
Chapter 4 

FUNCTIONAL DEPENDENCIES 

Two primary purposes of databases are to attenuate data redundancy and 
enhance data reliability. Any a priorz’ knowledge of restrictions or constraints 
on permissible sets of data has considerable usefulness in reaching these 
goals, as we shall see. Data dependencies are one way to formulate such ad- 
vance knowledge. In this chapter we shall cover one type of data dependency, 
the functional dependency. In Chapter 7 we cover two other types of data 
dependencies, the multivalued and join dependencies. Other general classes 
of data dependencies are treated in Chapter 14. 

4.1 DEFINITIONS 

We discussed keys in Chapter 1. Functional dependencies are a generaliza- 
tion. Table 4.1 depicts the relation assign(PILOT FLIGHT DATE 
DEPARTS). Assign tells which pilot flies a given flight on a given day, and 
what time the flight leaves. Not every combination of pilots, flights, dates, 
and times is allowable in assign. The following restrictions appIy, among 
others. 

1. For each flight there is exactly one time. 
2. For any given pilot, date, and time, there is only one flight. 
3. For a given flight and date, there is only one pilot. 

These restrictions are examples of functional dependencies. Informally, a 
functional dependency occurs when the values of a tuple on one set of at- 
tributes uniquely determine the values on another set of attributes. Our 
restrictions can be phrased as 

1. TIME functionally depends on FLIGHT, 
2. FLIGHT functionally depends on {PILOT, DATE, TIME}, and 
3. PILOT functionally depends on {FLIGHT, DATE). 

42 
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Table 4.1 The relation assign(PILOT FLIGHT DATE DEPARTS). 

assign (PILOT 
Cushing 
Cushing 
Clark 
Clark 
Clark 
Chin 
Chin 
Copely 
Copely 
Copely 

FLIGHT DATE 
83 9 Aug 

116 IO Aug 
281 8 Aug 
301 12 Aug 

83 11 Aug 
83 13 Aug 

116 12 Aug 
281 9 Aug 
281 13 Aug 
412 15 Aug 

DEPARTS) 
10: 15a 
1:2sp 
5:SOa 
6335~ 

10: 15a 
10: 1Sa 

1:25p 
5:SOa 
550a 
1:25p 

We generally reverse the order of the two sets and write FLIGHT, DATE 
functionally determines PILOT, or {FLIGHT, DATE]* PILOT. (Recall that 
we let a single attribute A stand for (A }.) 

We now state the notion formally using our relational operators. Let r he a 
relation on scheme R, with X and Y subsets of R. Relation r satisfies the 
functional dependency (FD) X + Y if for every X-value x, ay(ax,,(r)) has at 
most one tuple. One way to interpret this expression is to look at two tuples, 
t1 and t2, in r. If tl(X) = tl(X), then tl(Y) = t2(Y). In the FDX -+ Y X is 
called the Zeft side and Y is called the right side. 

This interpretation of functional dependency is the basis for the algorithm 
SATISFIES given below. 

Algorithm 4.1 SATISFIES 
Input: A relation r and an FD X + Y. 
Output: true if T satisfies X + Y, false otherwise. 
SATISFIES(r, X --f Y); 

1. Sort the relation r on its X columns to bring tuples with equal X-values 
together. 

2. If each set of tuples with equal X-values has equal Y-values, return 
true. Otherwise, return f&e. 

SATISFIES tests if a relation r satisfies an FD X -+ Y. Table 4.2 shows the 
result of running SATISFIES(a.ssign, FLIGHT --, DEPARTS) on the rela- 
tion assign from Table 4.1. The dashed lines mark off sets of tuples with 
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equal FLIGHT-values. The DEPARTS-values for each set are the same, so 
the FD is satisfied. 

Table 4.2 The result of running the algorithm SATISFIES on the relation 
assign from Table 4.1. 

assign (PILOT FLIGHT DATE DEPARTS) 
Cushing 83 9 Aug 10: 15a 
Clark 83 11 Aug 10: 15a 
Chin 83 13 Aug 10: 15a 
__-_-______-________*------------------------------------------ 
Cushing 116 10 Aug 1:25p 
Chin 116 12 Aug 1:2sp 
_____I______________I___________________----------------------- 
Clark 281 8 Aug 5:SOa 
Copely 281 9 Aug 5:SOa 
Copely 281 13 Aug 5:SOa 
___---______*______-------------------------------------------- 
Clark 301 12 Aug 6:35p 
____________________---------------------------------------~--- 
Copely 412 1.5 Aug 1:25p 

Table 4.3 shows the result of running SATISFIES(assign, DEPARTS 4 
FLIGHT). There is a set of tuples with equal DEPARTS-values that does not 
have equal FLIGHT-values, so the FD is not satisfied by assign. 

