
Chapter 15

RELATIONAL QUERY LANGUAGES

In this chapter we give a brief overview of several query languages from vari-
ous relational database systems. We shall not give a complete exposition of
the languages. Our point is, rather, to give the flavor of each, show how they
are based on the algebra, calculus, or tableaux, and indicate where they
depart from the relational model as we have defined it.

We shall look at five languages: ISBL, from the PRTV system; QUEL,
from INGRES; SQL, from System R; QBE, which runs atop several data-
base systems; and PIQUE, from the experimental PITS system. ISBL is
based on relational algebra, QUEL and SQL resemble tuple caiculus, and
QBE is a domain calculus-like language, with a syntax similar to tableau
queries. PIQUE is a tuple calculus-like language, but it presents a universal
relation scheme interface through the use of window functions.

For practical reasons and usability considerations, relational query lan-
guages do not conform precisely to the relational model. They all contain fea-
tures that are extensions to the model, and some have restrictions not present
in the model. Nearly all relational systems have facilities for virtual relation
definition. Languages based on tuple and domain calculus must allow only
safe expressions. Safety is usually guaranteed by the absence of explicit
quantifiers or by having variables range over relations rather than all tuples
on a given scheme. Query languages often alfow a limited amount of arith-
metic and string computation on domain values, and sometimes handle sets
of values through aggregate operators (count, average, maximum) and set
comparisons. As mentioned in the last chapter, QBE contains operators for
dealing with transitive closures. In the theory, order of attributes and tuples
within a relation is immaterial. Query languages give control over attribute
order and sort order for tuples when listing relations. In addition to output
commands, query languages usually contain some form of assignment state-
ment to store intermediate results. Some languages also give explicit control
over duplicate tupfe elimination after projection, so the data type they sup-
port is actually multisets of tuples. Suppression and invocation of duplicate
removal are useful in connection with aggregate operators. Relational lan-

550

EBL 551

guages sometimes have special constructs or alternative syntax for use from
within a regular programming language.

All the query languages we examine are as powerful as relational algebra.
In some cases, however, this power may only be achieved through use of a se-
quence of assignment statements, and not within a single expression in the
language. Sometimes, data manipulation commands must be used to get the
effect of certain algebraic operators.

We shall not be exhaustive in demonstrating the features of the languages
we present here, Some of the languages have facilities for data manipulation
in addition to querying; we shall consider only the “query” portion of those
languages. We shall not spend much time on formal syntax or semantics of
the languages studied, but rather work by example. To make comparisons
between the languages easy, all examples in this chapter will be based on the
database in Figure 15.1, which is the same database as was used for most ex-
amples in Chapter 10.

15.1 ISBL

ISBL (Information System Base Language) is an algebra-based query lan-
guage used in the PRTV (Peterlee Relational Test Vehicle) system. PRTV is
an experimental, interactive database system developed at IBM’s United
Kingdom Scientific Centre.

ISBL expressions are built up with six operators, which correspond to alge-
braic operators or generalizations of them. Union, intersection, and join are
denoted as + , ., and *, respectively, and behave exactly as in the algebra.
Difference, denoted by -, has been generalized to be an “antijoin” opera-
tor. For relations Y and s, with possibly different schemes,

where the - on the left is the one from ISBL and the one on the right is the
usual one from relational algebra. Thus, in ISBL, r - s is all the tuples in r
that join with no tuple in s. The selection a&) is written as r:C in ISBL,
where C is a selection condition built up from attribute names and constants
with the comparators in { =, # , > , 2, I, <), parentheses, and the logical
connectives & (and), ((or), and 1 (not). Projection and renaming are com-
bined into one operation in ISBL. The projection TV&) is Y % A, B, C in
ISBL. To rename an attribute Al to be A2 during projection, A1 - > A2 is
used in place of A 1 to the right of Yo. A rename by itself is accomplished us-
ing % with all the attributes in the relation on the right. Three dots can be

552 Relational Query Languages

pinfo(PART#

211
2114
2116

21163
21164

318
206

2061
2066
2068

SUBPARTOF PARTNAME)
0 coach seat

211 seat cover
211 seat belt

2116 seat belt buckle
2116 seat belt anchor

21164 funny little bolt
0 overhead console

206 paging switch
206 light switch
206 air nozzle

usedon (PART# PTYPE NUSED)

211 707 86
211 727 134

2114 707 86
2114 727 134
2116 707 244
2116 727 296

21164 707 488
21164 727 592

instock(PART# LOCATION

211 JFK
211 Boston
211 O’Hare

2114 JFK
2114 O’Hare
2116 Boston
2116 O’Hare

21164 Atlanta

QUANTITY)
106
28
77
6

28
341
29

36,391

Figure 15.1

used to stand for all unnamed attributes in a relation. Thus, if we want to
rename just B in Y, we would write r % B - > D, Expressions in ISBL
are left-associative; parentheses may be used to override that associativity.

The keyword list is used to print the result of an expression in ISBL, and
the result of an expression can be assigned to a relation using =.

To keep examples in this chapter concise, many of them will contain just

ISBL 553

an English statement of a query and the corresponding query language state-
ment, with the result of evaluating the query included sometimes.

