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Latent Semantic Indexing

Chapter 18

LSI

• Applications in Search Engine Optimization (SEO) video

http://www.youtube.com/watch?v=LOPY1hPcZEM
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Latent Semantic Indexing (LSI) 

(AKA “Latent Semantic Analysis” (LSA))

• Problem:  How to capture semantic similarity between 

documents in a natural corpus (e.g., problems of homonymy,  

polysemy, synonymy, etc.)

• “LSA assumes that there exists a LATENT structure in word 

usage – obscured by variability in word choice”    

(http://ir.dcs.gla.ac.uk/oldseminars/Girolami.ppt)

The Problem

• Example: Vector Space Model

– (from Lillian Lee)
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From www.cs.nmsu.edu/~mmartin/LSA_Intro_AI_Seminar.ppt
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Principal Components Analysis

– PCA used to reduce dimensions of data without much loss 

of information.  

– Used in machine learning and in signal processing and 

image compression (among other things). 

PCA is “an orthogonal linear transformation that transfers the 

data to a new coordinate system such that the greatest variance 

by any projection of the data comes to lie on the first 

coordinate (first principal component), the second greatest 

variance lies on the second coordinate (second principal 

component), and so on.”
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• Suppose attributes are A1 and A2, and we have n training 

examples.  x’s denote values of A1 and y’s denote values of 

A2 over the training examples. 

• Variance of an attribute:

Background for PCA

)1(

)(

)var( 1

2

1
−−−−

−−−−

====
∑∑∑∑

====

n

xx

A

n

i

i

• Covariance of two attributes:

• If covariance is positive, both dimensions increase 

together.  If negative, as one increases, the other decreases.   

Zero:  independent of each other.  
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• Covariance matrix

– Suppose we have n attributes, A1, ..., An. 

– Covariance matrix: 
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• Eigenvectors:  

– Let M be an n×n matrix.

• v is an eigenvector of M if M × v = λv

• λ is called the eigenvalue associated with v

– For any eigenvector v of M and scalar a, 

– Thus you can always choose eigenvectors of length 1:

– If M has any eigenvectors, it has n of them, and they are 

orthogonal to one another. 

– Thus eigenvectors can be used as a new basis for a n-dimensional 

vector space. 
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PCA

1. Given original data set S = {x1, ..., xk}, produce new set 

by subtracting the mean of attribute Ai from each xi. 

Mean: 1.81     1.91                       Mean:      0              0                       
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2. Calculate the covariance matrix:

3. Calculate the (unit) eigenvectors and eigenvalues of the 

covariance matrix:

x                           y

x

y
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Eigenvector with largest

eigenvalue traces 

linear pattern in data

4. Order eigenvectors by eigenvalue, highest to lowest.

In general, you get n components.   To reduce 

dimensionality to p, ignore n−p components at the bottom 

of the list.  
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Construct new feature vector. 

Feature vector = (v1, v2, ...vp)










−−−−

−−−−
====










−−−−

−−−−−−−−
====

735178956.

677873399.
2

 : vectorfeaturedimension  reducedor 

677873399.735178956.

735178956.677873399.
1

torFeatureVec

torFeatureVec

5. Derive the new data set. 

TransformedData = RowFeatureVector × RowDataAdjust

This gives original data in terms of chosen 

components (eigenvectors)—that is, along these axes.  
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71.31.81.19.49.29.109.39.31.169.
ustRowDataAdj
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Reconstructing the original data

We did:

TransformedData = RowFeatureVector × RowDataAdjust

so we can do 

RowDataAdjust = RowFeatureVector -1 ×

TransformedData 

= RowFeatureVector T × TransformedData 

and 

RowDataOriginal = RowDataAdjust + OriginalMean
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Example: Linear discrimination using PCA for 

face recognition

1. Preprocessing: “Normalize” faces

• Make images the same size 

• Line up with respect to eyes

• Normalize intensities
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2. Raw features are pixel intensity values (2061 features)

3. Each image is encoded as a vector Γi of these features

4. Compute “mean” face in training set:
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• Subtract the mean face from each face vector

• Compute the covariance matrix C

• Compute the (unit) eigenvectors vi of C

• Keep only the first K principal components (eigenvectors)

ΨΓΦ −−−−==== ii
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The eigenfaces encode the principal sources of variation 

in the dataset (e.g., absence/presence of facial hair, skin tone, 

glasses, etc.). 

We can represent any face as a linear combination of these

“basis” faces.    

Use this representation for:

• Face recognition 

(e.g., Euclidean distance from known faces)

• Linear discrimination 

(e.g., “glasses” versus “no glasses”, 

or “male” versus “female”) 
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Latent Semantic Analysis
(Landauer et al.)

