Network Structure of the Web

Chapter 21

(plus additional references)

The Web as a Graph

Nodes: static Web pages
Links: directed hyperlinks

99 ¢ 99 <¢ 99 ¢

Notion of “in-links”, “out-links”, “in-degree”, “out-degree”.

Questions:
— What is the structure of this graph?

— How did this structure come about?
— How to best search, given this structure?
— How to best crawl, given this structure?

— How to mine the structure to find communities, themes?
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Sidetrack:
The Science of Networks

Examples of Complex Networks

Neural Network
(C. Elegans)

http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png
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Figure 2, Bipartite graph of the metabolic network of Ureaplasma wrealyticiom, Dark gray and white nodes represent
enzymes and light gray nodes represent metabolites (Lemke et al., 2004).

Metabolic Network

http://www.funpecrp.com.br/gmr/year2005/vol3-4/wob01_full_text.htm
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Genetic Regulatory Network

http://expertvoices.nsdl.org/cornell-info204/files/2009/03 /figure-3.jpeg
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http://virtualskies.arc.nasa.gov/research/tutorial/images/12routemap.gif
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Texas
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http://images.encarta.msn.com/xrefmedia/aencmed/targets/maps/map/000a5302.gif

North America Internet network

Internet

http://www.visualcomplexity.com/vc/images/270_big01.jpg
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World Wide Web (small part)

From M. E. J. Newman and M. Girvin, Physical Review Letters E, 69, 026113, 2004.

Social Network

http://ucsdnews.ucsd.edu/graphics/images/2007/07-07socialnetworkmapLG.jpg
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The Science of Networks

Are there properties common to all complex
networks?

If so, why?

Observed common properties:

— Small world property

— Scale-free structure

— Clustering and community structure
— Robustness to random node failure
— Vulnerability to targeted hub attacks

— Vulnerability to cascading failures




Small-World Property
(Watts and Strogatz, 1998)

Small-World Property
(Watts and Strogatz, 1998)
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Stanley Milgram
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On average: “six degrees
of separation”
P N\

The Small-World Property
(Watts and Strogatz)

The network has relatively few ‘“long-distance”
links but there are short paths between most pairs

of nodes, usually created by ‘‘hubs”.
Notion of average path length
Notion of clustering coefficient

Netlogo Demo
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The Small-World Property
(Watts and Strogatz)

The network has relatively few “long-distance”
links but there are short paths between most pairs

of nodes, usually created by “hubs”.

Most real-world complex networks seem to have
the small-world property, and thus have short

average path lengths and high clustering.
Why?

Scale-Free Structure
(Albert and Barabasi, 1998)

random network
. * [

part of WWW ° °

Typical structure of Typical structure of

a randomly connected World Wide Web

network (nodes = web pages, links =
links between pages)

http://www.dichotomistic.com/images/rando
m%20network.gif
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Degree distributions
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The Web’s approximate Degree Distribution
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The Web’s approximate Degree Distribution
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The Web’s approximate Degree Distribution

“Scale-free” distribution

The probability that a node will have degree k is

proportional to

1
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= “power law” distribution
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Degree
Degree distribution of the Web
* QOut and in degree distributions (from sampling) with
exponents 2.45 and 2.1 respectively, from Albert et al.,
“Diameter of the World-Wide Web™.
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The Web as a small-world network

From Albert et al., “Diameter of
the World-Wide Web”.

" ' | O' Path length: Average of
(c) o © shortest path between
e o ° 107 f%.@ two documents as
o
¢ . o ° z10* | aég function of system size.
= 2
o ° otpe | % <d>=0.35 + 2.06 log(N)
5 o , éﬁ
10° L tan
10 10
| . L k+1
10° 10’ 10 10° 10°
N

“Diameter of the web”

(Albert and Barabasi)

Average distance over all pairs of vertices: approx 19.
As N grows, d won’t change much, given logarithmic dependence.
E.g., if web increases 1000%, d will change from 19 to 21.

Problem: how to find shortest paths?

15



The scale-free structure of the Web explains
why Google works so well

random network
. * L

s
oia
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It also explains some of the success of
other scale-free networks in naturel

Robustness of Scale-Free Networks

¢ Robust to random node failure

* Vulnerable to targeted “hub” failure

» If failing nodes can cause other nodes to fail

Can result in cascading failure

6/1/2010
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Other examples of power-laws in nature

* Magnitude vs. frequency of earthquakes
* Magnitude vs. frequency of stock market crashes
* Income vs. frequency (of people with that income)

* Populations of cities vs. frequency (of cities with that
population)

* Word rank vs. frequency in English text

“More normal than ‘normal’?

How are scale-free networks created?

Barabasi and Albert: Preferential attachment

Netlogo demo

6/1/2010
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From Broder et al., Graph structure in the web, 2000
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PageRank

Named after Larry Page, patented by Stanford University

General idea:

— Consider surfer who begins at one page (node) and executes random
walk on the graph. At each time step, surfer goes from page A to
randomly chosen page that A links to, with equal probability.