Example 15.1 What are the names of subparts of part 2116?

listpinfo : PART# = 2116 % PARTNAME

(PARTNAME)

seat belt buckle
seat belt anchor

Example 15.2 How many seat belts are at Boston?

list pinfo * instock : PARTNAME = “seat belt” &
LOCATION = “Boston”% QUANTITY

(QUANTITY)

341

Example 15.3 Which parts are not in stock at either Boston or O’Hare?

list pinfo - (instock : LOCATION = “Boston” 1
LOCATION = “O’Hare”)% PART#

(PART/#)

21163
21164

318
206

2061
2066
2068

Example 15.4 What are all the subparts of subparts of seat hefts?

Mpinfo % PART#- >SUBSUBPART, SUBPARTOF- >PART#*
pinfo : PARTNAME = “seat belt” % SUBSUBPART

(SUBSUBPART)
21163
21164

554 Relational Query Languages

Example 15.5 Which parts used on a 707 are in stock at Atlanta?

list usedon : PTYPE = “707” % PART#
(imtock : LOCATION = “Atlanta” % PART#)

(PART&

21164

We could also perform the same query by assigning intermediate results to
relations.

rl = usedon : PTYPE = “707” Yo PART#
r2 = instock : LOCATION = “Atlanta” % PART#
r3 = rl . r2
list r3

ISBL can support virtual relations through use of a detayed evaluation fea-
ture. No expression is evaluated in ISBL until its result is needed. Relation
names in expressions are normally bound to the current value of the relation.
Prefixing a relation name with N! indicates that the value of the relation to be
used is the current value at the time of evaluation.

Example 15.6 Suppose we want a virtual relation stock707 that gives part
number, number used, location, and quantity for all parts used in a 707. If
we make the assignment

stock707 = N!usedon * N!instock : PTYPE = “707” %
PART#, NUSED, LOCATION, QUANTITY

then any time we write List stock707 or stock707 occurs in an expression be-
ing evaluated, the current values of usedon and instock are used. If the N! is
removed in both places, stock707’s value will depend on the state of usedon
and instock at the point when stock707 is defined.

ISBL does not have any operators within itself to perform computation on
values. However, computed relations, whose extensions are functions or pro-
cedures in a general-purpose programming language, can be used to provide
computation. The extension of a computed relation in ISBL takes one of two
forms. One is a Boolean-valued function that recognizes those tuples that are
in the relation, which is a slight departure from what we saw in Section 14.4.

ISBL 555

The other form is a procedure that takes some values in a tuple as inputs and
returns others as output.

Example 15.7 Let adequate(a, b) be a function that returns true exactly
when a z Sb. The ISBL statement

list usedon * instock * adequate(QUANTITY, NUSED) %
PART#, PTYPE, LOCATION

gives the locations that have at least half the number of a part used on a given
aircraft:

(PART# PTYPE

211 707
211 727
211 707
211 727

2116 707
2116 727

21164 707
21164 727

LOCATION)

JFK
JFK
O’Hare
O’Hare
Boston
Boston
Atlanta
Atlanta

Example 15.8 Let needed(a, b, c) be a procedure that takes a and b as in-
put and returns c = max(.Sb - a, 0). The statement

list usedon + instock * needed(QUANTITY, NUSED 1
AMT:ORDER) : PTYPE = “727” & ORDER > 0 9’0 PART6
LOCATION, ORDER

gives the number of each part to order at each location to bring the supply up
to half the number used on a 727 (provided that the location already stocks
the part):

(PART# LOCATION ORDER)

211 Boston 39
2114 JFK 61
2114 O’Hare 39
2116 O’Hare 119

.,..t::. ‘ c

556 Relational Query Languages

In the call to needed, the vertical bar separates input parameters from output
parameters, and AMT: ORDER indicates that the output parameter is sup-
posed to be a new attribute ORDER with domain AMT.

ISBL also contains features for passing entire relations to and from proce-
dures for updating, computing aggregates, and formatting output.

15.2 QUEL

QUEL (QUEry Language) is the data manipulation language for the INGRES
(INteractive Graphics and REtrieval System) database system. INGRES is a
fairly complete relational system that was developed at the University of Cali-
fornia at Berkeley, and it is still being revised and extended. QUEL, in addi-
tion to retrieval functions, contains commands for update, authorization, in-
tegrity, and view definition. We shall only cover the retrieval aspects of QUEL.

QUEL is based on the tuple relational calculus. Tuple variables are all
existentially quantified and bound to relations. Tuple variables are declared
and bound with a statement of the form,

range of (tuple variable} is (relation name).

The A-component of a tuple variable Y is denoted as x-A.

Example 15.9 For subsequent examples in this section, we shall assume the
following bindings:

range of p is pinfo
range of p 1 is pinfo
range of u is usedon
range of i is instock

With these bindings, p.PART#, u.NUSED and i.PART# are all proper ref-
erences to tuple variable components.

The basic form of a retrieval in QUEL is

retrieve ((target list)) where (condition).

The condition corresponds to the formula in a tuple calculus expression. The
target list is a sequence of tuple variable components, which resembles the
portion of of a domain-calculus expression to the left of the bar.

Quel 557

Example 15.10 What is the name of part 2116?

retrieve (p.PARTNAME) where p.PART# = 2116

(PARTNAME)

seat belt

Example 15.11 What are the names and quantities of parts at O’Hare?

retrieve (p. PARTNAME, i. QUANTITY)
where p.PART# = i.PART# and LLOCATION = “O’Hare”

(PARTNAME QUANTITY)

coach seat 77
seat cover 28
seat belt 29

The comparators =, ! =, > , > =, < = and < are allowed in compari-
sons, and the logical connectives and, or, and not can be used to combine
comparisons. The attributes for the result of a retrieval are taken from the
corresponding tuple variable components. The attributes in the result rela-
tion can be changed by using NEWNAME = x. OLDNAME in the target
list. Renaming must be done if the resulting relation would have the same at-
tribute twice.