There are two extreme cases to consider, namely X + @ and @ + Y. The 
FD X + @ is trivially satisfied by any relation. The FD (z) -+ Y is satisfied by 
those relations in which every tuple has the same Y-value. In the sequel, we 
shall usually ignore FDs of these forms. 

4.2 IIlV’FERENCE AXIOMS 

For a relation r(R), at any given moment there is some family of FDs F that T 
satisfies. We encounter the same problem we had with keys. One state of a 
relation may satisfy a certain FD, while another state does not. We want the 
family of FDs F that all permissible states of f satisfy. Finding F requires 
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Table 4.3 The result of running SATISFIES(assign, 
DEPARTS --) FLIGHT) 

assign (PILOT FLIGHT DATE DEPARTS) 
Clark 281 8 Aug 5:SOa 
Copeiy 281 9 Aug 5:SOa 
Copely 281 13 Aug 5:SOa 
-_-----_---------------------*--------------------------------- 
Cushing 83 9 Aug 10:lSa 
Clark 83 11 Aug 10: 15a 
Chin 83 13 Aug 10:15a 
____-___.____._-________________________----------------------- 
Cushing 116 10 Aug 1:2sp 
Chin 116 12 Aug 1:25p 
Copely 412 15 Aug 1:25p 
--_----__--------__-------------------------------------------- 
Clark 301 12 Aug 6:35p 

semantic knowledge of the relation r. We can also consider a family of FDs F 
applying to the relation scheme R. In this case, any relation r(R) must satisfy 
all the FDs of p. It is not always clear which begets the other, the set of per- 
missible states of a relation or the FDs on the relation scheme. 

The number of FDs that can apply to a relation r(R) is finite, since there is 
only a finite number of subsets of R. Thus it is always possible to find all 
the FDs that r satisfies, by trying ail possibilities using the algorithm 
SATISFIES. This approach is time-consuming. Knowing some members of 
F, it is often possible to infer other members of F. A set F of FDs implies the 
FD X -+ Y, written F I= X + Y, if every relation that satisfies all the FDs in 
F also satisfies X -+ Y. An inference axiom is a rule that states if a relation 
satisfies certain FDs, it must satisfy certain other FDs. 

We now introduce six inference axioms for FDs. In the statement of the 
rules, r is a relation on R and IV, X, Y, and Z are subsets of R. 

Fl. Reflexivity 
The relation 7rx(uxCx(r)) always has at most one tuple, so X + X always 
holds in r. 
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F2. Augmentation 
This axiom deals with augmenting the left side of an FD. If + satisfiesx + Y, 
then ny(u~&)) has at most one tuple for any X-value x. If Z is any subset 
of R, then uxz=&) c ax=,(r) and hence 

Thus ny(oxz,,(r)) has at most one tuple and r must satisfy X Z -+ Y. 

Example 4.1 Consider relation I below. Relation r satisfies the FD A --+ B, 

r(A B c D) 
Ql bl Cl dl 

at b2 cl dl 

al bl ci d2 

a3 b3 ~2 4 

andhencetheFDsAB+B,AC+B,AD+B,ABC-+B,ABD+B, 
ACD+B,andABCD+B,byaxiomF2. 

F3. Additivity 
This axiom allows us to combine two FDs with the same left sides. If r 
satisfies X --* Y and X + Z then T~(u~=,(T)) and nz(ax,,(r)) both have at 
most one tuple for any X-value x. If ?rn(ox=,(r)) had more than one tuple, 
then at least one of ay(crxzx(r)) and az(ax,,(r)) would have more than one 
tuple. Thus, Y satisfies X + Y 2. 

Example 4.2 In the relation of Example 4-1, r satisfies A + B and A + C. 
By axiom F3, r must also satisfy A + B C. 

