
Chapter 6 

DATABASES AND NORMAL FORMS 

Before delving into relational databases, let us review keys and superkeys in 
light of what we know about FDs. 

Recall: Given a relation scheme R, a key on R is a subset K of R such that 
for any permissible relation r(R), there are no two distinct tuples tl and t2 in I 
such that t i( K) = t2( K ), and no proper subset K ’ of K has this property. 
Remember that for some permissible relations on R, K’ could be a key, but 
we are concerned with all permissible relations on R. A superkey is any set of 
attributes containing a key. 

Example 6.1 In the relation leaves in Table 6.1 we have a list of departures 
from airports. At first, {FROM, DEPARTS} might seem to be a key for 
leaves, but when we consider that there can be two flights from the same city 
at the same time (say we add the tuple (234 Denver 9:3Op O’Hare)), we see 
that {FROM, DEPARTS, TO} is actually the key we want. 

Table 6.1 The relation leaves. 

Zeaves(FLIGHT FROM DEPARTS TO ) 
16 JFK 9:lOa O’Hare 

142 Denver 10:32a O’Hare 
146 Denver 9:3op JFK 
197 Atlanta 1:lSp Houston 

In terms of FDs, a key for a scheme R is a subset K of R such that any per- 
missible relation r(R) satisfies K - R, but no proper subset of K has this 
property. If K is a key for Y, then there are no distinct tuples tl and t2 in Y 
such that tl and t2 have the same K-values. Therefore, when testing the FD 
K - R, if we ever have t,(K) = t2(K), we must have t, = t2, which is to say 
t,(R) = tz(R). A superkey is a subset K of R such that K - R, but there is 
no requirement for minimality. 
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94 Databases and Normal Forms 

6.1 DATABASES AND DATABASE SCHEMES 

In what follows, we shall assume that a relation scheme R is composed of two 
parts, S and K, where S is a set of attributes and K is a set of designated keys. 
(Remember that a designated key can be a superkey.) We write this situation 
as R = (S, K). We shall sometimes still use R in place of S when discussing 
sets of attributes, such as using X E R for X E S. 

Definition 6.1 Let U be a set of attributes, each with an associated domain. 
A relational database scheme R over U is a collection of relation schemes 
{RI,&, --., RP }, where Ri = (Si, Ki), 1 5 i I p, 

CJ Si=U, 
i=l 

and Si # Sj if i + j. 
A relational database d on database scheme R is a collection of relations 
{ri, r2, --., rp } such that for each relation scheme R = (S, K) in R there 
is a relation r in d such that r is a relation on S that satisfies every key in K. 
We abuse set notation and always assume that rj is the relation on Si. 

Example 6.2 Table 6.2 shows a database d = {flies, times) on the 
database scheme R = {(PILOT FLIGHT DATE, {PILOT DATE}), 
(FLIGHT DEPARTS, {FLIGHT})}. Relations flies and times are projec- 
tions of the relation assign in Table 4.1. 

Definition 6.2 A relation scheme R = (S, K) embodies the FD K - R if K 
is a designated key in K. 

Notice that we are already using R for S. 

Definition 6.3 A database scheme R = {RI, R2, . . . , RP } represents the 
set of FDs G = {X - Y 1 some Rj in R embodies X - Y }. R completely 
characterzies a set of FDs F if F = G. 

Example 6.3 The database scheme R in Example 6.2 represents the set 
of FDs G = {PILOT DATE - PILOT FLIGHT DATE, FLIGHT - 
FLIGHT DEPARTS }. R completely characterizes the set F = ( PILOT DATE 
- FLIGHT DEPARTS, FLIGHT - DEPARTS}. 
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Table 6.2 The relations flies and times, comprising a database. 

flies (PILOT FLIGHT DATE ) times (FLIGHT DEPARTS) 
Cushing 83 9 Aug 83 10: 1Sa 
Cushing 116 10 Aug 116 1:25p 
Clark 281 8 Aug 281 5:SOa 
Clark 301 12 Aug 301 6:35p 
Clark 83 11 Aug 412 1:25p 
Chin 83 13 Aug 
Chin 116 12 Aug 
Copley 281 9 Aug 
Copley 281 13 Aug 
Copley 412 15 Aug 

We may wish to place constraints upon relations in our databases other 
than those imposed by the designated keys of the relation schemes. In some 
such cases we specify a set of FDs I; that the relations in the database must 
satisfy. Not every FD in F will apply to every relation in the database. How 
could the FDA B - C apply to a relation r(A C)? We must modify the defi- 
nition of satisfies to suit databases. 

Definition 6.4 Let R be a relation scheme. The FD X - Y applies to R if 
x- YisanFDoverR. 

Definition 6.5 Let d = {rr , r;!, . . . , rp } be a database on scheme R = 
{Rl,& *-a, Rp > over U. Let F be a set of FDs over U. Database d satisfies 
F if for every FD X - Yin Ft and every Rj in R, if X - Y applies to Ri, then 
ri satisfies X - Y. Let G be the set of all FDs in F+ that apply to some 
scheme Ri in R. Any FD in G + is said to be enforceable on R; any FD in 
F’ - G + is unenforceable on R. The set F is enforceable on R if every FD in 
F+ is enforceable on R, that is, G E F. 

To show that a set F is enforceable on R, it is sufficient to find a set F’ = F 
such that every FD in F’ applies to some scheme R, in R. 

Definition 6.6 A database d on scheme R obeys a set of FDs F if F is en- 
forceable on R and d satisfies I;+. . 

If F’ is a set of FDs as described above, d obeys F if d satisfies F’. 
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Example6.4 LetR={R1,RZ,R3},whereR1=ABC,Rz=BCD,and 
R3=DE.LetF={A -BC,C-A,A-D,D-E,A-E}.FDsA-D 
and A - E do not apply to any relation scheme in R. However, F is enforce- 
able on R, since G = (A - B C, C - A, C - D, D - E) is equivalent to 
F and every FD in G applies to some relation scheme in R. The set F’ = 
{A - D ] is not enforceable on R. 

6.2 NORMAL FORMS FOR DATABASES 

We are about to define three normal forms for databases. A normal form is a 
restriction on the database scheme that presumably precludes certain un- 
desirable properties from the database. Normal forms are fist defined for a 
relation scheme in a database scheme, and are then extended to apply to the 
database scheme as a whole. 

6.2.1 First NormaI Form 

A relation scheme R is in first normal form (LNF) if the values in dom (A) are 
atomic for every attribute A in R. That is, the values in the domain are not 
lists or sets of values or composite values. A database scheme R is in first 
normalform if every relation scheme in R is in first normal form. All the ex- 
amples we have seen thus far have been in 1NF. The definition of atomic is 
hazy; a value that is atomic in one application could be non-atomic in 
another. For a general guideline, a value is non-atomic if the application 
deals with only a part of the value. 