Example 15.12 Which parts are subparts of the same part?

retrieve (SUBPART1 = p.PART#, SUBPART2 = pl.PART#)
where p.SUBPARTOF = pl.SUBPARTOF and

p.SUBPARTOF ! = 0 and p.PART# < pl.PART#

(SUBPART1 SUBPART2)

2114 2116
21163 21164
2061 2066
2061 2068
2066 2068

The condition p.PART# < pl.PART# is included to prevent an extra tuple
for each pair of parts and to eliminate pairing a part with itself.

, X’,/

558 Relational Query Languages

The condition part of a query is optional. The keyword all can be used to
represent all components of a tuple variable in the target list. Thus,

retrieve u. all

returns the entire usedon relation. Computational expressions can appear
most places that a tuple variable component would be appropriate. If an ex-
pression appears in the target list, it must be renamed.

Example 15.13 Which locations have at least half the number of a part
used in a given aircraft?

retrieve (u.PART#, UPTYPE, i.LOCATION)
where u.PART# = i.PART# and u.NUSED * 0.5

< = i. QUANTITY

Example 15.14 What proportion of the number of coach seats used on a
707 does each location have?

retrieve (iLOCATION, PROPORTION =
(i. QUANTITY/u.NUSED))
wherep.PART# = u.PART# andp.PARTNAME

= “coach seat” and u.PART# = i.PART# and
u.PTYPE = “707”

(LOCATION PROPORTION)

JFK 1.233
Boston .326
O’Hare .894

Assignment of the result of a retrieval to a reiation is achieved via the nota-
tion into (relation) after retrieve.

Example 15.55

retrieve into used727 (call) where u.PTX?E = “727”

makes used727 a relation with the same scheme as usedon, but consisting
only of 727 information.

Quel 559

QUEL provides the aggregation operators count, mln, max, avg, and sum,
which can be used in expressions.

Example 15.16 How many different parts are there?

retrieve (NUMPAI? TS = count(p. PAR T#))

(NUMPARTS)

10

Example 15.17 Which part has the most in stock and which part has the
least in stock at any one location?

retrieve (i. PART#, i. LOCATION)
where i. QUANTITY = max(i. QUANTITY) or i. QU’TZTY =

min(i. QUANTITY)

(PART# LOCATION)

2114 JFK
21164 Atlanta

The aggregate operators count, avg, and sum have “unique” versions, dis-
tinguished by a “u” on the end, that eliminate duplicates before applying the
operator.

Example 15.18 How many locations have parts?

retrieve (NUMLOCS = countu(i. LOCATION))

(NUMLOCS)
4

Using count in place of countu in this query would produce the answer 8.

The component to which an aggregate operator is applied can be qualified.
However, the qualification is local, and is not affected by the rest of the
wry.

560 Relational Query Languages

Example 15.19 How many of part 211 are in stock?

retrieve (TOTAL = sum(i.QU..ITY where i.PART# = 211))

(TOTAL)

211

Example 15.20 The following query does not answer the question: How
many seat belts are in stock?

retrieve WJMBELTS = sum(i. QUANTITY))
where p.PART# = i.PART# and p.PARTNAME = “seat belt”

The sum is computed independently of the rest of the query.

QUEL has a grouping feature for aggregates, invoked with the keyword by
within the argument to an aggregate operator. The component following the
by is linked to the rest of the query.

Example 15.21 How many of each part are there?

retrieve (i.PART#, TOTAL = sum(i. QUANTITY by i.PART#))

(PART# TOTAL)

211 211
2114 34
2116 370

21164 36,391

Example 15.22 How many seat belts are there in stock?

retrieve (NUMBELTS = sum(i. QUANTITY by i. PART#))
where p. PART# = LPART# and p.PARTiVAME = “seat belt”

(NUMBELTS)
370

Example 15.23 How many of each part over the maximum needed by any
aircraft does each location have in stock?

SQL 561

retrieve (u. PART#, i. LOCATION, 0 VERSTOCK =
(i.QUANTITY - max(u.NUSED by u.PART#))

where u.PART# = i.PART# and
(i. QUANTITY - max(u.NUSED by u.PART#)) > 0

tPART# LOCATION OVERSTOCK)

2116 Boston 45
21164 Atlanta 35,799

15.3 SQL

SQL (Structured Query Language) is the data manipulation language for the
System R database system. System R is a prototype relational database sys-
tem developed at the IBM San Jose Research Laboratory. A commercial IBM
product, SQL/Data System, is based on the System R prototype. While SQL
is a complete data manipulation language, we cover only its retrieval
capabilities.

SQL’s syntax resembles tuple calculus, though not so closely as that of
QUEL. SQL’s precursor is SQUARE, which resembles relational algebra in
some aspects and tuple calculus in others. The main operator in SQUARE is
the mapping, which is a selection followed by a projection, The mapping is
carried over into the basic syntax of SQL, which is

select (attribute list)
from (relation >
where (condition)

Example 15.24 What are the names and numbers of subparts of part 2111

select PARTNAME, PART#
from pinfo
where SUBPARTOF = 221

(PARTNAME PART#)

seat cover 2114
seat belt 2116

. .

