

“Diameter of the web”

(Albert and Barabasi) 
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The scale-free structure of the Web explains 

why Google works so well 

It also explains some of the success of 
other scale-free networks in nature!

part of WWW

Robustness of Scale-Free Networks

• Robust to random node failure

• Vulnerable to targeted “hub” failure

• If failing nodes can cause other nodes to fail

Can result in cascading failure
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Other examples of power-laws in nature

• Magnitude vs. frequency of earthquakes

• Magnitude vs. frequency of stock market crashes

• Income vs. frequency (of people with that income)

• Populations of cities vs. frequency (of cities with that 

population)

• Word rank vs. frequency in English text

“More normal than ‘normal’? 

How are scale-free networks created? 

Barabàsi and Albert:  Preferential attachment

Netlogo demo
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From Broder et al., Graph structure in the web, 2000

PageRank

• Named after Larry Page, patented by Stanford University

• General idea: 

– Consider surfer who begins at one page (node) and executes random 

walk on the graph.  At each time step, surfer goes from page A  to 

randomly chosen page that A links to, with equal probability. 

– If A does not link to any pages, or if surfer gets “bored” (with 

probability α) following hyperlinks, then surfer “teleports” to randomly 

chosen page in collection. 

– PageRank (page) = fraction of time page will be visited in this 

stochastic process.  

– Pages visited more often in this process are more important and thus 

ranked higher.
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Markov Chains

• Stochastic process with states and transition probabilities.  

• Probability of transitioning from state A  to State B depends 

only on state A (current state), not on previous states. 

• E.g.: 

C A B

1

1

0.5

0.5

















C

B

A

C   B     A   

Markov Chain

Transition Matrix

Web Surfing as a Markov Chain Process

• Random web surfer viewed as Markov chain

• State = web page

• Transition probability:  probability of moving from one web page to 

another. 
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Web Surfing as a Markov Chain Process, continued

• Adjacency Matrix A: 

– If there is a hyperlink from page i to page j, then Aij = 1, otherwise Aij

= 0. 

• Transition Matrix P: 

– If a row of A has no 1s (i.e., no out-links), then insert 1/N for each 

element in that row in P (uniform teleporting probability)

– Otherwise, divide each 1 in the row in A by the number of 1s in its row.  

(uniform probability of going to out-link)

– Multiply the resulting matrix by (1- α) (probability of going to that 

linked page by not teleporting) 

– Add α /N to every entry of the resulting matrix (probability of going to 

that each by teleporting)

• Exercise 21.6:  Consider the following web graph.  What are the transition matrices 

for α = 0 and 0.5? 

1

2

3
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Ergodicity in Markov Chains

• Markov chain is ergodic if there is some non-zero probability of visiting every 

state.    

• Theorem:  For any ergodic Markov chain with transition matrix P, there is a unique 

steady-state probability vector ππππ that is the principal left eigenvector of P, such that 

if η(i,t) is the number of visits to state i in t steps, then 

where π (i) > 0 is the steady-state probability for state i.    

Corollary:  The “random walk with teleporting” process described above results in a 

unique distribution of steady state probabilities over the states of the Markov chain.  

Definition:

PageRank(i) = π(i).  

),(
),(

lim iπ
t

ti

t
=

∞→

η

Computing PageRank

• http://www.page-rank-calculator.com/

• By definition of left principal eigenvector: 

• If ππππis steady-state distribution, then 

• Thus 1 is an eigenvalue of P. ππππ gives the PageRank values of all the pages. 

• How to compute ππππ? 

ππP λ=

ππP 1=
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Computing PageRank, continued

• Suppose alpha = 0.5.   Let xt be the probability distribution over the states at time t.  

Suppose surfer starts in state 1.  I.e., x0 = (1 0 0).

After one  time step, we have x1 = x0 P = (1/6   2/3  1/6)

After two time steps, x2 = x1 P = (1/3  1/3  1/3). 