Example 6.5 Shown below is a relation born that lists birthdays. 

born (NAME BIRTHDATE ) 
Allen June 7, 1949 
Alfred March 21, 1933 
Alphonse April 30, 1959 
Alice December 12, 1963 

If we are ever interested only in the month or year a person was born, the 
relation born is not in LNF, since we are dealing with part of a value. To be in 
1NF in this case, the attribute BIRTHDATE should be broken up as shown 
below. 
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born (NAME BMONTH BDAY BYEAR) 
Allen June 7 1949 
Alfred March 21 1933 
Alphonse April 30 1959 
Alice December 12 1963 

Example 6.6 The relation gender, shown below, is not in 1NF because it 
contains values that are sets of atomic values. 

gender (NAME SEX ) 
{John, Jean, Ivan} male 
{ Mary, Marie} female 

To be in lNF, gender should be stored like this: 

gender(NAME SEX ) 
John male 
Jean male 
Ivan male 
Mary female 
Marie female 

What is the advantage of lNF? It may not be possible to express FDs in as 
great detail as we would like without 1NF. Suppose we want to add an attri- 
bute SIGN that gives the astrological sign of the person to the first relation 
born in Example 6.5. SIGN is functionally dependent only on the month and 
day of birth, and not on the year of birth. However, the best we can do the 
first relation of Example 6.5 is BIRTHDATE - SIGN, which would allow 
two people born on the same day in different years to have different signs. 
In the second relation born, there is no problem. We can write the FD 
BMONTH BDAY - SIGN, which prevents the problem with the previous 
FD. 

Updates can also be a problem if a scheme is not in 1NF. Suppose we want 
to process the update CH(gender; Jean, male; SEX = female). The result of 
this update is ambiguous in the first relation gender in Example 6.6. Do we 
move Jean from one set to the other or do we change male to female? The up- 
date is unambiguous when applied to the second version of gender in Exam- 
ple 6.6. 

i 
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6.2.2 Anomalies and Data Redundancy 

Second and third normal forms arise from trying to avoid anomalies when 
updating relations and data redundancy in relations. An update anomaly is 
an unwanted side effect that results from changing a relation. 

Consider the relation assign in Table 6.3. 

Table 6.3 The relation assign 

assign (FLIGHT DAY PILOT GATE) 

112 6 June Bosley 7 
112 7 June Brooks 7 
203 9 June Bosley 12 

FLIGHT DAY is a key for assign, and the relation must also satisfy the FD 
FLIGHT - GATE. We would like to update the relation by specifying 
values for the key and then giving values for the remaining attributes. How- 
ever, if we perform 

CH(assign; 112, 6 June; PILOT = Bosley, GATE = 8), 

the relation will violate the FD FLIGHT - GATE. To avoid violating the 
FD, every time an update is made, we have to scan the relation and update 
the gate number every place the flight number appears. We wanted to 
change only one tuple. Furthermore, the flight number-gate number infor- 
mation is duplicated in the relation, thus making the data redundant. 

We are better off, with respect to updates and redundancy, if we represent 
the same information as a database of two relations, passign and gassign, as 
shown below. 

passign (FLIGHT DAY PILOT) gassign (FLIGHT GATE) 
112 6 June Bosley 112 7 
112 7 June Brooks 203 12 
203 9 June Bosley 

We can reconstruct the original relation assign by taking passign w gassign. 
The update anomaly no longer exists, since only one tuple needs to be altered 
to change a gate assignment. We have also removed some data redundancy, 
since flight number-gate number pairs are only recorded once. 
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6.2.3 Second NormaI Form 

Definition 6.7 Given a set of FDs I; and an FD X - Y in F+, Y is partially 
dependent upon X under F if X - Y is not left-reduced. That is, there is a 
proper subset X’ of X such that X’ - Y is in I;$. If X - Y is left-reduced, 
then Y is fully dependent on X. 

Example 6.7 Let F = {FLIGHT DAY - PILOT GATE, FLIGHT - 
GATE}. GATE is partially dependent upon FLIGHT DAY, while PILOT is 
fully dependent upon FLIGHT DAY. 

Definition 6.8 Given a relation scheme R, an attribute A in R, and a set of 
FDs I; over R, attribute A is prime in R with respect to I; if A is contained in 
some key of R. Otherwise A is nonprime in R. 

Caveat Lector: Do not confuse the keys in the definition of prime with desig- 
nated keys for R, as the latter may actually be superkeys. Also, there may be 
keys for R that are not designated. 

Example 6.8 Let R = FLIGHT DAY PILOT GATE and let F be as in Ex- 
ample 6.7. FLIGHT and DAY are prime, PILOT and GATE are nonprime. 
(We allow the possibility that a pilot can have two flights in one day, so 
PILOT DAY is not a key.) 

Definition 6.9 A relation scheme R is in second normalform (2NF) with re- 
spect to a set of FDs P if it is in 1NF and every nonprime attribute is fully 
dependent on every key of R. A database scheme R is in second normalform 
with respect to F if every relation scheme R in R is in 2NF with respect to F. 

Example 6.9 Let R and F be as in Example 6.8 and let R = (R ). R is not 
in 2NF because in R, GATE is partially dependent on FLIGHT DAY. If we 
let R = {FLIGHT DAY PILOT, FLIGHT GATE}, then R is in 2NF. 
FLIGHT is now a key for the relation scheme FLIGHT GATE. 

6.2.4 Thii Normal Form 

Consider the relation assign in Table 6.4. It is similar to the relation assign in 
Table 6.3. We again assume assign has the key FLIGHT DAY and further 
satisfies the FDs PILOT-ID - NAME and NAME - PILOT-ID. 
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Table 6.4 The relation assign 

assign (FLIGHT DAY PILOT-ID NAME) 
112 6 June 31174 Bosley 
112 7 June 30046 Brooks 
203 9 June 31174 Bosley 

If we make the update 

CH(assign; 112, 6 June; PILOT-ID = 31039, NAME = Bosley), 

we violate the FD NAME - PILOT-ID. We also have redundant pilot iden- 
tification-pilot name pairs. The cause of the problem here is not a partially 
dependent nonprime attribute, although the solution is the same. We repre- 
sent the relation as a database, as shown below. 

pussign (FLIGHT DAY PILOT-ID) 
112 6 June 31174 
112 7 June 30046 
203 9 June 31174 

ident (PILOT-ID NAME) 
31174 Bosley 
30046 Brooks 

We can still retrieve the original relation through a join. 

Definition 6.10 Given a relation scheme R, a subset X of R, an attribute A 
in R, and a set of FDs F, A is transitively dependent upon X in R if there is a 
SubsetYofRwithX- Y, Y+X,andY-AunderFandAICXY. 

Example 6.10 Let R = FLIGHT DAY PILOT-ID NAME and let F = 
{FLIGHT DAY - PILOT-ID NAME, PILOT-ID - NAME, NAME - 
PILOT-ID}. NAME is transitively dependent upon FLIGHT DAY, since 
FLIGHT DAY - PILOT-ID, PILOT-ID + FLIGHT DAY, and PILOT-ID 
- NAME. PILOT-ID fills the role of Yin the definition. 

Definition 6.11 A relation scheme R is in third normal form (3NF) with re- 
spect to a set of FDs F if it is in 1NF and no nonprime attribute in R is transi- 
tively dependent upon a key of R. A database scheme R is in third normal 
form with respect to F if every relation scheme R in R is in third normal form 
with respect to F. 

Example 6.11 Let R and F be as in Example 6.10 and let R = (R }. R is 
not in 3NF with respect to P because of the transitive dependency of NAME 
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on FLIGHT DAY. If R = {FLIGHT DAY PILOT-ID, PILOT-ID NAME}, 
then R is in 3NF with respect to F. 