F4. Projectivity 
This axiom is more or less the reverse of additivity. If r satisfies X + Y Z, 
then 7rn(ux,,(r)) has at most one tuple for any X-value x. Since 
rr(xn(ux=,(r))) = ~F~(u~&I)), ?rdux=,(r)) can have at most one tuple. 
Hence I satisfies X + Y, 

Example 4.3 In the relation of Example 4.1, Y satisfies A + B C. By axiom 
F4, I must also satisfy A + B and A -+ C. 
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FS. Transitivity 
This axiom and the next are the most powerful of the inference axioms, f-et y 
satisfy X - Y and Y - 2. Consider tupfes tl and t2 in r. We know that if tl(X) 
= t,(X), then tl(u) = t2(Y) and also if tl(r) = t2(YJ, then t,(Z) = t,(Z). 
Therefore, if tl(X) = t2(X), then t,(Z) = t2(Z), so r satisfies X - Z. 

ExampIe 4.4 Relation T shown below satisfies the FDs A - B and B - C. By 
axiom FS, T satisfies A - C. 

r(A B C D) 

al bi ~2 dl 
a2 bz ct dz 

a3 bl ~2 dl 

a4 bl ~2 d3 

F6. Pseudotransitivity 
Let I satisfy the FDsX - Y and YZ - W and let tl and t2 be tuples in r. We 
know if tl(X) = t,(X), then tI( Y) = t2(Y) and also if tl( Y Z) = t2( Y Z), 
then tl( W) = tz(W). From tr(XZ) = t,(XZ) we can deduce that tt(X) = 
t2(X) and so tr ( Y) = t2( Y) and further fl ( Y Z) = t2( Y Z), which implies 
tl( w) = t2( W). Thus r satisfies X Z - W. 

To summarize, if W, X, Y, and Z are subsets of R, for any relation r on R: 

Fl. Reflexivity: X - X. 
F2. Augmentation: X - Y imphes X Z - Y. 
F3. Additivity: X - Y and X - Z imply X - Y Z. 
F4. Projectivity: X - Y Z implies X - Y. 
F5. Transitivity: X - Y and Y - Z imply X - Z. 
F6. Pseudotransitivity: X - Y and Y Z - W imply X Z - W. 

4.3 APPLYING THE INFERENCE AXIOMS 

Using the axioms Fl to F6 it is possible to derive other inference rules for FDs. 

Example 4.5 Let r be a relation on R with X and Y subsets of R. Axiom Fl 
says that T satisfies Y - Y. Applying axiom F2 we get r satisfies X Y - Y. 
Another way to state this rule is that for Y c X E R, r satisfies X - Y. 
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Example 4.6 Let Y be a relation on R with X, Y, and Z subsets of R. Suppose 
P satisfies X Y - Z and X - Y. By axiom F6 we get r satisfiesXX - Z, which 
simplifies to X - Z. 

To disprove a conjecture about FDs, all we need to do is exhibit a relation 
where the conjecture does not hold. 

Example 4.7 We want to disprove the conjecture X Y - Z W implies X - 2. 
The relation r below satisfies A B - C D, but A + C. 

r(A B C D) 

a b c d 
a b’ C’ d 

Some of the inference axioms can be derived from the others. For example, 
FS, transitivity, is a special case of F6, pseudotransitivity, where Z = 8. F6 
follows from Fl, F2, F3, and FS: if X - Y and YZ - W, then by Fl, 2 - 2. 
By F2, XZ - Y, andXZ - Z. Using F3, we getX2 - YZ. Finally, applying 
F.5 we getXZ - W. 

We shall see in the next section that axioms Fl to F6 are complete; that is, 
every FD that is implied by a set E; of FDs can be derived from the FDs in P by 
one or more applications of these axioms. We have shown that each axiom is 
correct, so applying the axioms to FDs in a set F can only yield FDs that are 
implied by F. 

Given axioms Fl, F2, and F6, we can prove the rest. We have just seen that 
F-5 is a special case of F6. Given X - Y and X - Z, we use Fl to get YZ - 
Y Z and apply F6 twice, first to get X Z - Y Z and then to get X - Y Z. 
Therefore, F3 follows from Fi, F2, and F6. To prove F4, suppose X - YZ. By 
Fl, Y - Y, and by F2, YZ - Y. Applying F6 yields X - Y. Thus axioms Fl, 
F2, and F6 are a complete subset of Fl to F6. Axioms Fl, F2, and F6 are also 
independent: no one of the axioms can be proved from the other two (see Exer- 
cise 4.5). These three axioms are sometimes called Armstrong’s uxioms, 
although they are not very similar to Armstrong’s original axioms (but the 
name has a nice ring to it). 

