

Chapter 18

LSI

• Applications in Search Engine Optimization (SEO) video <u>http://www.youtube.com/watch?v=LOPY1hPcZEM</u>

Principal Components Analysis

- PCA used to reduce dimensions of data without much loss of information.
- Used in machine learning and in signal processing and image compression (among other things).

PCA is "an orthogonal linear transformation that transfers the data to a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinate (*first principal component*), the second greatest variance lies on the second coordinate (*second principal component*), and so on."

Background for PCA

- Suppose attributes are A₁ and A₂, and we have *n* training examples. *x*'s denote values of A₁ and *y*'s denote values of A₂ over the training examples.
- Variance of an attribute:

$$\operatorname{var}(A_{1}) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{(n-1)}$$

• Covariance of two attributes:

$$cov(A_1, A_2) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)}$$

• If covariance is positive, both dimensions increase together. If negative, as one increases, the other decreases. Zero: independent of each other.

- Covariance matrix
 - Suppose we have *n* attributes, $A_1, ..., A_n$.
 - Covariance matrix:
 - $C^{n \times n} = (c_{i,j})$, where $c_{i,j} = \operatorname{cov}(A_i, A_j)$

- Let **M** be an $n \times n$ matrix.
 - **v** is an *eigenvector* of M if $M \times v = \lambda v$
 - λ is called the $\emph{eigenvalue}$ associated with v
- For any eigenvector **v** of **M** and scalar *a*,

 $\mathbf{M} \times a\mathbf{v} = \lambda a\mathbf{v}$

- Thus you can always choose eigenvectors of length 1:

$$\sqrt{v_1^2 + ... + v_n^2} = 1$$

- If **M** has any eigenvectors, it has *n* of them, and they are orthogonal to one another.
- Thus eigenvectors can be used as a new basis for a n-dimensional vector space.

		PCA	
1. Given origin by subtractir	al data s	set $S = {x^1,, x^k}$, proceed of attribute A_i from	duce new set f each x_i .
$ \frac{x}{2.5} \\ 0.5 \\ 2.2 \\ 1.9 \\ Data = 3.1 \\ 2.3 \\ 2 \\ 1 \\ 1.5 \\ 1.1 $	<i>y</i> 2.4 0.7 2.9 2.2 3.0 2.7 1.6 1.1 1.6 0.9	$\frac{x}{.69} \\ -1.31 \\ .39 \\ .09 \\ DataAdjust = 1.29 \\ .49 \\ .19 \\81 \\31 \\71$	<i>y</i> .49 -1.21 .99 .29 1.09 .79 31 81 31 -1.01
Mean: 1.81	1.91	Mean: 0	0

2. Calculate the covariance matrix:

$$x \qquad y$$

$$cov \stackrel{x}{\Rightarrow} \left(\begin{array}{c} .616555556 & .61544444 \\ .61544444 & .716555556 \end{array}\right)$$
3. Calculate the (unit) eigenvectors and eigenvalues of the covariance matrix:

$$eigenvalues = \left(\begin{array}{c} .0490833989 \\ 1.28402771 \end{array}\right)$$

$$eigenvectors = \left(\begin{array}{c} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{array}\right)$$

4.	Order	eigenvectors	by	eigenvalue,	highest to	lowest.
		<u> </u>	~	<u> </u>	<u> </u>	

$$\mathbf{v}_1 = \begin{pmatrix} -.677873399 \\ -.735178956 \end{pmatrix} \quad \lambda = 1.28402771$$

$$\mathbf{v}_2 = \begin{pmatrix} -.735178956\\.677873399 \end{pmatrix} \quad \lambda = .0490833989$$

In general, you get *n* components. To reduce dimensionality to *p*, ignore n-p components at the bottom of the list.

Construct new feature vector.

Feature vector = $(\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_p)$

$$FeatureVector1 = \begin{pmatrix} -.677873399 & -.735178956 \\ -.735178956 & .677873399 \end{pmatrix}$$

or reduced dimension feature vector :

$$FeatureVector2 = \begin{pmatrix} -.677873399 \\ -.735178956 \end{pmatrix}$$

5. Derive the new data set. $TransformedData = RowFeatureVector \times RowDataAdjust$ $RowFeatureVector1 = \begin{pmatrix} -.677873399 & -.735178956 \\ -.735178956 & .677873399 \end{pmatrix}$ RowFeatureVector2 = (-.677873399 & -.735178956) $RowDataAdjust = \begin{pmatrix} .69 & -1.31 & .39 & .09 & 1.29 & .49 & .19 & -.81 & -.31 & -.71 \\ .49 & -1.21 & .99 & .29 & 1.09 & .79 & -.31 & -.81 & -.31 & -1.01 \end{pmatrix}$ This gives original data in terms of chosen components (eigenvectors)—that is, along these axes.