Lemma 6.1 Any relation scheme R that is in 3NF with respect to F is in 2NF 
with respect to F. 

Proof We show that a partial dependency implies a transitive dependency. 
Suppose nonprime attribute A in R is partially dependent upon key K C_ R. 
Then there is a proper subset K’ of K such that I; k K’ - A. K’ + K, since 
then K’ would be a key for R, and keys cannot properly contain keys. Also, 
A e K, since K is a key and A is nonprime. So K - K’, K’ + K, K’ - A, 
andAeKK’= K. Therefore A is transitively dependent upon K. 

6.3 NORMALIZATION THROUGH DECOMPOSITION 

It is always possible to start with any relation scheme R that is not in 3NF 
with respect to a set of FDs F and decompose it into a database scheme that 
is in 3NF with respect to F. Decomposing a relation scheme means breaking 
the relation scheme into a pair of relation schemes RI and Rz (possibly inter- 
secting) such that any relation r(R) that satisfies F decomposes losslessly 
onto RI and Rl. That is, 7rR1(r) W X+(T) = r. We may have to repeat the 
decomposition process on RI and R2 if either of them is not in 3NF. We keep 
decomposing until all the relations we have are in 3NF with respect to F. 

Suppose we have a transitive dependency upon a key in R. We have a key 
K C R, a set Y E R, and a nonprime attribute A in R with K - Y, Y + K, 
Y-AunderFandA@KY.LetRt =R -AandRz= YA.Ifwehave 
designated keys for our relation scheme, say R = (S, K), then let K be the 
set of designated keys for RI and let ( Y} be the set of designated keys for Rz . 
It is possible that some designated key K in K contains A. If so, K is a super- 
key for R. Let K’ = K - A. K’ is still a superkey for R, since A cannot be 
part of any key for R. Replace K by K’ in K. 

We have removed one transitive dependency from R, and for any r(R) sa- 
tisfying F, r = rR,(r) W ?T~,(Y) (see Exercise 6.4). 

We can decompose again if any transitive dependencies remain in RI or 
RZ. We do not go on decomposing relation schemes forever, though. Every 
time we decompose a relation scheme, the two resultant relation schemes are 
smaller, and there can be no transitive dependencies in a relation scheme 
with only two attributes (see Exercise 6.5). 

The decomposition process can be speeded up by checking if there are any 
other nonprime attributes in R - (K Y) that are dependent upon Y. If such 
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attributes exist, they are also transitively dependent upon K and can be re- 
moved at the same time. Suppose Al , AZ, . . . , A, are in R - (K Y) and 
are dependent on Y. We then let RI = R - (A, A2 - * - A,,,) and R2 = 
YAlA2 -*- A,. Again, any relation r(R) that satisfies jc decomposes ioss- 
lessly onto R1 and Rz. 

Example 6.12 Let R = 

FLIGHT FROM TO DEPARTS ARRIVES DURATION PLANE-TYPE 
FIRST-CLASS COACH TOTAL-SEATS #MEALS, 

where FIRST-CLASS and COACH are the number of seats available in each 
section. Let the set of designated keys be 

K = {FLIGHT, FROM TO DEPARTS, FROM TO ARRIVES >. 

We are assuming there cannot be two flights from the same source to the 
same destination arriving or departing at the same time. Let all the desig- 
nated keys be actual keys, and suppose we also have the following FDs in our 
set F. 

PLANE-TYPE - FIRST-CLASS COACH TOTAL-SEATS 
DEPARTS DURATION - #MEALS 
ARRIVES DURATION - #MEALS 
FIRST-CLASS COACH - TOTAL-SEATS 
FIRST-CLASS TOTAL-SEATS - COACH 
COACH TOTAL-SEATS - FIRST-CLASS 

It might seem that ARRIVES DEPARTS - DURATION should also be an 
FD, but the times for ARRIVES and DEPARTS are assumed to be local 
times, so DURATION depends also on the time zones for the source and des- 
tination cities. 

We first remove the transitive dependency of #MEALS upon FLIGHT via 
DEPARTS DURATION. We get the relation scheme 

R1 = FLIGHT FROM TO DEPARTS ARRIVES DURATION 
PLANE-TYPE FIRST-CLASS COACH TOTAL-SEATS 

with designated keys 

K1 = {FLIGHT, FROM TO DEPARTS, FROM TO ARRIVES 3 
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and the relation scheme 

R, = DEPARTSDURATIOWMEALS 

with designated key 

K2 = {DEPARTS DURATION}. 

Scheme R2 is in 3NF; scheme 22, is not, since FIRST-CLASS, COACH, and 
TOTAL-SEATS are all transitively dependent upon FLIGHT via PLANE- 
TYPE. We decompose RI into schemes 

RI, = FLIGHT FROM TO DEPARTS ARRIVES DURATION 
PLANE-TYPE 

with designated keys 

K1, = {FLIGHT, FROM TO DEPARTS, FROM TO ARRIVES} 

and 

RI2 = PLANE-TYPE FIRST-CLASS COACH TOTAL-SEATS 

with designated key 

K12 = {PLANE-TYPE). 

Relation scheme RI1 is now in 3NF with respect to F, but RI2 is not, since 
TOTAL-SEATS is transitively dependent upon PLANE-TYPE via 
FIRST-CLASS COACH. We decompose RI2 into 

Rlzl = PLANE-TYPE FIRST-CLASS COACH 

with designated key 

K12, = {PLANE-TYPE} 

and relation scheme 

R 122 = FIRST-CLASS COACH TOTAL-SEATS 
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with designated key 

Klzz = {FIRST-CLASS COACH}. 

We have now decomposed R to the point where every relation scheme is in 
3NF with respect to I;. Hence, the database scheme 

is in 3NF. Furthermore, we can faithfully represent any relation r(R) that 
satisfies the FDs in F by its projections onto the relation schemes in R, since 

The parentheses are not necessary, since join is commutative and associative. 
They only serve to point out the stages by which I was losslessly decomposed. 
If the order of taking the joins is changed, however, the intermediate results 
may not be meaningful. For example, 

If the evaluation is done according to the parentheses, every intermediate re- 
sult is a projection of r. 

Database scheme R is not unique. There are points at which we had a 
choice of ways to decompose a relation to remove a transitively dependent at- 
tribute. At the first step, we could have chosen 

R2 = ARRIVES DURATION #MEALS, 

since #MEALS is also transitively dependent upon FLIGHT via ARRIVES 
DURATION. There are three choices for decomposing RI2 at the third step. 
(What are they?) Some keys for relation schemes are not picked up as desig- 
nated keys, such as FIRST-CLASS TOTAL-SEATS and COACH 
TOTAL-SEATS for Riz2. 

6.4 SHORTCOMINGS OF NORMAL~TION THROUGH 
DECOME’OSITION 

Several problems can arise when normalizing a relation scheme by decom- 
position. First, the time complexity of the process is probably not polyno- 
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mially bounded. There can be an exponential number of keys for a relation 
scheme in terms of the size of the relation scheme and the governing set of 
FDs (see Exercise 6.8). Also, deciding if an attribute is nonprime in a scheme 
is an NP-complete problem. 