Let F be a set of FDs for a relation r(R). The closure of F, written F+, is the 
smallest set containing F such that Armstrong’s axioms cannot be applied to 
the set to yield an FD not in the set. Since F+ must be finite, we can compute 
it by starting with F, applying Fl, F2, and F6, and adding the derived FDs to 
F until no new FDs can be derived. The closure of F depends on the scheme R. 
IfR = A B, then P+ will always contain B - B, but if R = A C, F+‘ never 
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contains B - B. When R is not explicitly defined, it is assumed to be the set of 
all attribute symbols used in the FDs of F. 

The set F derives an FD X - Y if X - Y is in F+. Since our inference ax- 
ioms are correct, if F derives X - Y, then F implies X - Y. In the next section 
we prove the converse. Note that F+ = (F+)+ (see Exercise 4.6). 

Example 4.8 Let I; = (A B -C, C-B}beasetofFDsonr(ABC).F+ 
= (A -AA,AB -A,AC-A,ABC-AA,B-BB,AB-B,BC-BB, 
ABC-B,C-C,AC-C,BC-C,ABC-CAB-A&ABC-AA, 
AC -AC,ABC-AC,BC-BC,ABC-BC,ABC-ABC, 
AB-C,AB-AC,AB-BC,AB-ABC,C-BB,C-BC,AC-BB, 
AC-AB). 

In Chapter 5 we shall see more succinct ways to express I;+. 

4.4 COMPLETENESS OF THE INFERENCE AXIOMS 

We wish to show that axioms Fl to F6 allow us to infer all the FDs implied by a 
set F of FDs.* That is, if F implies X - Y, then F derives X - Y. To prove 
this result, we shall show how to construct, for any F, a relation I that satisfies 
every FD in F+ but no others. 

Definition 4.1 X - Y is an FD over scheme R if X and Y are both subsets of 
R.FisasetofFDsoverRifeveryFDinFisanF?DoverR. 

DefSnition 4.2 If F is a set of FDs over R and G is the set of all possible FDs 
over R, then F- = G - F+. I;- is the exterior of F. 

Definition 4.3 An FD X - Y is trivial if X 3 Y. If X - Y is a trivial FD over 
R, then any relation r(R) satisfies X - Y. 

If I; is a set of FDs over R and X is a subset of R, then there is an FD X - Y 
in Ff such that Y is muximul: for any other FD X - 2’ in F+, Y 2 Z. This 
result follows from additivity. The right side Y is called the closure of X and is 
denoted by X+. The closure of X always contains X, by reflexivity. 

*For the results of this section we must assume all domains are infinite in order to avoid unwanted 
combinatorial effects. 
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Example4.9 LetI;={A--,AB--D,CE-G,E--}.Then 
(Al?)+ = ABDEH. 

Theorem 4.1 Inference axioms Fl to F6 are complete. 

Proof Given a set F of FDs over scheme R, for any FD X - Y in F- we shall 
exhibit a relation r(R) that satisfies P+ but not X - Y. Hence we will know 
that there are no FDs implied by F that are not derived by F. Relation r will 
satisfy most of the FDs in P+ vacuously: for an FD W - Z in FS , there will be 
no distinct tuples in r with equal W-values. 

L,etR =A1A2 -‘. A, and let Q; and bi be distinct elements of dom(Ai), 
1 I i I n. There will be only two tuples in r, t, and t ‘. Tuple t will be (al a2 
. . . a, ) . Tuple t ’ is defined as 

t ‘(Ai) = 

First we show that + does not satisfy X - Y. From the definition of T’, t(X) 
= t ‘(X). Suppose t(Y) = t ‘(Y). Then t ‘(Y) must be all u’s, and hence Y C 
X+ . But since X - X+ E F+, by projectivity, X - Y is in F+, a contradic- 
tiontox- YEF-. 

Now we show that r satisfies all the FDs in F+. The only FDs we need worry 
about are those of the form W - Z, where W C Xf. If W 5$ X+, then t(W) 
# t ‘( W). Since W c X+, by reflexivity and projectivity, X+ - W is in P+, 
and by two applications of transitivity, so is X - Z. Hence Z c X+ and t(Z) 
= t ‘(Z). So Y satisfies W - 2. 

Corollary For any set of FDs F over scheme R , there is a relation T( R ) satisfy- 
ing I;+ and violating every FD in F- . (Such an r is called an Armstrong 
relation.) 