Example: Linear discrimination using PCA for face recognition

- 1. Preprocessing: "Normalize" faces
 - Make images the same size
 - Line up with respect to eyes
 - Normalize intensities

Latent Semantic Analysis (Landauer et al.)

• From training data (large sample of documents), create wordby-document matrix.

Technical Memo Example

Titles:

- c1: Human machine interface for Lab ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user-perceived response time to error measurement
- m1: The generation of random, binary, unordered *trees*
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

A sample dataset consisting of the titles of 9 technical memoranda. Terms occurring in more than one title are italicized. There are two classes of documents - five about human-computer interaction (c1-c5) and four about graphs (m1-m4). This dataset can be described by means of a term by document matrix where each cell entry indicates the frequency with which a term occurs in a document.

From Deerwester et al., Indexing by latent semantic analysis

Terms	Documents											
	c 1	c 2	c3	c4	c5	ml	m2	m3	m4			
human	$\overline{1}$	0	0	1	0	0	0	0	0			
interface	1	0	1	0	0	0	0	0	0			
computer	1	1	0	0	0	0	0	0	0			
user	0	1	1	0	1	0	0	0	0			
system	0	1	1	2	0	0	0	0	0			
response	0	1	0	0	1	0	0	0	0			
time	0	1	0	0	1	0	0	0	0			
EPS	0	0	1	1	0	0	0	0	0			
survey	0	1	0	0	0	0	0	0	1			
trees	0	0	0	0	0	1	1	1	0			
graph	0	0	0	0	0	0	1	1	1			
minors	0	0	0	0	0	0	0	1	1			

- Now apply "singular value decomposition" to this matrix
- SVD is similar to principal components analysis
- Basically, reduce dimensionality of the matrix by re-representing matrix in terms of "features" (derived from eigenvalues and eigenvectors), and using only the ones with highest value.
- Result: Each document is represented by a vector of *features* obtained by SVD.
- Given a new document (or query), compute its representation vector in this *feature space*, compute its similarity with other documents using cosine between vector angles. Retrieve documents with highest similarities.

Example 18.3: We now illustrate the singular-value decomposition of a 4×2 matrix of rank 2; the singular values are $\Sigma_{11} = 2.236$ and $\Sigma_{22} = 1$.

 $C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -0.632 & 0.000 \\ 0.316 & -0.707 \\ -0.316 & -0.707 \\ 0.632 & 0.000 \end{pmatrix} \begin{pmatrix} 2.236 & 0.000 \\ 0.000 & 1.000 \end{pmatrix} \begin{pmatrix} -0.707 & 0.707 \\ -0.707 & -0.707 \end{pmatrix}.$

• SVD

- can be viewed as a method for rotating the axes in ndimensional space, so that the first axis runs along the direction of the largest variation among the documents
 - the second dimension runs along the direction with the second largest variation
 - and so on

www.cs.nmsu.edu/~mmartin/LSA_Intro_AI _Seminar.ppt

LSI

- Four basic steps
 - Rank-reduced Singular Value Decomposition (SVD) performed on matrix
 - all but the k highest singular values are set to 0
 - produces k-dimensional approximation of the original matrix
 - this is the "semantic space"
 - Compute similarities between entities in semantic space (usually with cosine)

	<u>c1</u>	c2	c3	c 4	c5	m1	<u>m2</u>	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

5/13/2010

• $\mathbf{U} =$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$										
• $\mathbf{U} =$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
• $\mathbf{U} =$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
• $\mathbf{U} =$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$										
• $U =$ 0.22 -0.11 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41 0.20 -0.07 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11 0.24 0.04 -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49 0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01 0.64 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17 0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58 0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23 0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18										
• $\mathbf{U} =$ 0.22 -0.11 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41 0.20 -0.07 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11 0.24 0.04 -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49 0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01 0.64 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17 0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58 0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23 0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	• U=	=							
$ \begin{array}{ccccccccccccccccccccccccccccccc$		-								
$ \begin{array}{ccccccccccccccccccccccccccccccc$		0.22	-0.11	0.29	-0.41	-0.11	-0.34	0.52	-0.06	-0.41
$ \begin{array}{ccccccccccccccccccccccccccccccc$		0.20	-0.07	0.14	-0.55	0.28	0.50	-0.07	-0.01	-0.11
$ \begin{array}{ccccccccccccccccccccccccccccccc$		0.24	0.04	-0.16	-0.59	-0.11	-0.25	-0.30	0.06	0.49
$ \begin{array}{ccccccccccccccccccccccccccccccc$		0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01
$ 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 \\ 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 \\ 0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17 \\ 0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58 \\ 0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23 \\ 0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23 \\ 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18 \\ $		0.64	-0.17	0.36	0.33	-0.16	-0.21	-0.17	0.03	0.27
$ 0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 \\ 0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17 \\ 0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58 \\ 0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23 \\ 0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23 \\ 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18 \\ $		0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
		0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.30	-0.14	0.33	0.19	0.11	0.27	0.03	-0.02	-0.17
0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23 0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18		0.21	0.27	-0.18	-0.03	-0.54	0.08	-0.47	-0.04	-0.58
0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23 0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18		0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23
0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18		0.04	0.62	0.22	0.00	-0.07	0.11	0.16	-0.68	0.23
		0.03	0.45	0.14	-0.01	-0.30	0.28	0.34	0.68	0.18