. . . .

. ‘ ; . : , - : . . - .

562 Relational Query Languages

Example 15.25 What parts are at Boston or O’Hare?

select PART#
from instock
where LOCATION = “Boston” or LOCATION = “O’Hare”

(PART#)

211
211

2114
2116
2116

The logical connectives and, or, and not can be used to combine compari-
sons. As we see from the last example, SQL does not automatically eliminate
duplicates. Duplicates can be removed by including the keyword unique after
select.

Example 15.26 To get rid of duplicate entries in the last example, we can
use the query

select unique PART#
from instock
where LOCATION = “Boston” or LOCATION = “O’Hare”

(PART#)

211
2114
2116

SQL has constructs for tests involving sets of values and sets of tuples. A
set can be listed explicitly, or it can be the result of a subquery. Tests can be
made for membership, emptiness, inclusion, and comparison with members
of a set, one at a time.

Example 15.27 What parts are at Boston or O’Hare?

select unique PART#
from instock
where LOCATION in (“Boston”, “O’Hare”)

SQL 563

Example 15.28 What are the names of parts at JFK?

select PAR TNAME
from pinfo
where PART# in

(select PART#
from irzstock
whene LOCATION = “JFK”)

(PARTNAME)

coach seat
seat cover

Example 15.29 Which location has the fewest of part 211?

select LUCA TlON
from instock
where QUANTITY < =all

(select QUXVTITY
from instock
where PART# = 211)

(LOCATION)

Boston

Example 15.30 Which locations stock all the parts that Boston does?

select LOCATION
from instock
where set(PART#) contains

(select PART#
from instock
where LOCATION = “Boston”)

(LOCATION)

Boston
O’Hare

564 Relational Query Languages

The notation set(PART#) refers to the set of all PART#-values occurring
with a LOCATION-value. It is possible for a subquery to reference fields
from the relation in the containing query. If there are identical field names in
the containing query and subquery, they are qualified with the relation
name. In essence, the relation name serves as a tuple vatiable bound to the
relation.

ExampIe 15.31 Which locations have at least as many of a part as are used
on a XV?

select PART& LOCATION
from instock
where PART# in

(select PAR T#
from usedon
where PTYPE = “707” and NIXED < = QUANTITY)

Note that QUAhWTY refers to instock.

(PART# LOCATION)

211 JFK
2116 Boston

21164 Atlanta

Another formulation of this question is

select PART#, LOCATION
from instock
where QUANTITY > = any

(select NUSED
from usedon
where PTYPE = “707” and instock. PART# = usedon. PART#)

usedon. PART#)

When two copies of a relation are used in a query, the fields of each cannot
be distinguished by prefixing the relation name. In these cases, an alternate
qualifier may be listed after the relation name in the from-clause.

SQL 565

Example 15.32 What parts are available at more than one location?

select unique PART#
from instock i
where PART# in

(select PART#
from instock
where LOCATION 7 = i.LOCATION)

(PART#)

211
2114
2116

In previous examples, we have been specifying joins by the use of in. This
method for taking joins will not work if the answer to the query involves fields
from more than one relation. In that case, multiple relations are used in the
from-clause.

Example 15.33 What are the names and quantities of parts at JFK?

select PAR TNAME, QUANTITY
from pinfo, instock
where pinfo. PART# = instock.PART# and LOCATION = “JFK”

(PARTNAME QUANTITY)

coach seat 106
seat cover 6

Example 15.34 What parts are subparts of the same part?

select pl.PART#, p2.PART#
from pinfo pl, pinfo p2
where pl.SUBPARTOF = p2.SUBPARTOF and

pL.SUBPARTOF -J = 0 andpl.PART# < p2.PART#

566 Relational Query Languages

(pl.PART# p2.PART#)

2114 2116
21163 21164
2061 2066
2061 2068
2066 2068

SQL allows queries to be combined with the set operators union, intersect,
and minus. Duplicates are removed after computing union.

Example 15.35 Which parts are not stocked by any location?

select PART#
from pinfo
miuus
select PART#
from instock

(PART#)

21163
318
206

2061
2066
2068

The order of columns in the result of a query is taken from the order of the
attributes in the select-clause. The order of the tuples can be controlled with
an order by-clause, which contains a list of attributes from the result of the
query, each followed by asc or desc, for ascending or descending order.
Another feature of SQL, demonstrated in the next example, is the use of * to
stand for all the attributes in a relation.

Example 15.36 The following query lists the instock relation by decreasing
quantity and increasing part number.

select +
from instock
order by QUANTITY desc, PART# asc

SQL 567

(PART# LOCATION

21164 Atlanta
2116 Boston
211 JFK
211 O’Hare

2116 O’Hare
211 Boston

2114 O’Hare
2114 JFK

QUANTITY)

36,391
341
106
77
29
28
28
6

SQL allows arithmetic expressions and provides the aggregate operators
avg, mIn, max, sum, and count.

Example 15.37 Which locations have at least half the number of a part
used in a given aircraft?

select usedon, PART#, PTYPE, LOCATION
from usedon, instock
where usedon.PART# = instock, PART# and

NUSED * 0.5 < = QUANTITY

Example 15.38 How many coach seats are in stock?

select sum (QUANTITY)
from instock
where PART# in

(select PAR T#
from pinfo
where PARTNAME = “coach seat”)

(-)
211

SQL does not name columns corresponding to aggregates or expressions. If
an order by-clause must refer to such a column, it uses an integer denoting
the position of the column.