A second problem is that we may end up producing more relation schemes 
than we really need for 3NF. 

Example 6.13 Let relation scheme R = A B C D E and let F = (A B 
-CDE,AC-BDE,B- C,C-B,C-D,B-E}.ThekeysforR 
under F arc A B and A C. Using the transitive dependency of D on A B via C, 
we decompose to 

R,=ABCE K1 = {A B, A C) 
R2=CD K2 = {C}. 

We then use the transitive dependency of E on A B via B in RI to get 

RI, = A B C K1, = (A B, A C} 
RI2 = BE K12 = U% 

The final 3NF database scheme is 

R = VGl, R12, R,). 

There is a 3NF decomposition of R into only two relation schemes, namely 

R1=ABC K1 = {A B, A C) 
R2=BDE K2 = {B}. 

A third problem is that we can introduce partial dependencies into a rela- 
tion scheme through decomposition. The partial dependencies can cause 
more relation schemes to appear in the final database scheme than are ac- 
tually needed. 

Example 6.14 Let relation scheme R = A B CD and let F = {A - B C D, 
C - D}. A is the only key for R under F. D is transitively dependent upon A 
via B C. Decomposing, we get 

R1=ABC KI = -Ml 
R2=BCD K, = {B C). 
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B C is an actual key of RZ, but D is partially dependent upon it. Hence D is 
transitively dependent upon B C. Scheme Rz must be decomposed into 

Rzl = B C K21 = W Cl 

R22 =CD K22 = WI- 

RI, Rzl and R22 form a 3NF database scheme for R. However, the two rela- 
tion schemes RI and R22 also form a 3NF database scheme for R. 

This problem can be avoided if we are careful that the intermediary set of 
attributes in the transitive dependency we decompose with is minimal. In Ex- 
ample 6.14 above, we had D transitively dependent on A via B C, but B C is 
not minimal. D is transitively dependent upon A via C only. 

A fourth problem is that we may create a database scheme on which the set 
of FDs involved is not enforceable. 

Example 6.15 Let relation scheme R = A B C D E and let P = {A - 
BCDE, CD-E, EC - B}. If we eliminate the transitive dependency of E 
upon A via C D, we get 

R, =ABCD K1= (4 

Rz=CDE K2 = {CD}. 

F is not enforceable on the database scheme R = { RI, R2 }, since E C - B is 
not implied by the FDs in F+ that apply to R1 or R2, (This statement must be 
checked by generating P .) 

Finally, we can produce relation schemes with “hidden” transitive depend- 
encies through decomposition. 

Example 6.16 Let relation scheme R = A B C D and let F = { A - B, 
B - C 1. A D is a key for F and B is partially dependent on A D. Decompos- 
ing, we get 

R1=ACD K1 = (AD) 
RZ=AB Kz = (A}. 

Although RI and R2 are both technically in 3NF, there is still a “hidden” 
transitive dependency of C on A D in RI. 
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6.5 NORMALIZATION THROUGH SYNTHESIS 

In this section we present another means for achieving third normal form, 
which avoids the problems associated with decomposition cited in the pre- 
vious section. 

The basic problem we address is finding a 3NF database scheme to repre- 
sent a relation scheme that is not in 3NF. We assume our input to be a rela- 
tion scheme R and a set F of FDs over R. With this input, we wish to create a 
database scheme R = { R1, R2, . . . , Rp ) over R with the following four 
properties: 

1. F is completely characterized by R. That is, 

FE {K -Rj(R, is in R and K is a designated key of R, ). 

2. Every relation scheme Ri in R is in 3NF with respect to F. 
3. There is no database scheme with fewer relation schemes than R satis- 

fying properties 1 and 2. 
4. For any relation r(R) that satisfies I;: 

r = xR,(r) W 7rR2(r) W - -. W 3rR,(r). 

We call any database scheme R satisfying properties 1 to 3 above a complete 
database scheme for F. 

Let us discuss the reasons for these requirements. Property 1 ensures that 
F is enforceable on R and that we know how to enforce it without computing 
F+. Property 1 also guarantees that the only FDs we must enforce to make R 
obey F are the ones that derive from designated keys. The reasons behind 
property 2 have already been discussed. Property 3 prevents data redun- 
dancy. Property 4 allows us to represent a relation on scheme R faithfully by 
its projections onto the schemes in R, 

We first develop an algorithm using annular covers that produces a com- 
plete database scheme for F. We call this algorithm a synthesis algorithm, 
since it constructs the database scheme directly from the FDs in F. We then 
point out some other useful properties the database schemes synthesized by 
our algorithm possess. We shall then modify the algorithm so that its output 
satisfies property 4 and also show how to make some further refinements to 
the algorithm. 

The synthesis algorithm we develop will have polynomial time complexity, 
since the hardest part of the algorithm is computing a reduced, minimum an- 
nular cover for the input set of FDs. Therefore, we avoid the first problem 
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mentioned in the previous section. The second and third problems are 
avoided by property 3. The fourth problem mentioned is prevented by prop- 
erty 1 and the fifth problem is avoided by properties 1 and 3 together. 

6.51 PAiminary Results for the Synthesis Algorithm 

lemma 6.2 If R is a database scheme representing the set of FDs G, then 
there are at least I& 1 relation schemes in R. That is, there are at least as 
many relation schemes in R as there are equivalence classes in &. 

Proof All the FDs embodied by a single relation scheme R in R must have 
equivalent left sides. If K1 and K2 are designated keys for R, then K1 - R 
and K2 - R, hence K1 - K2andKz - K1. Therefore, each relation scheme 
in R can embody FDs from at most one equivalence class in &. To represent 
all the FDs in G, we need at least I& 1 relation schemes in R. 

Corollary L-et F be a set of FDs. Any database scheme R that completely 
characterizes F must have at least jEFS 1 relation schemes, where P’ is a non- 
redundant cover for F. 

Proof By Lemma 6.2, we know if G is the set of FDs represented by R, then 
I& 1 1 \EFS I, since G = F = F’ and F’ is nonredundant. 

6.5.2 Develophg the Synthesis Algorithm 

The corollary to Lemma 6.2 suggests a way to synthesize a complete database 
scheme for a set F of FDs. We find a nonredundant cover F’ for F and com- 
pute the equivalence classes in xFt. For each E&X) in zFj, we construct a 
relation scheme R consisting of all attributes appearing in any FDs of E&X). 
We let s&X) be the set of designated keys for R. The database scheme R 
consists of all relation schemes so synthesized. R certainly has the minimum 
possible number of relation schemes, by the corollary to Lemma 6.2. It is also 
possible to show that R completely characterizes F (see Exercise 6.11). How- 
ever, the relation schemes may not be in 3NF with respect to F, as the next 
example shows. 

Example 6.17 Let F = F’ = {A - B C, B - C> and let R = A B C. The 
procedure outlined above gives relation scheme 
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Ri = A B C with designated key K1 = ( A ) 

and relation scheme 

R2 = B C with designated key K2 = (B}. 

ReIation R, is not in 3NF with respect to E: (Why?) 

The problem in Example 6.17 arises from I; not being reduced. The next 
example shows that even with a reduced set of FDs, we are not guaranteed a 
3NF database scheme. 