Proof For each FD X - Y in F-, use Theorem 4.1 to construct a relation 
rx, y(R) that satisfies F+ but violates X - Y. Rename the entries in each such 
relation so that no pair of relations share a common entry. Let 

r= u 
X- YEF- 

rx, Y- 

It is clear that I violates every FD in P-. It is left to the reader to show that r 
satisfies F+ . 
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We see now that inference axioms Fl to F6 are consistent and complete. 
ThusI;i= X- YifandonlyifX- Y f I;+. From now on we use the terms 
implies and derives interchangeably when discussing FDs. We generally shall 
use only Armstrong’s axioms or some other complete set of axioms for com- 
puting F+ . 

4.5 DERIVATIONS AND DERIVATION DAGs 

IfFeX- Y, then either X - Y is in F, or a series of applications of the 
inference axioms to F will yield X - Y. This sequence of axiom applications 
and resulting FDs is a derivation of X - Y from F. More formally, let F be a 
set of FDs over scheme R . A sequence P of FDs over R is a derivation sequence 
on F if every FD in P either 

1. is a member of F, or 
2. follows from previous FDs in P by an application of one of the in- 

ference axioms Fl to F6. 

P is a derivation sequence for X - Y if X - Y is one of the FDs in P. 

Example4.10 LetF={AB-E,AG--BE-I,E-G,GI-If}. 
The following sequence is a derivation sequence for A B - G H. 

1. AB-E 
2. AB-AB 
3. AB-B 
4. AB-BE 
5. BE-I 
6. AB-I 
7. E-G 
8. AB-G 
9. AB-GI 

10. GI- H 
11. A B - H 
12. GI- GI 
13. G I - I 
14. A B - G H 

(given) 
(reflexivity) 
(projectivity from 2) 
(additivity from 1 and 3) 
(given) 
(transitivity from 4 and 5) 
(given) 
(transitivity from 1 and 7) 
(additivity from 6 and 8) 
(given) 
(transitivity from 9 and 10) 
(reflexivity) 
(projectivity from 12) 
(additivity from 8 and 11) 

This sequence contains unneeded FDs, such as 12 and 13, and is also a deri- 
vation sequence for other FDs, such as A B - G I. 
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Definition 4.4 Let P be a derivation sequence on F. The use set of P is the set 
of all FDs in F that appear in P. 

We have seen that some subsets of the axioms Fl to F6 are complete. Their 
completeness implies that if there is a derivation sequence P for X - 
Y using all the axioms Fl to F6, there is a derivation sequence P ’ for X 
- Y using only the axioms in the complete subset (see Exercise 4.10). 

We shall be using a complete set of inference axioms that are not a subset 
of Fl to F6, called B-axioms. For a relation r(R), with W, X, Y, and Z sub- 
sets of R, and C an attribute in R: 

Bl . Reflexivity: X - X. 
B2. Accumulation: X - Y Z and Z - C W imply X - Y Z C. 
B3. Projectivity: X - Y Z implies X - Y. 

The B-axioms are easily shown correct (see Exercise 4.11). We show the 
B-axioms derive Armstrong’s axioms and hence are complete. 

Fl. Reflexivity: same as Bl. 
F2. Augmentation: if X - Y, then by Bl, X Z - X Z for any subset Z in 

R. By repeated application of B2, we get X Z - X Y Z, and B3 gives 
xz-Y. 

F6. Pseudotransitivity: Let r satisfy X - Y and Y Z - W. By Bl, X Z - 
XZ. By repeated application of B2, XZ - X YZ andXZ - WX YZ. 
One application of B3 yields X 2 - W. 

Since the B-axioms are complete, we can always find a derivation sequence 
using the B-axioms if F I= X - Y. 

Example 4.11 Let F be the set of FDs in Example 4.10. Then 

1. EI-EI 
2. E-G 
3. EI-EGI 
4. EI-GI 
5. GI-H 
6. EI-GHI 
7. EI-GH 
8. AB-AB 
9. AB-E 

10. A B -ABE 

(reflexivity) 
(given) 
(accumulation from 1 and 2) 
(projectivity from 3) 
(given) 
(accumulation from 4 and 5) 
(projectivity from 6) 
(reflexivity) 
(given) 
(accumulation from 8 and 9) 
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11. BE --I (given) 
12. A B -ABEI (accumulation from 10 and 11) 
13. AI3 -ABEGI (accumulation from 4 and 12) 
14. A B -ABEGHI (accumulation from 7 and 13) 
15. AB - GH (projectivity from 14) 

is a derivation sequence for A B - G H using only the B-axioms. 