SQL uses a group by-clause to partition the tuples in a result before appli-
cation of an aggregate operator. A having clause may be included to remove
some groups of tuples.

568 Relational Query Languages

Example 15.39 How many of each part are there?

select PART#, sum(QUANTITY)
from instock
group by PART#

Example 15.40 For which parts is the total in stock at least the number
used by a 707, and by what amount does the total exceed the number used?

select usedon. PART% NUSED - sum(QUANTITY)
from usedon, instock
where usedon. PART# = instock. PART# and PTYPE = “707”
group by usedon.PART#
having NUSED - sum(QUANTITY) > = 0

(PART#)
211 125

2116 136
21164 35,903

15.4 QBE

QBE (Query-By-Example) is a relational data manipulation language de-
signed by M. M. Zloof at IBM’s Watson Research Center. A subset of the
language has been implemented to run with various IBM systems. We cover
the retrieval aspects of QBE. QBE also has update operations, authorization
and integrity mechanisms, domain declarations, and view definition facilities.

The syntax of QBE is two-dimensional. Queries are formed by filling in a
skeleton, which contains a relation name and its attributes, such as

1

pinfo PART# SUBPARTOF PARTNAME

r

The skeleton is filled in with rows of constants and variables. A filled-in
skeleton has a syntax and semantics reminiscent of tableau queries. Tableau

QBE 569

queries, in turn, can be readily described in domain calculus. A row in a
QBE query, such as

pinfo PART# SUBPARTOF PARTNAME

a b c

corresponds to the atompinfo(a b c) in domain calculus.
Variables in QBE are existentially quantified, and are represented by un-

derlined strings. The particular name given a variable in no way affects the in-
terpretation of a query, although it is usual to use example values from the do-
main of an attribute as names. Strings without underlines are constants. The
operator P., for print, is prefixed to any variable or constant to appear in the
result of the query. P. is essentially a mechanism to form the equivalent of a
summary in a tableau query, without having to write a separate row.

ExampIe 15.41 Which locations stock part 211?

instock PART# LOCATION QUANTITY

211 P. Chicago 25 ~ -

Result:

instock LOCATION

JFK -l----l Boston
O’Hare

Note that the name Chicago for a variable has no effect on the values ulti-
mately retrieved.

If a variable is mentioned in only one place, it may be omitted. QBE
assumes each blank slot in a row contains a unique variable.

570 Relational Query Languages

Example 15.42 The query in the last exampte could be written

instock PART# LOCATION QUANTITY

211 P.

Selections with comparators other than equality are done by prefixing a
constant or variable with the comparator. Essentially, 0a, for comparator 8,
represents the subset of the domain of the column equal to {c (c 0 a }.

Example 15.43 Which parts have more than 50 in stock at some location?

instock PART# LOCATION QUANTITY

P. > =50

Result :

instock 1 PART#

211 ---I 2116
21164

Note that QBE does eliminate duplicates.

Example 15.44 For which parts are more than
than a 727?

100 used on an aircraft other

QBE 571

Result:

usedon PART#

---t-i

2116
21164

Queries are not limited to one row. Multiple rows may be used.

Example 15.45 Which parts are in stock at Boston and O’Hare?

instock PART# LOCATION QUANTITY

P. 100 Boston

I- I loo- O’Hare
I

Result:

Using the print operator in multiple rows gives the union of the results
specified by each row.

Example 15.46 -What parts are in stock at Boston or O’Hare?

572 Relational Query Languages

Result:

Example 15.47 The following query retrieves information on part 211.

pinfo PART# SUBPARTOF PARTNAME ;I
Result:

pinfo PART# SUBPARTOF PARTNAME ‘$1
The print operator can be applied to an entire row by placing it at the left

end of the row.

Example 15.48 The query in the last example can be written as follows.

pinfo PART/# SUBPARTOF PARTNAME

ti/

As part of a condition, it is possible to specify that no tuple matching a cer-
tain row may appear in a relation. No portion of such a row may be printed,

QBE 573

however. The ability to test for the absence of a tuple is not available with
tableau queries.

Example 15.49 Which locations have parts that Boston does not, and what
are the parts?

instock

i

Result:

QBE also has the facility for matching substrings of string values by con-
catenating variables and constants.

Example 15.50 The query

pinfo PART# SUBPARTOF PARTNAME

P. P. seatbelt

finds all parts where the partname begins with “seat.”
Result:

I seat belt buckle
seat belt anchor

574 Relational Query Languages

With tableau queries, rows are bound to various relations with tags. In
QBE, a separate skeleton is used for each relation involved in a query.

Example 15.51 What are the names of parts at JFK?

pinfo 1 PART# 1 SUBPARTOF 1 PARTNAME 1

pooI 1P.M /

instock PART# LOCATION QUANTITY

100 JFK

Example 15.52 Which locations have at least as many of a part as are used
on a 707?

instock PART# LOCATION QUANTITY

P. 100 P. Chicago >= 50 - -

If values from multiple relations must be combined, variables in the same
column of one relation are to appear in different columns, or a column must
be renamed, it is necessary to specify an additional relation for the result.