— If A does not link to any pages, or if surfer gets “bored” (with
probability o) following hyperlinks, then surfer “teleports” to randomly
chosen page in collection.

— PageRank (page) = fraction of time page will be visited in this
stochastic process.

— Pages visited more often in this process are more important and thus
ranked higher.

6/1/2010
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Markov Chains

* Stochastic process with states and transition probabilities.

* Probability of transitioning from state A to State B depends
only on state A (current state), not on previous states.

E.g. A B C
1 0.5 A

e 0.5 ° 1 e B
Markov Chain C

Transition Matrix

Web Surfing as a Markov Chain Process
* Random web surfer viewed as Markov chain
» State = web page

» Transition probability: probability of moving from one web page to
another.

6/1/2010
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Web Surfing as a Markov Chain Process, continued

Adjacency Matrix A:

— If there is a hyperlink from page i to page j, then Aij = 1, otherwise Aij
=0.

Transition Matrix P:

If a row of A has no 1s (i.e., no out-links), then insert 1/N for each
element in that row in P (uniform teleporting probability)

(uniform probability of going to out-link)

Multiply the resulting matrix by (1- o) (probability of going to that
linked page by not teleporting)

Add o /N to every entry of the resulting matrix (probability of going to
that each by teleporting)

Otherwise, divide each 1 in the row in A by the number of 1s in its row.

Exercise 21.6: Consider the following web graph. What are the transition matrices
for o =0 and 0.5?

6/1/2010
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Ergodicity in Markov Chains

* Markov chain is ergodic if there is some non-zero probability of visiting every
state.

* Theorem: For any ergodic Markov chain with transition matrix P, there is a unique
steady-state probability vector &t that is the principal left eigenvector of P, such that
if N(7,1) is the number of visits to state i in ¢ steps, then

1im 280 _ 7).

t—0 t

where 7 (i) > 0 is the steady-state probability for state i.

Corollary: The “random walk with teleporting” process described above results in a
unique distribution of steady state probabilities over the states of the Markov chain.

Definition:
PageRank(i) = n(i).

Computing PageRank

e http://www.page-rank-calculator.com/

» By definition of left principal eigenvector:
P =An
» If mis steady-state distribution, then

nP=1n

* Thus I is an eigenvalue of P. Tt gives the PageRank values of all the pages.

* How to compute ®?

6/1/2010
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Computing PageRank, continued

* Suppose alpha = 0.5. Let x, be the probability distribution over the states at time z.

Suppose surfer starts in state 1. Le.,x,=(100).

1/6 2/3 1/6
P=|5/12 1/6 5/12
1/6 2/3 1/6

After one time step, we have x; =x, P =(1/6 2/3 1/6)
After two time steps, X, =x; P=(1/3 1/3 1/3).

Keep going. Finally reach steady state of (5/18 4/9 5/18). [Show this is a steady
state]

Alternative explanation from Wikipedia

¢ Recursive calculation:

1/6 2/3 1/6

P=5/12 1/6 5/12

1/6 2/3 1/6
PageRank( j)

PageRank(i) =
ageRank(i) J,Z_:fNumbcr of outbound links from j
E.g.,
* PageRank(2) = PageRank(1) + PageRank(3)
* PageRank(1) = PageRank(2) / 2
* PageRank(3) = PageRank(2)/2

*  With damping factor @ PageRank(i) = -, ay, PageRank(j .) .
‘¢ Number of outbound links from j

where N is number of pages in the collection.

22



Google and PageRank

Google: “PageRank relies on the uniquely democratic nature of the web by using
its vast link structure as an indicator of an individual page's value. In essence,
Google interprets a link from page A to page B as a vote, by page A, for page B.
But, Google looks at more than the sheer volume of votes, or links a page receives;
it also analyzes the page that casts the vote. Votes cast by pages that are themselves

LT}

‘important’ weigh more heavily and help to make other pages ‘important’.
Google recalculates PageRank each time it crawls the web and rebuilds its index.
PageRank tends to favor older pages (more links)

http://directory.google.com/

From http://www.geek.com/articles/chips/googles-pagerank-algorithm-traced-
back-to-the-1940s-20100217/

Earlier forerunner to PageRank in the work of the Harvard
economist Wassily Leontief:

“In 1941, Leontief published a paper in which he divides a
country's economy into sectors that both supply and receive
resources from each other, although not in equal measure. One
important question is: what is the value of each sector when
they are so tightly integrated? Leontief's answer was to
develop an iterative method of valuing each sector based on
the importance of the sectors that supply it. Sound familiar? In
1973, Leontief was awarded the Nobel Prize in economics for
this work.”

6/1/2010

23



Other Uses for Page Rank

* http://www.eigenfactor.org (for journal impact)

* Ranking doctoral programs (network: departments are nodes,
one node links to another if it hires faculty from that dept.)