• From training data (large sample of documents), create word-

by-document matrix.  

From Deerwester et al., Indexing by latent semantic analysis
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• Now apply “singular value decomposition” to this matrix

• SVD is similar to principal components analysis 

• Basically, reduce dimensionality of the matrix by re-representing matrix in 

terms of  “features” (derived from eigenvalues and eigenvectors), and using 

only the ones with highest value. 

• Result:  Each document is represented by a vector of features obtained by 

SVD. 

• Given a new document (or query), compute its representation vector in this 

feature space, compute its similarity with other documents using cosine 

between vector angles.   Retrieve documents with highest similarities. 
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• SVD

– can be viewed as a method for rotating the axes in n-

dimensional space, so that the first axis runs along the 

direction of the largest variation among the documents 

• the second dimension runs along the direction with the 

second largest variation

• and so on

www.cs.nmsu.edu/~mmartin/LSA_Intro_AI_Seminar.ppt
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LSI

• Four basic steps

– Rank-reduced Singular Value Decomposition (SVD) 

performed on matrix

• all but the k highest singular values are set to 0

• produces k-dimensional approximation of the original 

matrix

• this is the “semantic space”

– Compute similarities between entities in semantic space 

(usually with cosine)

www.cs.nmsu.edu/~mmartin/LSA_Intro_AI

_Seminar.ppt

c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 0 0 1 0 0 0 0 0

interface 1 0 1 0 0 0 0 0 0

computer 1 1 0 0 0 0 0 0 0

user 0 1 1 0 1 0 0 0 0

system 0 1 1 2 0 0 0 0 0

response 0 1 0 0 1 0 0 0 0

time 0 1 0 0 1 0 0 0 0

EPS 0 0 1 1 0 0 0 0 0

survey 0 1 0 0 0 0 0 0 1

trees 0 0 0 0 0 1 1 1 0

graph 0 0 0 0 0 0 1 1 1

minors 0 0 0 0 0 0 0 1 1

r (human.user) = -.38 r (human.minors) = -.29

C
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• Singular Value Decomposition

C=UΣΣΣΣVT

• Dimension Reduction

~C=~U~Σ∼Σ∼Σ∼Σ∼V

 0.22 -0.11  0.29 -0.41 -0.11 -0.34  0.52 -0.06 -0.41

 0.20 -0.07  0.14 -0.55  0.28  0.50 -0.07 -0.01 -0.11

 0.24  0.04 -0.16 -0.59 -0.11 -0.25 -0.30  0.06  0.49

 0.40  0.06 -0.34  0.10  0.33  0.38  0.00  0.00  0.01

 0.64 -0.17  0.36  0.33 -0.16 -0.21 -0.17  0.03  0.27

 0.27  0.11 -0.43  0.07  0.08 -0.17  0.28 -0.02 -0.05

 0.27 0.11 -0.43  0.07  0.08 -0.17  0.28 -0.02 -0.05

 0.30 -0.14  0.33  0.19  0.11  0.27  0.03 -0.02 -0.17

 0.21  0.27 -0.18 -0.03 -0.54  0.08 -0.47 -0.04 -0.58

 0.01  0.49  0.23  0.03  0.59 -0.39 -0.29  0.25 -0.23

 0.04  0.62  0.22  0.00 -0.07  0.11  0.16 -0.68  0.23

 0.03  0.45  0.14 -0.01 -0.30  0.28  0.34  0.68  0.18

• U =
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• ΣΣΣΣ =

3.34

2.54

2.35

1.64

1.50

1.31

0.85

0.56

0.36

• V=

 0.20  0.61  0.46  0.54  0.28  0.00  0.01  0.02  0.08

-0.06  0.17 -0.13 -0.23  0.11  0.19  0.44  0.62  0.53

 0.11 -0.50  0.21  0.57 -0.51  0.10  0.19  0.25  0.08

-0.95 -0.03  0.04  0.27  0.15  0.02  0.02  0.01 -0.03

 0.05 -0.21  0.38 -0.21  0.33  0.39  0.35  0.15 -0.60

-0.08 -0.26  0.72 -0.37  0.03 -0.30 -0.21  0.00  0.36

 0.18 -0.43 -0.24  0.26  0.67 -0.34 -0.15  0.25  0.04

-0.01  0.05  0.01 -0.02 -0.06  0.45 -0.76  0.45 -0.07

-0.06  0.24  0.02 -0.08 -0.26 -0.62  0.02  0.52 -0.45
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r (human.user) = .94 r (human.minors) = -.83