Example 6.18 Let F be the FDs 

B1 B2 - A DID2 - BI B2 

BI - CI B2 - C2 
D, - A D2 - A 
A B, C, - D2 AB2C1 - D1 

and let R = A B1 B2 C1 C2 D1 D2. This is the same set of FDs as in Example 
5.21. The only two FDs that are in an equivalence class together are Bl B2 - A 
and D1 02 - B, B2. The relation scheme produced from this equivalence 
class is 

R = A B1 B2 D1 D2, with designated keys K = { BI B2, D, Dz }. 

R is not in 3NF, since A is transitively dependent upon B, B2 via D, . 

Finding a minimum cover for F does not help the situation, as the set F in 
Example 6.18 is minimum. Attribute A is the problem here just as it was in 
Example 5.21. If we use annular covers, as before, our problems are soIved. 
A synthesis algorithm using annular covers is given as Algorithm 6.1. 

Algorithm 6.1 SYNTHESIZE 
Input: A set of FDs F over U. 
Output: A complete database scheme for F. 
SYNTHESIZE(F) 

1. Find a reduced, minimum annular cover G for F. 
2. ForeachCFD(Xi,Xz, . . . . X,) - Yin G, construct a relation scheme 

R =X,X, a-s X, Y with designated keys K = (Xl, X2, . . . , Xk ). 
3. Return the set of relation schemes constructed in step 2. 
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Example 6.19 Let P be the set of FDs 

A - B1B2Cl C,DEZlZ2Z3J 
4 B2 CI - A C, D E Zl I2 Z3 J 
4 B2 C2 - A Cl DEZ,Z213J 
E - 11 12 13 

CID---J &D-J 
11 12 - 13 I2 13 - I1 II 13 - 12 

andletR =ABlB2ClC2DEIl12Z~J. 

We are using the same FDs as in Example 4.12; we have only renamed the at- 
tributes. Set F is minimum, but not reduced. Reducing F we get F’ = 

{A-B,B2CIC2DE E-IlZ2 
B1 B2 C, - A B, B2 C, - A 
C,D-J C,D--J 
11 12 - 13 12 13 - 11 11 13 - I,}* 

Converting to an annular cover and making the obvious reductions we get G = 

‘{ff 4 B2 Cl, 4 B2 C,) - D E 

- 11 12 

(C, D) - J CC2 D) - J 
(11 12, 12 13, 11 13)). 

Converting each CFD to a relation scheme with designated keys we get 

R1 =ABlB2ClCzDE KI = (A B,&C,,BdW’t) 
R2 = E I, I2 K2 = WI 

R3 = Cl DJ K3 = WI D> 

Rs, = C2DJ & = V2W 

R5 = I, I2 I3 KS = {III~,I~&,II&}. 

The final database scheme is R = { R1, R2, R3, R4, RS 1. 

6.5.3 Correctness and Other Properties of the Synthesis Algorithm 

Lemma 6.3 Let R be a database scheme produced by SYNTHESIZE from a 
set of FDs E: For any relation scheme Ri in R, every designated key of Ri is a 
key. 
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Proof Let (X1,X2, . ..) X,) - Y be the CID from which Ri was synthe- 
sized. Let K be a designated key for Ri that is not a key. K = Xj for some Xj 
in the left side of the CFD. Since K is not a key, Xj contains a shiftable attri- 
bute. Hence, (X1, X2, . . . , X, ) - Y is not reduced, a contradiction. 

Theorem 6.1 SYNTHESIZE constructs a complete database scheme for a 
set of FDs F in O(n*) time on inputs of length n. 

Proof First, we show the time complexity of SYNTHESIZE is O(n2). The 
time spent in steps 2 and 3 of the algorithm is dominated by the time spent in 
step 1. From the observations in Section 5.8, we know that step 1 can be im- 
plemented to run in O(n*) time. 

Let R be the result of SYNTHESIZE(F). R completely characterizes F, 
since the set of embodied FDs for any relation scheme R in R is a characteris- 
tic set for the CFD from which R was synthesized (see Exercise 5.24). From 
Lemma 5.10 and the corollary to Lemma 6.2, we see that R has a minimum 
number of relation schemes among all database schemes that completely 
characterize F. 

All that remains to be proved is that all the relation schemes in R are in 
3NF with respect to F. Consider a relation Ri in R, with designated keys Ki = 
WlJ2, . . . , Xi}, that was synthesized from the CFD (X1, X2, . . . , &) - Y. 
If attribute A is nonprime in Ri, then A is in Y, since every Xj in Ki is a key 
for Ri, by Lemma 6.3. Let X be a key for Ri (not necessarily a designated 
key). Suppose there is a subset 2 of R; such that F implies X - 2 and Z - A, 
F does not imply 2 - X, and A e X Z. Form F' from the set G of CFDs in 
SYNTHESIZE by taking natural characteristic sets for every CFD in G. Con- 
sider an F-based DDAG H for Z - A. U(H) can contain no FDs from 
E&X), which is the natural characteristic set for (Xi, X2, . . . , X,) - Y. If 
it did, we would have Z - X under F. Thus, if we remove A from Y, we still 
can prove Z - A from F', hence (X1 , X2, . . . , X, ) - Y is not reduced. 

The proof of Theorem 6.1 uses both conditions for a reduced CFD: no 
shiftable attributes on the left side and no extraneous attributes on the right 
side. We cannot simplify SYNTHESIZE by leaving out either part of the re- 
duction step. The proof of Theorem 6.1 actually demonstrates a slightly 
stronger result than the statement of the theorem, namely, that no attribute 
in a relation scheme produced by the synthesis algorithm is transitively de- 
pendent upon a key unless it is contained in a designated key, The next ex- 
ample shows it is possible to have a 3NF database scheme where this stronger 
condition does not hold. 
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Example 6.20 Let R =ABCDEandletF={A-B,B-AA,AC-D]). 
Consider the database scheme R for F consisting of the relation schemes 

R, =ABCD with designated key K1 = (A C], and 
R2 = ABE with designated keys Kz = (A, B}. 

RI is in 3NF since B is prime (B C is a key), although B is partially dependent 
upon A C. 

There are two other properties we can prove about database schemes pro- 
duced by SYNTHESIZE. 

Lemma 6.4 Let R be the database scheme constructed by SYNTHESIZE 
from a set of FDs F. There is no complete database scheme for F with fewer 
designated keys. 

Proof Left to the reader (see Exercise 6.15). 

Consider the 3NF database scheme R consisting of relation schemes 

RI =ABD 
R2 = A-C 
R3 = B-CD 

where the underlined attributes are designated and actual keys and there are 
no other FDs. Notice that A B -BC,BC++AB,andBC-D.R1isin 
3NF, since B C g RI. However, D can be removed from RI without changing 
the closure of the set of FDs represented by R. 

Definition 6.12 Let R be a relation scheme in database scheme R over U 
and let F be a set of FDs. Let X C R and A E R. A is externally dependent 
upon X under F if there is a subset Y of U such that Y is not a subset of R and 
X- Y Y + X, and Y - A underFandA ti X Y. 

An external dependency is what we were caliing a hidden transitive depen- 
dency in Example 6.16. External dependencies cannot always be avoided in 
3NF database schemes. 