Example 15.53 What are the names and quantities of parts at JFK?

pinfo PART# SUBPARTOF PARTNAME

100 bolt

1

instock PART# LOCATION QUANTITY

loo JFK 50 - -

Result:

Sometimes it is impossible or inconvenient to specify all the constraints
among variables with a skeleton. QBE provides an auxiliary condition box to
hold additional constraints.

Example 15.54 Which parts are subparts of the same part?

pinfo PART# SUBPARTOF PARTNAME

&o 200 I- /= 101 200

1

576 Relational Query Languages

Result: I

subparts SUBPART1 SUBPART2

2114 2116
21163 21164
2061 2066
2061 2068
2066 2068

The order of tuples in a result can be controlled by the prefixes AO. (as-
cending order) and DO. (descending order) in the appropriate columns.
When specifying orders on multiple columns, a number in parentheses after
AO. or DO. specifies the precedence of the columns.

Example 15.55 The following query lists the instock relation by decreasing
quantity and increasing part number.

instock PART# LOCATION QUANTITY

P. AO(2). DO(l).

Arithmetic expressions may appear in QBE skeletons and the condition
box.

Example 15.56 Which locations have at least half the number of a part used
on a given aircraft?

instock PART# LOCATION QUANTITY

100 Chicago > = 0.5 * 2.5 -

QflE 577

,,(,,,,I

Example 15.57 What proportion of the number of coach seats used on a 707
does each location have?

pinfo 1 PART# 1 SUBPARTOF 1 PARTNAME 1

I- I 100 coach seat
I

instock 1 PART# 1 LOCATION 1 QUANTITY 1

/ 100 1 Chicago 1 30

seats LOCATION PROPORTION

P. Chicago 30/25 --

QBE has the aggregate operators CNT., SUM., AVG., MAX., and MIN.
that can be applied to an entry in a row. The entry must be prefixed with ALL.
to indicate that all values for the entry are to be collected and treated as a set.

Example 15.58 How many of part 211 are in stock?

instock PART# LOCATION QUANTITY

211 P. SUM. ALL. 50 -

578 Relational Query Languages

Result:

QBE appends the word “Sum” (and appropriate words for other aggregate
operators) to the column heading to indicate that the value in the result is an
aggregate rather than a directly-retrieved value.

To eliminate duplicates in a set formed by ALL., the operator UNQ. is used.

Example 15.59 How many locations have parts?

instock PART# LOCATION (QUANTITY 1

I I P. CNT. UNQ. ALL.
I

Grouping before application of aggregate operators is accomplished by the
operator G. in the columns on which the grouping is to take place.

Example 15.60 Which parts have the number needed on a 727 in at least
one location?

instock PART# LOCATION QUANTITY

P. G. 100 MAx.ALL.25 -

QBE 579

Result:

ExampleJ5.61 How many of each part are there?

instock PART# LOCATION QUANTITY

P. G. P. SUM. ALL.

Example 15.62 At how many locations is each part stocked?

instock PART# LOCATION QUANTITY

P. G. P. CNT. ALL.

Result:

instock PART# LOCATION Count

211 3
2114 2
2116 2

21164 1

We look finally at a feature of QBE, access to the transitive closure of a
relation, that is unique among relational query languages. (However, the
feature is not available in current implementations.) The transitive closure
mechanism assumes a pair of attributes in a relation for which the transitive
closure of the projection of the relation on those two attributes is tree-struc-
tured. PART# and SUBPARTOF in pinfo form such a pair. No part is a sub-
part of itself, at any level, and no part is a subpart of more than one part.
(The last restriction may not seem likely in general, but it holds in the current

580 Relational Query Languages !

state of pinfo.) The structure described by the transiti& closure on PART#
and SUBPARTOF in pinfo is shown in Figure 15.2. ’

/O\’

-‘\

. .‘.’

/““\ /‘“I” \
2114 2116 2061 2066 2068

/ \
21163 21164

318

Figure 15.2

If we wanted to answer the question “What are the subparts of subparts of
part 211?“, we could use the following QBE query.

pinfo PART#) SUBPARTOF)

(QBE queries need not list all the attributes in a relation.) However, with the
features of QBE outlined so far, there is no query to answer the question
“What parts are subparts of part 211 at all levels?“, unless there is an
a priori bound on the number of levels of subparts there can be.

QBE allows direct reference to the transitive closure of a projection of a
relation through the notation (rzL) after an entry. The n can be either a
positive integer constant or a variable. If R is a constant, it refers to the
number of levels up or down the tree to go.

Example 15.63 What are the subparts of subparts of part 211?

QBE 581

Result:

pinfo PART#

-l----l 2114(2L)
2116(2L)

Note that level information is incorporated in the answer to the query.

Example 15.64 What part contains part 318 as a third-level subpart?

The level operator, L, may be preceded by a variable to indicate a search
up or down the tree by an indeterminate number of levels.

Example 15.65 At what level is part 21164 a subpart of part 211?

Result:

582 Relational Query Languages

Example 15.66 What are the subparts of part 211 at all levels?

I P. loo(4L) 211 --

Result:

pinfo PART#

2114(1L)
2116(1L)

21163(2L)
21164(2L)

318(3L)

There are two operators, MAX. and LAST., that can be used with L to
refer to items at the lowest level in the tree and items that are leaves in the
tree, respectively.