c1 c2 c3 c4 c5 m1 m2 m3 m4

human  0.16  0.40  0.38  0.47  0.18 -0.05 -0.12 -0.16 -0.09

interface  0.14  0.37  0.33  0.40  0.16 -0.03 -0.07 -0.10 -0.04

computer  0.15  0.51  0.36  0.41  0.24  0.02  0.06  0.09  0.12

user  0.26  0.84  0.61  0.70  0.39  0.03  0.08  0.12  0.19

system  0.45  1.23  1.05  1.27  0.56 -0.07 -0.15 -0.21 -0.05

response  0.16  0.58  0.38  0.42  0.28  0.06  0.13  0.19  0.22

time  0.16  0.58  0.38  0.42  0.28  0.06  0.13  0.19  0.22

EPS  0.22  0.55  0.51  0.63  0.24 -0.07 -0.14 -0.20 -0.11

survey  0.10  0.53  0.23  0.21  0.27  0.14  0.31  0.44  0.42

trees -0.06  0.23 -0.14 -0.27  0.14  0.24  0.55  0.77  0.66

graph -0.06  0.34 -0.15 -0.30  0.20  0.31  0.69  0.98  0.85

minors -0.04  0.25 -0.10 -0.21  0.15  0.22  0.50  0.71  0.62

~C

LSA Titl es e x ample :

Corr ela t i ons be t w e en tit l es i n r aw da t a

c1 c2 c3 c4 c5 m 1 m 2 m 3

c2 - 0.19

c3 0.00 0.00

c4 0.00 0.00 0.47

c5 - 0.33 0.58 0.00 - 0.31

m 1 - 0.17 - 0.30 - 0.21 - 0.16 - 0.17

m 2 - 0.26 - 0.45 - 0.32 - 0.24 - 0.26 0.67

m 3 - 0.33 - 0.58 - 0.41 - 0.31 - 0.33 0.52 0.77

m 4 - 0.33 - 0.19 - 0.41 - 0.31 - 0.33 - 0.17 0.26 0.56

 0.02

- 0.30 0.44

Correlations in first-two dimension space

c2 0.91

c3 1.00 0.91

c4 1.00 0.88 1.00

c5 0.85 0.99 0.85 0.81

m 1 - 0.85 - 0.56 - 0.85 - 0.88 - 0.45

m 2 - 0.85 - 0.56 - 0.85 - 0.88 - 0.44 1.00

m 3 - 0.85 - 0.56 - 0.85 - 0.88 - 0.44 1.00 1.00

m 4 - 0.81 - 0.50 - 0.81 - 0.84 - 0.37 1.00 1.00 1.00

Correlation
Raw data

0.92

-0.72 1.00
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Semantic Similarity Measure

• To find similarity between two documents, project them in LS 

space

• Then calculate the cosine measure between their projection

Summary

• Some Issues

– SVD Algorithm complexity O(n^2k^3)

• n = number of terms

• k = number of dimensions in semantic space (typically 

small ~50 to 350)

• for stable document collection, only have to run once

• dynamic document collections: might need to rerun 

SVD, but can also “fold in” new documents
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Summary

• Some issues

– Finding optimal dimension for semantic space

• precision-recall improve as dimension is increased until 

hits optimal, then slowly decreases until it hits standard 

vector model

• run SVD once with big dimension, say k = 1000

– then can test dimensions <= k

• in many tasks 150-350 works well, still room for 

research

Summary

• Some issues

– SVD assumes normally distributed data

• term occurrence is not normally distributed

• matrix entries are weights, not counts, which may be 

normally distributed even when counts are not
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Some General LSA Based Applications
From http://lsa.colorado.edu/~quesadaj/pdf/LSATutorial.pdf

Information Retrieval

Text Assessment

Compare document to documents of known quality / content

Automatic summarization of text

Determine best subset of text to portray same meaning

Categorization / Classification

Place text into appropriate categories or taxonomies

Application:  Automatic Essay Scoring

(in collaboration with 

Educational Testing Service)

Create domain semantic space

Compute vectors for essays, add to vector database

To predict grade on a new essay, compare it to ones previously 

scored by humans

From http://lsa.colorado.edu/~quesadaj/pdf/LSATutorial.pdf
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Mutual information between two sets of grades:

human – human .90

LSA – human .81

From http://lsa.colorado.edu/~quesadaj/pdf/LSATutorial.pdf

Demo
http://www.pearsonkt.com/

http://www.pearsonkt.com/prodIEA.shtml

http://www.pearson.com/investors/our-news/?i=772

http://www.youtube.com/results?search_query=Karen+Lochbaum&aq=f