ExampIe 6.21 Let R be the database scheme composed of the relation 
schemes 

RI = A B with designated key K1 = {A ), and 

R2 = B C with designated keys K2 = ( B, C>. 
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Let F be the set of FDs represented by R B is externally dependent upon A 
under F, since A -C, C+A,andC- B, but B cannot be removed from RI 
without changing the closure of the set of FDs R represents. 

Let R be a 3NF database scheme over U. Let G be the set of FDs that R 
represents and let R be a relation scheme in R. Suppose attribute A in R is 
externalfy dependent upon key K of R via a set Y s U, where Y e R. Unless 
K’ - A is necessary to derive K - Y, for some designated key K’ of R, A 
can be removed from R without changing the closure of G, since G still would 
imply K - Y and Y - A. Y - A still holds because any G-based DDAG H 
for Y - A cannot use any FD in&(K), or else Y - K. 

Definition 6.13 Let R be a 3NF database scheme over U and let G be the set 
of FDs that R represents. Let R be a relation scheme in R. Attribute A in R is 
removable in R if removing A from R does not change the closure of G. (Re- 
moving A implies removing any designated key of R containing A.) 

Complete 3NF database schemes derived by decomposition do not contain 
removable attributes (see Exercise 6.17). The same holds for synthesized da- 
tabase schemes. 

Lemma 6.5 If R is the database scheme produced by SYNTHESIZE from a 
set of FDs F, then no relation scheme R in R contains a removable attribute. 

Proof Suppose R contains a removable attribute A. Let (X, , X2, . . . , Xk) 
- Y be the CFD from which R was synthesized. A cannot be in any Xi in the 
left side of the CFD. If A were in some Xi, since A is removable, either Xi is 
not a key, contradicting Lemma 6.3, or X; can be removed completely from 
Wl,X2, . ...&) - Y, contradicting Lemma 6.4. We conclude A is in Y. 
Therefore, (Xl, X2, . . . , X, ) - Y is not reduced, since A is extraneous in Y. 
Hence, A does not appear in (Xl, X2, . . . , X,) - Y, contradicting the con- 
struction of R. 

6.54 Refinements of the Synthesis Algorithm 

Although synthesis solves the problems associated with decomposition listed 
in Section 6.4, there is one shortcoming of synthesis that is not shared by de- 
composition. In a 3NF database scheme R, obtained from a single relation 
scheme R and a set of FDs F by decomposition, we know that any relation 
t(R) satisfying F decomposes losslessly onto the relation schemes in R. The 
same is not true if R is obtained by synthesis. 
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Example 6.22 Let F = {A - C, B - C}. SYNTHESIZE(F) produces the 
relation schemes 

R1 =A_C and Rz=B_C, 

where the underlined attributes are the designated keys. However, the rela- 
tion r shown below does not decompose losslessly onto R, and R2. 

r(A B a 
a b c 
a’ b’ c 

Definition 6.14 A database scheme R over U has the Iossless join property 
with respect to a set of FDs F if any relation r(U) that satisfies F decomposes 
losslessly onto the relation schemes of R. 

Property 4 at the beginning of Section 6.5 says that the database scheme R 
we synthesize must have the lossless join property with respect to the set of 
FDs R represents. Example 6.22 shows that a database scheme produced by 
synthesis does not necessarily have the lossless join property. There is a 
reIated problem involving attributes in R that are not mentioned in the de- 
pendencies of E: They do not show up in the database scheme synthesized 
from F. However, a minor modification of SYNTHESIZE will solve both 
problems. 

Definition 6.15 Let R be a database scheme over U and let G be the set of 
FDs that R represents. A subset X of U is a universal key for R if G I= X - U. 
We make no requirement for the minimality of X. 

We shall see in Chapter 8 that if some relation scheme in a database 
scheme R contains a universal key, then R has the lossless join property with 
respect to the set of represented FDs, and conversely. The problem with the 
synthesis algorithm is that there may be no relation scheme in R containing a 
universal key. Such is the case in Example 6.22. The problem can be reme- 
died by adding a relation scheme consisting soleiy of the attributes in some 
universal key. This addition technically violates the minimality constraint on 
R, but we shall look the other way during such transgressions. 

The modification to SYNTHESIZE is to add the FD U - C to F as the 
first step, where C is an attribute not contained in U. In finding the annular 
cover G for F, U - C will not be eliminated as redundant, since no other FD 
in F has C on the right side. U - C may be combined with the FD X - Y 
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when finding a minimum cover for P, but then X u U and X must be a uni- 
versal key. During the reduction stage of finding G, U may be reduced to U’ 
by removing shiftable attributes (or X reduced to X’ in the same way), but 
U’ - U holds, so U ’ is a universal key. 

Some relation scheme Ri is synthesized from the CFD containing U’ as a 
left set, and hence U will have a universal key in one of its relation schemes 
and the lossless join property with respect to I”. At: the end of the algorithm, 
attribute C can be removed from the relation scheme in which it appears. (It 
will only appear in one.) 

Example 6.23 Let F = (A -C,B-CCJ.WeaddABC-DtoF’,convert 
to an annular cover, and reduce, to get G = {(A) - C, (B) - C, (A B) - D }. 
The CFD (A B) - D is used to synthesize the relation scheme R1 = A B D 
with designated key K1 = {A B >. R1 contains the universal key A B. D can 
be removed from R1 . 

6.6 AVOIDABLE ATTRIBUTES 

We have seen that SYNTHESIZE@‘) produces a complete database scheme 
R for F with no removable attributes. It may still be possible to remove an at- 
tribute from a relation scheme R in R by changing the set of designated keys. 

Example624 LetF=(A-B,B-A,AC-DE,BD-CC).SYN- 
THESIZE produces a database scheme R containing the relation schemes 
RI = A B with designated keys K, = (A, B > and RI = A B C D E with des- 
ignated keys K2 = {A C, B D >. B is not removable from R2, since it belongs 
to a designated key. If K2 is changed to {A C, A D ), R still completely char- 
acterizes F and B becomes removable. 

Definition 6.16 Let R be a complete database scheme for a set of FDs P. 
Let Ri be a relation scheme in R, and let B be an attribute in Ri. B is avoid- 
able in Ri if changing the designated keys of Ri makes B removable in Ri. 

An avoidable attribute in a database scheme produced by SYNTHESIZE 
must belong to a designated key of some relation scheme, otherwise it is 
removable. It might seem as if finding an alternative set of designated keys 
for a relation scheme R that preserves the enforceability of F is as hard as 
finding all the keys of R. If R was generated by SYNTHESIZE, it is possible 
to find a set of alternative keys, if one exists, without generating every key or 
set of keys for R. The designated keys iu R correspond to the left sides of FDs 



116 DataJmsen and Normal Forms 

in a single equivalence class in a minimum cover of I;, and we know a great 
deal about the structure of minimum covers. 

Suppose relation scheme R in database scheme R was synthesized from the 
-73(X1,X2, . . ..Xk) - Y in a minimum, reduced annular cover G for F. 
Thus, the set of designated keys for R is K = {Xi, X2, . . . , Xk 3. Xi, X2, 
1. *, X, are left sides of FDs in a single equivalence class E&X) for some 
minimum cover F’ for JC Therefore, we know that any alternative set of keys 
K’= {Z1,Z2, . . . . Z, > must have m 2 k, if the enforceability of I; is to be 
preserved. If m > R, then Zi 2 Zj for some i and j. Zi can be removed from 
K’ without changing the closure of the set of FDs represented by R. 
Therefore we shall assume that any alternative set of keys we seek will have 
exactly k members. 