4.5.1 RAP-Derivation Sequences 

Consider derivation sequences for X - Y on a set of FDs F using the B-axioms 
that satisfy the following constraints: 

1. ThefirstFDisX-X. 
2. The last FD is X - Y. 
3. Every FD other than the first and last is either an FD in F or an FD of 

the form X - Z that was derived using axiom B2. 

Such a derivation sequence is called a RAPdetivation sequence, for the order 
in which the axioms are used. 

Example 4.12 Let F be the set of FDs in Example 4.10. Then 

1. AB-AB (Bl) 
2. AB-E (given) 
3. AB -ABE 032) 
4. BE-I (given) 
5. AB -ABEI 032) 
6. E-G (given) 
7. AB -ABEGI 032) 
8. GI-H (given) 
9. AB -ABEGHI 032) 

10. A B - G H 033) 

is a RAP-derivation sequence on F for A B - G H. 

Theorem 4.2 Let F be a set of FDs. If there is a derivation sequence on F for 
x- Y, then there is a RAP-derivation sequence on F for X - Y. 
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Proof Let P be a derivation sequence on F for X - Y using the B-axioms, 
which must exist by our earlier remarks. Remove all the FDs in P past the first 
occurrence of X - Y. P is still a derivation sequence for X - Y. Insert X - X 
at the head of the sequence, if it is not already there. 

We next show that we are able to get by without the FDs in P generated by 
B3, except for perhapsx - Y. Let Z - W be an FD in P (other than the last) 
that was derived from Z - V W by B3. If 2 - W is not used to derive any F’D 
further along P, then simply remove Z - W from P. 

IfZ - W is used to derive an FD further on, it must be by an application 
of B2 or B3. If Z - W is used by B3, it must be to generate an FD Z - W’ 
whereW’c W.ButZ- W’canbederivedfromz- VWbyB3,soZ- W 
can be removed from P. If Z - W is used by B2, it must be in one of two ways: 

1. with an FD W ’ - C U to derive Z - C W, where W ’ c W, or 
2. withanFDU-Z’toderiveU-+BZ’,whereZ’1Z,andBisanat- 

tribute in W. 

Incasel,useZ- VWinplaceofZ- WtoderiveZ-CVWinsteadofZ 
- C W. In case 2, Z - V W can be used in place of Z - W to derive U - 
B Z’. Remove Z - W from P in either case. 

We have just shown that we can substitute an FD with a larger right side in 
a derivation using the B-axioms. The only effect is possibly to generate an FD 
with a larger right side than the FD originally generated, such as in case 1 
above, where Z - C V W replaced Z - C W. This change is just another 
substitution of an FD with a larger right side. Thus, the substitution of FDs 
with larger right sides can propagate down the derivation sequence. 

The only problem that may arise from such substitutions is that X - Y ‘, Y’ 
2 Y, might be generated as the last FD in P instead of X - Y, if X - Y was 
derived using B2. In this case, add X - Y as the new last FD in P. X - Y can 
be derived from X - Y’ using B3. 

We now have P to the point where it starts with X - X, ends with X - Y, 
and has no FDs derived by B3 except possibly the last. The next step is to show 
that X - Y can be derived using only B2 (except for the first and last FDs in 
P) applied to FDs of the form X - Z W and W - C V, where W - C V is in 
F. Thus any FDs in P derived by reflexivity are superfluous (except the first) 
and can be removed. 

This portion of the proof is left to the reader and is illustrated only by exam- 
ple here. The gist of the proof is that if a new attribute is introduced into the 
right side of X - Z by B2, it can be introduced directly from some FD in F. 
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However, it may first be necessary to add other attributes to the right side. 
Consider the following piece of a derivation sequence, where A is introduced 
into the right side of X - V V’ 

. 

10. x- VV’ 
11. Z-A W (given) 
12. v- uz (given, by Bl or by B2) 
13. V-A UZ (from 11 and 12 by B2) 
14. X-A VV’ (from 10 and 13 by B2) 

We want to get rid of V - A U Z and instead introduce A into the right side of 
some FD with left sideX, usingZ - A W directly. Let Z = B1 Bz . . . Bk. We 
replace FDs 13 and 14 by 

13.1 X - V V’ B1 (from 10 and 12 by B2) 
13.2 X - VV’B, B2 (from 10 and 12 by B2) 
13.3 x - VV’B1B2BJ (from 10 and 12 by B2) 

. . . 