5/13/2010

• V:	=							
•	_							
0.20	0.61	0.46	0.54	0.28	0.00	0.01	0.02	0.08
-0.06	0.17	-0.13	-0.23	0.11	0.19	0.44	0.62	0.53
0.11	-0.50	0.21	0.57	-0.51	0.10	0.19	0.25	0.08
-0.95	-0.03	0.04	0.27	0.15	0.02	0.02	0.01	-0.03
0.05	-0.21	0.38	-0.21	0.33	0.39	0.35	0.15	-0.60
-0.08	-0.26	0.72	-0.37	0.03	-0.30	-0.21	0.00	0.36
0.18	-0.43	-0.24	0.26	0.67	-0.34	-0.15	0.25	0.04
-0.01	0.05	0.01	-0.02	-0.06	0.45	-0.76	0.45	-0.07
-0.06	0.24	0.02	-0.08	-0.26	-0.62	0.02	0.52	-0.45

20

				~(2				
-	<u>c1</u>	<u>c2</u>	c3	<u>c4</u>	c5	<u>m1</u>	<u>m2</u>	<u>m3</u>	<u>m4</u>
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62
<u>r (</u> hum	ian.u	ser)	= .94		<u>r</u> (h	umai	n.mii	nors)	=8

	e1	-2 -	a2	-1	Raw	data		2	
c?	- 019	CZ	15	<i>C</i> 4	65	<i>m</i> 1	m z	<i>m 5</i>	
c2	0.00	0.00							
c4	0.00	0.00	0.47						
c5	- 033	0.58	0.00	- 031					
m 1	- 017	- 030	- 021	- 016	- 017				
m 2	- 026	- 045	- 032	- 024	- 026	0.67			
m 3	- 033	- 058	- 041	- 031	- 033	0.52	0.77		
m 4	- 033	- 019	- 041	- 031	- 033	- 017	0.26	0.56	
Corre	lations ir	- 030 n first-tw	0.44	nsion spa	ice				
c2	0.91								
c3	1.00	0.91							
c4	1.00	0.88	1.00						
c5	0.85	0.99	0.85	0.81					
m 1	- 085	- 056	- 085	- 088	- 045				
m 2	- 085	- 056	- 085	- 088	- 044	1.00			
III Z		056	- 085	- 088	- 044	1.00	1.00		L
m 3	- 085	- 056	- 405	400					1

Semantic Similarity Measure

- To find similarity between two documents, project them in LS space
- Then calculate the cosine measure between their projection

Summary

- Some Issues
 - SVD Algorithm complexity O(n^2k^3)
 - n = number of terms
 - k = number of dimensions in semantic space (typically small ~50 to 350)
 - for stable document collection, only have to run once
 - dynamic document collections: might need to rerun SVD, but can also "fold in" new documents

Summary

• Some issues

- Finding optimal dimension for semantic space
 - precision-recall improve as dimension is increased until hits optimal, then slowly decreases until it hits standard vector model
 - run SVD once with big dimension, say k = 1000
 then can test dimensions <= k
 - in many tasks 150-350 works well, still room for research

Some General LSA Based Applications From http://lsa.colorado.edu/~guesadaj/pdf/LSATutorial.pdf

Information Retrieval

Text Assessment

Compare document to documents of known quality / content

Automatic summarization of text

Determine best subset of text to portray same meaning

Categorization / Classification

Place text into appropriate categories or taxonomies

Application: Automatic Essay Scoring (in collaboration with Educational Testing Service)

Create domain semantic space

Compute vectors for essays, add to vector database

To predict grade on a new essay, compare it to ones previously scored by humans

From http://lsa.colorado.edu/~quesadaj/pdf/LSATutorial.pdf

Mutual information between two sets of grades:

human – human .90

LSA – human .81

From http://lsa.colorado.edu/~quesadaj/pdf/LSATutorial.pdf

Demo

http://www.pearsonkt.com/ http://www.pearsonkt.com/prodIEA.shtml http://www.pearson.com/investors/our-news/?i=772 http://www.youtube.com/results?search_query=Karen+Lochbaum&aq=f