Let K’ = {Z,,Z,, . . . , Z, > be an alternative set of designated keys for R. 
We know direct determination induces a one-to-one correspondence between 
the elements of K and K ‘, since they both can be used as left sides for an 
equivalence class in some minimum cover for F. Assume Z1, Z,, . . . , Z, are 
numbered so Xi 2 Zi and Zj 2 Xi, 1 zz i 5 k, under F. 

Let us try to remember where we are headed. We are trying to detect if 
some attribute B in R is avoidable by finding a replacement set of designated 
keys for R that does not use B. We assume that K’ above is such a set. We 
may further assume that Xi = Zi if B $? Xi. If not, since Zi L Xi, we can re- 
place Z; by Xi in K ’ without reintroducing B and still keep R a complete data- 
base scheme for I;: 

We have narrowed the problem down considerably. Starting with the set 
K = {X1,&, . . . , X, ) of designated keys for R, for each Xi in K containing 
B, we are looking for a replacement key Zi not containing B with Xi 2 Zi and 
Zj 2 Xi under I;. Note that Zi must be contained in R, or we cannot use it as a 
replacement key for Xi. AVOID in Algorithm 6.2 finds an alternative set of 
designated keys for R not containing B, if such exists. AVOID assumes a 
procedure DCLOSURE(X, 8’) that returns the maximum set X’ such that 
X’- X’ under iF. 

Algorithm 6.2 AVOID 
Input: A relation scheme R produced by SYNTHESIZE(F), with designated 
keys K, and an attribute B in R, and the set F of FDs. 
Output: An alternative set of designated keys for R not containing B, if such 
a set exists; @ otherwise. 
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AVOID(R, B, F) 
be 
K’ := K; fail := false; 
for each Xi in K do 

ifB cXithenbe& 
M := DCLOSURE(X<, I;); 
&f’ :z (M n R) - B; 
If DCLOSURE(M’, F) 2 Xi then 

replace Xi in K’ by a minimal subset Z of M’ such that Z 2 Xi 
else fail : = true 

end ; 
lf fail = false then 

return 
else retum( 9s) 

end. 

Example 6.25 Let F, RI , and Rz be as in Example 6.24. AVOID(R2, B, F) 
will only consider BD in Kz for replacement. M will be &3D and M’ will be 
AD.AD A B D under F, so A D can replace B D in Kz . 

We shall not spend more time with AVOID to derive its time complexity, 
which is polynomial, or prove its correctness (see Exercise 6.20). We can use 
AVOID to eliminate avoidable attributes from a relation scheme R in a data- 
base scheme R produced by SYNTHESIZE(F). For each attribute B in R, we 
run AVOID(R, B, F). If AVOID returns something other than @, we 
replace the set of designated keys for R by the alternative set provided by 
AVOID. We know that if such a set of keys exists, B must be removable 
when the set of keys is used. R - B - B can be derived from the new set of 
FDs represented by R, since there must be a new designated key K for R with 
K z B. (K is one of the replacement keys found by AVOID. See Exercises 
6.21 and 6.22.) 

A complete database scheme with no avoidable attributes is in LTK nor- 
maiform (for Ling, Tompa, and Kameda). Exercise 6.23 gives another char- 
acterization of LTK normal form. 

6.7 BOYCE-CODD NORMAL FORM 

We saw that our synthesis algorithm yielded relation schemes that were in a 
form slightly stronger than 3NF in that any attribute in a designated key was 
not transitively dependent upon any key. We now ask the question, is it 
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possible to remove all transitive dependencies? The answer is a qualified yes. 
Starting with a relation scheme R with FDs F, we can find a database scheme 
R for R with no transitive dependencies, but F may be unenforceable on R. 

First, let us see why we might want to remove a prime attribute that is tran- 
sitively dependent upon a key. 

Example 6.26 Consider a relation bih on the relation scheme AIRPORT 
COMPANY OFFICE. The meaning of a tuple (a c f > in biZlto is that if some- 
one from company c charges a ticket at airport a, the bill should be sent to of- 
fice f of the company. We thus have the two FDs AIRPORT COMPANY - 
OFFICE and OFFICE - COMPANY. AIRPORT OFFICE is a key for the 
relation scheme, and COMPANY is partially, hence transitively, dependent 
upon AIRPORT OFFICE. Although COMPANY is a prime attribute, it is 
still desirable to remove it from the relation scheme, since there is a duplica- 
tion of COMPANY-OFFICE pairs. 

Definition 6.17 A relation scheme R is in Boyce-Codd normal form (BCNF) 
with respect to a set of FDs F if it is in 1NF and no attribute in R is transi- 
tively dependent upon any key of R. A database scheme R is in Boyce-Codd 
normalform with respect to a set of FDs F if every relation scheme R in R is 
in Boyce-Codd normal form with respect to F. 

BCNF implies 3NF (see Exercise 6.24). The relation scheme AIRPORT 
COMPANY OFFICE in Example 6.26 is not in BCNF. The following is an 
alternative definition of BCNF (see Exercise 6.25). 

Definition 6.18 A relation scheme R is in Boyce-Codd normal form with re- 
spect to a set of FDs F if for every subset Y of R and for every attribute A E 
R - Y, if Y - A, then Y - R under F. That is, if Y non-trivially determines 
any attribute of R, then Y is a superkey for R. 

We can always use decomposition to find a BCNF database scheme for a 
relation scheme that is not in BCNF. If Y - A under F for relation scheme R 
with Y E R and A E R - Y, and if Y is not a key for R, then decompose R 
intoRI = R - A and R2 = YA. The designated keys for RI and R2 are pro- 
duced in the same manner as for 3NF database schemes. 

Example 6.27 Let relation scheme R = AIRPORT COMPANY OFFICE 
with the FDs given in Example 6.26. Using the FD OFFICE - COMPANY, 
we decompose R into 
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R1 = AIRPORT OFFICE with designated key K1 = {AIRPORT OFFICE) 

and 

R2 = COMPANY OFFICE with designated key K2 = {OFFICE}. 

Unfortunately, the synthesis approach does not guarantee BCNF. 

Example 6.28 Let R = A B C D E and let F = (A - B C, B C - A, 
BCD - E, E - C}. The annular cover forF produced by SYNTHESIZE is 

G = ((A, B C), (B CD) - E, (El - C). 

The second CFD in G yields the relation scheme 

R==BCDE with designated key K2 = {B C D 1. 

R2 is not in BCNF since E - C and E is not a key of Rz . Choosing an equiva- 
lent annular cover 

G’ = ((A, B 0, (A D) - E, (E) - C} 

will produce a database scheme in BCNF. 

6.7.1 Problems with Boyce-&Id Normal Form 

We have seen that given a set of FDs I; over R, it is possible to find a 3NF 
database scheme that completely characterizes F. The same is not true for 
BCNF. Exhaustive consideration of Example 6.26 will show there is no 
BCNF database scheme completely characterizing the given set of FDs. We 
are faced with a choice of BCNF or enforceable FDs. 