Example 15.67 What are the lowest level subparts?

pinfo PART# SUBPARTOF

P. 1oo(MAx. L) 0

Result:

Example 15.68 What subparts of part 211, at any level, themselves have no
subparts?

Pique 583

Result :

pinfo PART#

2114(IL) l----l 21163(2L)
318(3L)

15.5 PIQUE

PIQUE (Pits QUEry language) is an experimental data retrieval language
for the PITS (Pie-In-The-Sky) database system under development at the
State University of New York at Stony Brook and the Oregon Graduate Center.
PIQUE has a QUEL-like syntax. However, tuple variables are implicitly
bound to windows, rather than explicitly bound to relations, thus removing
range statements and join conditions. A QUEL query to answer the question
“Which locations have as many coach seats as are used on a 707?” is

range of p is pinfo
range of u is usedon
range of i is instock
retrieve (i. LOCATION)

wherep.PART# = u.PAl?T# andp.PART# = i.PART# and
u.PTYPE = “707” and u. NUSED < = i. QUANTITY

The same question can be answered in PIQUE with

retrieve LOCATION where (PTYPE = “707”) *
(NUSED < = QUANTITY).

The semantics of PIQUE is defined relative to some window function. The
only assumption PIQUE makes is that the window function obeys the con-

584 Relational Query Languages

tainment condition. For examples in this section, we use an object-based
window function []R,o, where

R = (PARTi SUBPARTOE PART# PARTNAME,
PART# PTYPE USEDON, PART# LOCATION NUSED]

and 0 consists of all nonempty unions of schemes in R, as shown in Figure
15.3.

O=RU
{PART/# SUBPARTOF PARTNAME,
PART# SUBPARTOF PTYPE NUSED,
PART# PARTNAME PTYPE NUSED,
PART# SUBPARTOF PARTNAME PTYPE NUSED,
PART# SUBPARTOFLOCATION QUANTITY,
PART# PARTNAME LOCATION QUANTITY,
PART# SUBPARTOF PARTNAME LOCATION QUANTITY,
PART# PTWE NUSED LOCATION QUANTITY,
PART# SUBPARTOF PTYPE NUSED LOCATION QUANTITY,
PART# PARTNAME PTYPE NUSED LOCATION QUANTITY.
PARH SUBP~TOF PAR- PTW!E NUSED LOCATION QUANTlTY~

Figure 15.3

As we see from the objects, all two-, three-, and four-way joins of relations
are permitted. For a database on R we use usedon and instock for PART#
PTYPE NUSED and PART# LOCATION QUANTITY. For PART# SUB-
PARTOF and PART# PARTNAME we use

and

pinfo2 = rPART# PARTNAME(Pinfoh

The relations pinfol and pinfo2 are shown in Figure 15.4. By splitting pinfo
in this way, we avoid using a special value for SUBPARTOF when a part is
not a subpart of any part. We could have made the same decomposition for

Pique 585

previous examples, but at the expense of complicating some queries. In
PIQUE, there is no added complexity in queries for making this decom-
position.

pinfol(PART#

2114
2116

21163
21164

318
2061
2066
2068

SUBPARTOF)

211
211

2116
2116

21164
206
206
206

pinfo2(PART# PARTNAME)

211 coach seat
2114 seat cover
2116 seat belt

21163 seat belt buckle
21164 seat belt anchor

318 funny little bolt
206 overhead console

2061 paging switch
2066 light switch
2068 air nozzle

Figure 15.4

For each tuple variable x in a PIQUE query, the mention set of x, denoted
meti(is the set of attributes that appear with x in the query. In evaluating
the query, x is bound to [men(x)]. Thus, if x appears with PARTNAME and
LOCATION, it will be bound to [PARTNAME LOCATION], which is

TPARTNAME LOCATIONb~fo2 w instock).

The simplest PIQUE queries have a retrieve list and a sequence of selec-
tion conditions connected with *‘s.

586 Relational Query Languages

Example 15.69 Which locations have coach seats?

retrieve x.LOCATION where (x.PARTNAME = “coach seat”)

(LOCATION)

JFK
Boston
O’Hare

Example 15.70 Which locations have at least as many of a part as are used
on a 707?

retrieve x.PART#, x.LOCATIoN where (PTYPE = “707”)
* (x.QUANTITY > = x.NUSED)

Here x is bound to [PART# LOCATION PTYPE QUANTITY].

Example 15.71 Which parts are subparts of the same part?

retrieve x.PART# - > SUBPARTI, y.PART# - > SUBPART2
where (x.SUBPARTOF = y.SUBPARTOF)

* (x.PART# < y.PART#)

Here x and y are bound to separate copies of [PART# SUBPARTOF]. The
symbol - > is used for renaming attributes.

(SUBPART1 SUBPART2)

2114 2116
21163 21164

2061 2066
2061 2068
2066 2068

A syntactic simplification allowed in PIQUE is the use of a “blank” tuple
variable. Any attributes not preceded by a tuple variable are assumed to be
qualified by a special tuple variable “blank.”

Pique 587

Example 15.72 The queries in the last three exampfes can be written as

retrieve LOCATION where (PARTNAME = “coach seat”)

retrieve PAZ?T#. LOCATION where (PTYPE = “707”)
* (QUANTITY > = NUSED)

retrieve PART# - > SUBPARTI, y.PART# - >‘SUBPART2
where (SUBPARTOF = y.SUBPARTOFj * (PART# < y.PART#)

In the last query, one explicit tuple variable is still needed.