Keep going.  Finally reach steady state of (5/18  4/9   5/18).   [Show this is a steady 

state]
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P

Alternative explanation from Wikipedia

• Recursive calculation:

E.g., 

• PageRank(2) = PageRank(1) + PageRank(3)

• PageRank(1) = PageRank(2) / 2

• PageRank(3) = PageRank(2)/2 

• With damping factor α: 

where N is number of pages in the collection. 
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Google and PageRank

• Google: “PageRank relies on the uniquely democratic nature of the web by using 

its vast link structure as an indicator of an individual page's value. In essence, 

Google interprets a link from page A to page B as a vote, by page A, for page B. 

But, Google looks at more than the sheer volume of votes, or links a page receives; 

it also analyzes the page that casts the vote. Votes cast by pages that are themselves 

‘important’ weigh more heavily and help to make other pages ‘important’.”

• Google recalculates PageRank each time it crawls the web and rebuilds its index. 

• PageRank tends to favor older pages (more links) 

• http://directory.google.com/

From http://www.geek.com/articles/chips/googles-pagerank-algorithm-traced-

back-to-the-1940s-20100217/

Earlier forerunner to PageRank in the work of the Harvard 

economist Wassily Leontief: 

“In 1941, Leontief published a paper in which he divides a 

country's economy into sectors that both supply and receive 

resources from each other, although not in equal measure. One 

important question is: what is the value of each sector when 

they are so tightly integrated? Leontief's answer was to 

develop an iterative method of valuing each sector based on 

the importance of the sectors that supply it. Sound familiar? In 

1973, Leontief was awarded the Nobel Prize in economics for 

this work.”
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Other Uses for Page Rank

• http://www.eigenfactor.org (for journal impact)

• Ranking doctoral programs (network:  departments are nodes, 

one node links to another if it hires faculty from that dept.) 

• Food webs – species that are essential to an ecosystem
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“Here we show that an algorithm adapted from the 

one Google uses to rank web-pages can order species 

according to their importance for coextinctions, 

providing the sequence of losses that results in the 

fastest collapse of the network.”

How to spoof/manipulate PageRank
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Hubs and Authorities

(HITS Algorithm)

• Proposed by Jon Kleinberg (Cornell) at same time Brin and 

Page were developing PageRank

• HITS: Hyperlinked-induced topic search

• Supposedly used by Teoma and Ask.com

Hubs and Authorities

Main ideas

Each node has a hub score and an authority score

Hub: Web site that points to a lot of good authorities

Authority:  Web site that is pointed to by a lot of good hubs

Circular definition               iterative computation
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Let h = vector of hub scores of web pages in collection

Let a = vector of authority scores of web pages in collection

Let A denote the adjacency matrix of the web pages in collection

Then:                                             and 

Can turn these into eigenvector equations:
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=

=
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Hubs and Authorities

How to compute scores

Hubs and Authorities

How to compute scores, continued

• HITS Algorithm: 

– Assemble the target subset of web pages from a given 

query, form the graph induced by their hyperlinks, and 

compute AAT and ATA

– Compute the principal eigenvectors of AAT and ATA to 

form the vector of hub scores h and the vector of authority 

scores a.  

– Output the top-scoring hubs and top-scoring authorities
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Choosing the subset of the web
(One proposed method, described in textbook)

1. Given a query , use a text index to get all pages containing the 

terms of the query.  Call this the root set of pages. 

2. Build the base set of pages to include the root set as well as 

any page that either links to a page in the root set, or is linked 

to by a page in the root set.   

Use the base set to compute hub and authority scores. 

Differences between PageRank and HITS

• PageRank computers one score per document.  HITS 

computers two.  

• PageRank executed at indexing time, HITS executed at query 

time.  Hub and authority scores are query-specific, whereas 

PageRank scores are query-independent.

• PageRank is assigned to all documents in collection.  HITS 

scores are assigned only to relevant subset.  
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In-Class Exercises

Draw a picture of a Web structure containing nodes with high 

hub score and high authority score.

Draw two different pictures of Web structures containing 

nodes with high PageRank.  