Not only is it possible for a set of FDs not to have a complete BCNF data- 
base scheme, it is NP-complete to decide if a given database scheme is in 
BCNF. 

6.8 EXERCISES 

6.1” Assume we restrict database schemes over U so that for any two rela- 
tion schemes RI and Rz in a database scheme, RI $4 R2. Let U contain 
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6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

a.9 

6.10 

6.11 

n attributes. How many database schemes of p relation schemes are 
there over U (ignoring keys)? 
Let database scheme R = {A l3 C, A D E, C E 1. Prove that the set of 
FDsF={AB- C,C-E,E-C,C-D,AB-E}isenforceable 
on R. 
Give an example of a relation in 3NF that has some prime attribute 
transitively dependent upon a key. 
Let RI and R2 be relation schemes with RI fl Rz = X. Show that for 
any relation r( RI R2) that satisfies X - R,, 

Let I; be a set of FDs containing no FDs of the form @ - Y. Show that 
any relation scheme R with two attributes can have no transitive de- 
pendencies under F. 
Let R = STUDENT# NAME BIRTHDAY AGE ADVISOR 
DEPARTMENT SEMESTER COURSE GRADE, with key 
STUDENT# SEMESTER COURSE and FDs STUDENT# - 
NAME BIRTHDAY AGE ADVISOR DEPARTMENT, BIRTHDAY 
- AGE, and ADVISOR - DEPARTMENT. Find a 3NF database 
scheme for R. 
Find a relation r(R) such that T decomposes losslessly onto some set of 
three relation schemes, but r does not decompose losslessly onto any 
pair of relation schemes. In both cases assume no relation scheme is 
the same as R. 
(a) Show that a set of 2n FDs can induce 2” keys on a relation scheme 

with 2n attributes. 
(b) Try to generalize the result of part a) to sets of m FDs on relation 

schemes with n attributes. 
Let R = (RI, Ra, . . ., Rp } be a database scheme over U where 
RI E R2. Show that if a relation r(U) decomposes losslessly onto the 
schemes in R, then r decomposes losslessly onto the relation schemes 
in R’ = { Rz, R3, . . ., Rp), and conversely. 
Give a set of FDs F and a database scheme R completely characteriz- 
ing F, such that R has more than lEFj relation schemes, yet no rela- 
tion scheme can be removed from R and still have R completely char- 
acterize F. 
Show that the method for producing a database scheme R from a set 
of FDs F by using a nonredundant cover 1;’ for F (as outlined at the 
beginning of Section 6.5.2) guarantees that R completely charac- 
terizes F. 
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Compare the database schemes produced by decomposition and syn- 
thesis in Examples 6.12 and 6.19. 
Show that SYNTHESIZE may not work correctly if some CFD in the 
annular cover G contains either shiftable or extraneous attributes. 
Use both synthesis and decomposition to obtain a 3NF database 
scheme for the set of FDs in Example 5.13. 
Prove Lemma 6.4. 
Give an example of a relation scheme R in a database scheme R with 
an external dependency K - Y, Y + K, Y - A, where K is a key of 
R, A + Y, but A is not removable in R. 

6.17” Prove that any complete database scheme R for a set of FDs F pro- 
duced by decomposition from a single relation scheme R does not con- 
tain any removable attributes. 

Definition 6.19 Let F be a set of FDs, let R = (R 1, RZ, . . . , R, } be a data- 
base scheme, and let G be the set of FDs in F+ that apply to relation schemes 
in R. F is indirectly enforceable on R if R has the lossless join property with 
respect to G. 

6.19 

6.18” Prove that for any database scheme R produced by decomposition 
from a relation scheme R and a set of FDs F, F is indirectly enforce- 
able on R. 
Consider the algorithm SYNTHESIZE as modified in Section 6.5.4. 
Show that adding R - C to F does not produce an extra designated 
key unless it produces an extra relation scheme. Show that R - C 
does not produce an extra relation scheme if there is an FD X - Y in 
F with X - R under F. 
Find the complexity of Algorithm 6.2 in Section 6.6. You may assume 
that information calculated by SYNTHESIZE is available to AVOID. 
Let R be a relation scheme in a complete database scheme R. Show 
that if B is not avoidable in R, then B is not avoidable in any relation 
scheme R ’ obtained by changing the designated keys of R and remov- 
ing removable attributes. 
Give an algorithm to put a complete database scheme produced by 
SYNTHESIZE into LTK normal form. 

6.20 

6.21 

6.22 

6.23” Let R be a complete BCNF database scheme for the set of FDs F and 
let R be a relation scheme in R. Let B be an attribute in R. Let R’ be 
the database scheme obtained by removing B from R in R. Let F’ be 
the subset of F+ that applies to some relation scheme in R’. Prove 
that B is avoidable in R if and only if F = F’. 

6.24 Show that BCNF implies 3NF. 
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6.25 Prove the equivalence of the two definitions of BCNF in Section 6.7. 
6.26 Exhibit a database scheme that is in BCNF but not LTK normal form 

and vice versa. 

6.9 BIBLIOGRAPHY AND COMMENTS 

Second and third normal forms were introduced by Codd [197lb, 1972a], 
who showed how to achieve them through normalization. Kent [1973] pro- 
vides an introduction to normal forms. Early proposals for synthesis algo- 
rithms were given by Delobel and Casey [I9731 and Wang and Wedekind 
[1975], but they contained some imperfections. Bernstein [1976b] was the 
first to give a synthesis algorithm for a complete database scheme for a set of 
FDs. Osborn [1977], Dayal and Bernstein [1978a], and Biskup, Dayal, and 
Bernstein [1979] discuss 3NF database schemes that meet the lossless join 
condition. Other algorithms for 3NF schemes are given by Beeri and Bern- 
stein [1979] and Pichat and Delobel 119791. Avoidable attributes were intro- 
duced by Ling, Tompa, and Kameda [1981], who propose an algorithm for 
their removal. BCNF was introduced by Codd [1974]. 

Fagin [I9771 compares decomposition and synthesis for achieving normal 
form schemes. Beer-i, Bernstein, and Goodman [1978] discuss the goals of 
normalization. Heath [I9711 attempts to classify update anomalies by their 
severity. They also point out that there can be many normalized schemes for 
a given set of dependencies, and there is no clear criterion for which is the 
“best”. Bernstein and Goodman [198Ob] raise questions about how well 
BCNF avoids update anomalies. 

Lucchesi and Osborn [1978] show that several problems connected with 
normalization, such as finding nonprime attributes and minimum keys, are 
NP-complete. Beeri and Bernstein [I9791 use those results to show that deter- 
mining if a given database scheme is in BCNF and determining whether a set 
of FDs has a complete BCNF scheme are NP-complete problems. Osborn 
[1979a] and LeDoux and Parker [19&I] give algorithms for determining if a 
set of FDs has a complete BCNF scheme, although both can use exponential 
time in the worst case. Tsou and Fischer [I9801 give a polynomial-time algo- 
rithm for finding a BCNF database scheme for a set of FDs with the lossless 
join property, but the scheme may not be complete. Jou [1980] and Tsou 
[1980] both examine complexity issues related to normalization. 