The types of selection conditions seen so far are simple conditions: se-
quences of comparisons connected with *‘s. Compound conditions are formed
from simple conditions with the connectives and, or, and not. The semantics
of queries with compound conditions is given by the following equivalences.

retrieve (list) where (conditionl) and (condition2) =
(retrieve (list) where (conditionl)) f7
(retrieve (list) where (condition2))

retrieve (list) where (conditionl) or (condition2) =
(retrieve (list) where (conditionl)) U
(reMeve (list) where (condition2))

retrieve (list) where not (condition) =
(retrieve (list)) - (retrieve (list) where (condition))

Example 15.73 Which parts are in stock at both Boston and O’Hare?

retrieve PART# where (LOCATION = “Boston”) and
(LOCATION = “O’Hare”)

(PART&

211
2116

588 Relational Query Languages

Example 15.74 Which parts are not in stock at Boston?

retrieve fART# where not (LOCATION = “Boston”}

(PART#)

2114
21163
21164

318
206

2061
2066
2068

The difference between * and and is important. Using * means that the
conditions connected will be enforced on the same window, while and en-
forces the conditions on two windows and intersects the results, possible after
projection. The connectives and, or, and not are essentially shorthand for
writing certain two-variable queries with one variable. Referring back to Ex-
ample 15.73, if we instead wrote

retrieve PART/# where (LOCATION = “Boston”)
* (LOCATION = “O’Hare”),

the result would be an empty relation, since no tuple t has both t(LOCA-
TION) = Boston and t(LOCATION) = O’Hare. Another consideration is
that and can be used when no object spans all the attributes mentioned.

Example 15.75 For this example, assume that ail objects that mention both
PTYPE and LOCATION are removed from 0. The query

retrieve PART# where (PTYPE = “707”)
* (LOCATION = “Boston”)

cannot be used, while

retrieve PART# where (PTYPE = “707”) and
(LOCATION = “Boston”)

would work.

Pique 589

Another important distinction is between a negated condition and the con-
dition with the comparator complemented, such as not (LOCATION =
“Boston”) and (LOCATION # “Boston”).

Example 15.76 The query

retrieve PART# where not (LOCATION = “Boston”)

from Example 15.74 is asking for any part not stocked at Boston, while

retrieve PART# where (LOCATION # “Boston”)

asks for parts stocked at some location besides Boston. The answer to the
second query is

(PART#)

211
2114
2116

21164

To get parts not stocked at Boston, but stocked at some location, we write

retrieve PART#
where (LOCATION = LOCATION) and not

(LOCATION = “Boston”)

(PART#)

2114
21164

The last query in the preceding example contains the condition (LOCA-
TION = LOCATION). At first sight, that condition may seem superfluous,
since it is always true. However, it affects the answer to the query, since it
changes the mention set of the tuple variable. A condition such as (LOCA-
TION = LOCATION) can be abbreviated to (LOCATION), and is called a
name drop. The purpose of a name drop is to include an attribute in the
realm of discourse, with no condition other than that it be present.

590 Relational Query Languages

Example 15.77 What parts are there?

retrieve PARTY

(PART/#)

211
2114
2116

21163
21164

318
206

2061
2066
2068

Example 15.78 Which parts are stocked at some location?

retrieve PART# whew LOCATION

(PART#l

211
2114
2116

21164

Example 15.79 Which parts are not subparts of any part?

retrieve PART# where not (SUBPARTOF)

(PART#)

211
206

PIQUE allows references to subqueries via the keyword in, which specifies
a semijoin of the window for a tuple variable with the result of the subquery.
Thus, in denotes set membership of a tuple (or parts of it) in the set of tuples
resulting from the subquery. The tuple variables in the subquery are local to
the subquery, and are not connected with tuple variables by the same name
in the containing query.

Bibli~phy and Comments 591

Example 15.80 Which locations stock some part that Boston stocks?

retrieve PAR T#, LOCATION
where (LOCATION f “Boston”) * (PART# in

retrieve PART# where (LOCATION = “Boston”))

(PART# LOCATION)

211 JFK
211 O’Hare

2116 O’Hare

15.6 BIBLlOGRAPHY AND COMMENTS

ISBL and the PRTV system are described by Todd [1975, 19761. Stone-
braker, Wong, et al. [1976] present QUEL and the INGRES system. Astra-
han, Blasgen, et al. [1976, 19801, Blasgen, Astrahan, et al. [1981] and
Chamberlin, Astrahan, et al. 119811 report on System R. Boyce, Chamberlin,
et al. [197-S] introduce SQUARE and an early version of SQL. SQL is covered
in more detail by Astrahan and Chamberlin [1975] and Astrahan, Chamber-
lin, et al. [1976]. SEQUEL and SEQUEL2 are names of earlier versions of
SQL. QBE is described in a series of papers by Zloof 11976, 1977, 19811.
PIQUE is presented by Maier, Rozenshtein, et al. [1981]. PIQUE is based
heavily upon a similar language, System/U, under development at Stanford.
Korth 11981) and Korth and Ullman [1980] describe that language.

Chamberlin [1976] and Kim [1979] both give surveys of relational database
management systems. Pirotte [1979] classifies relational query languages by
whether their underlying structure is relational algebra, tuple calculus, or
domain calculus. Cooper [1980] compares the expressive power of various
relational query languages.