* Food webs — species that are essential to an ecosystem

Googling Food Webs: Can an Eigenvector Measure
Species’ Importance for Coextinctions?

Stefano Allesina'*, Mercedes Pascual®***

1 National Center for Ecological Analysis and Synthesis, Santa Barbara, California, United States of America, 2 Department of Ecology and Evolutionary Biology, Universi
of Michigan, Ann Arbor, Michigan, United States of America, 3 Santa Fe Institute, Santa Fe, New Mexico, United States of America, 4 Howard Hughes Medical Institu

Abstract

A major challenge in ecology is forecasting the effects of species’ extinctions, a pressing problem given current human
impacts on the planet. Consequences of species losses such as secondary extinctions are difficult to forecast because
species are not isolated, but interact instead in a complex network of ecological relationships. Because of their mutual
dependence, the loss of a single species can cascade in multiple coextinctions. Here we show that an algorithm adapted
from the one Google uses to rank web-pages can order species according to their importance for coextinctions, providing
the sequence of losses that results in the fastest collapse of the network. Moreover, we use the algorithm to bridge the gap
between qualitative (who eats whom) and quantitative (at what rate) descriptions of food webs. We show that our simple
algorithm finds the best possible solution for the problem of assigning importance from the perspective of secondary
extinctions in all analyzed networks. Our approach relies on network structure, but applies regardless of the specific
dynamical model of species’ interactions, because it identifies the subset of coextinctions common to all possible models,
those that will happen with certainty given the complete loss of prey of a given predator. Results show that previous
measures of importance based on the concept of “hubs” or number of connections, as well as centrality measures, do not
identify the most effective extinction sequence. The proposed algorithm provides a basis for further developments in the
analysis of extinction risk in ecosystems.

6/1/2010
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Googling Food Webs: Can an Eigenvector Measure
Species’ Importance for Coextinctions?

Stefano Allesina’*, Mercedes Pascual®*3*

1 National Center for Ecological Analysis and Synthesis, Santa Barbara, California, United States of America, 2 Department of Ecology and Evolutionary Biology, Universi
of Michigan, Ann Arbor, Michigan, United States of America, 3 Santa Fe Institute, Santa Fe, New Mexico, United States of America, 4 Howard Hughes Medical Institu
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A major challenge in ecology is forecasting the effects of species’ extinctions, a pressing problem given current human
impacts on the planet. Consequences of species losses such as secondary extinctions are difficult to forecast because
species are not isolated, but interact instead in a complex network of ecological relationships. Because of their mutual
dependence, the loss of a single species can cascade in multiple coextinctions. Here we show that an algorithm adapted
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How to spoof/manipulate PageRank

6/1/2010
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Hubs and Authorities
(HITS Algorithm)

* Proposed by Jon Kleinberg (Cornell) at same time Brin and
Page were developing PageRank

» HITS: Hyperlinked-induced topic search

* Supposedly used by Teoma and Ask.com

Hubs and Authorities
Main ideas

Each node has a hub score and an authority score
Hub: Web site that points to a lot of good authorities
Authority: Web site that is pointed to by a lot of good hubs

Circular definition === iterative computation

h(v) < D a(y)

vy

a(v) « 3 h(y)

yev

where a — b means a links to b

26
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Hubs and Authorities
How to compute scores

Let h = vector of hub scores of web pages in collection

Let a = vector of authority scores of web pages in collection

Let A denote the adjacency matrix of the web pages in collection

Then: h< Aa and h <« AA’h

ac A’h a«<—A'Aa

Can turn these into eigenvector equations:
Ah=(AA" )
Aa=(ATA)a

Hubs and Authorities
How to compute scores, continued

* HITS Algorithm:

— Assemble the target subset of web pages from a given
query, form the graph induced by their hyperlinks, and
compute AAT and ATA

— Compute the principal eigenvectors of AAT and ATA to
form the vector of hub scores h and the vector of authority
scores a.

— Output the top-scoring hubs and top-scoring authorities

27



Choosing the subset of the web
(One proposed method, described in textbook)

1. Given a query , use a text index to get all pages containing the
terms of the query. Call this the root set of pages.

2. Build the base set of pages to include the root set as well as
any page that either links to a page in the root set, or is linked
to by a page in the root set.

Use the base set to compute hub and authority scores.

Differences between PageRank and HITS

* PageRank computers one score per document. HITS
computers two.

* PageRank executed at indexing time, HITS executed at query
time. Hub and authority scores are query-specific, whereas
PageRank scores are query-independent.

* PageRank is assigned to all documents in collection. HITS
scores are assigned only to relevant subset.

6/1/2010
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In-Class Exercises

Draw a picture of a Web structure containing nodes with high
hub score and high authority score.

Draw two different pictures of Web structures containing
nodes with high PageRank.

6/1/2010
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