13.k X- VV’B,B2 . * * Bk (from 10 and 12 by B2) 
(=X- VV’Z) 

14. x -AVV’Z (from 11 and 13.k by B2) 

This change gives us X - A V V’ Z instead of X - A V V’, but we have 
already seen that substitution of FDs with larger right sides poses no problems. 

The basic idea of this part of the proof is to work backwards through P 
removing applications of B2 that yield FDs where the left side is not X, as 
shown in the example. Once this transformation is made, all applications of Bl 
(except the first) become superfluous and can be removed (see Exercise 4.14). 

In the next section we shall introduce a pictorial means-a labeled 
DAG-to depict RAP-derivation sequences. We shall also show that every 
such graph models a derivation sequence. 
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4.52 Derivation DAGs 

A directed acyclic graph (DAG) is a directed graph with no directed paths 
from any node to itself. A labeled DAG is a DAG with an element from some 
labeling set L associated with each node. 

Definition 4.5 Let F be a set of FDs over scheme R. An F-bused derivation 
DAG is a DAG labeled with attribute symbols from R constructed according 
to the following rules. 

Rl. Any set of unconnected nodes with labels from R is an F-based deriva- 
tion DAG. 

R2. Let H be an F-based derivation DAG that includes nodes vl, v2, . . . , 
vkwithlabelsAI,A2, . . ..AkandletAtA2.--Ak-CZbeanFDin 
F. Form W ’ by adding a node u labeled C and edges (vI, u), ( v2, u), 
. . .) (vk, U) to H. H’ is an F-based derivation DAG. 

R3. Nothing else is an F-based derivation DAG. 

We abbreviate F-based derivation DAG to F-based DDAG. 

Example 4.13 Let F be the set of FDs in Example 4.10, namely {AB - E, 
AG-.?,BE-XI,- G, GI - H). Figure 4.1 shows various stages in the 
construction of an F-based DDAG. 

Any F-based DDAG is built by one application of rule Rl and any number 
of applications of rule R2. R2 insures that the graph constructed is actually a 
DAG. 

Definition 4.6 If H is an F-based DDAG, a node v in H is an initial node if v 
has no incoming edges. Any initial nodes must have been added to H by rule 
Rl. 

Definition 4.7 Let H be an F-based DDAG. N is a DDAG for X - Y if 

Dl. X is the set of labels of initial nodes. 
D2. Every attribute in Y labels some node in H. 

Definition 4.8 The use set of an F-based DDAG H, denoted U(H), is the set 
of all FDs in F used in the application of rule R2 during the construction of the 
DDAG.” 

*Use set is not quite well-defined, since for some sets F, there may be more than one way to con- 
struct H. We should really write a use set of H, but we won’t. 
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0 A 

0 B 

A E 

F 
B 

(a) 

(b) 

rule Rl 

rule R2 using 
AB-E 

rule R2 using 
E -G 

rule R2 using 
B E - I and 
GI-H 

03 
Figure 4.1 

Example 4.14 The graph in Figure 4.1(d) is an F-based DDAG for A B - 
G H. Its use set is {A B - E, E - G, B E - I, G I - H). The initial nodes 
are the ones labeled A and B. 

Example 4.15 Figure 4.2 shows a DDAG for A B C - A B C for any set of 
FDs over a scheme R containing A, B, and C. Its use set is 8. 
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0 A 
0 B 
0 C 

Figure 4.2 

Observation Let H be an F-based DDAG with initial nodes labeled with ex- 
actly the attributes in some set X and all nodes in the graph labeled with ex- 
actly the attributes in some other set Y. If Y’ is a subset of Y, then H is a 
DDAG for X - Y’. 

Theorem 4.3 Given a set of PDs F over R and an PD X - Y, the following 
are equivalent. 

1. FI=X-Yy. 
2. There is a derivation sequence on F for X - Y. 
3. There is an F-based DDAG for X - Y. 

Proof We have already observed the equivalence of 1 and 2 from Theorem 
4.1. Theorem 4.2 states that condition 2 is the same as there being a RAP- 
derivation sequence for X - Y on F. We shall show that we can construct an 
F-based DDAG for X - Y given a RAP-derivation sequence for X - Y, and 
vice versa. 

There is a natural correspondence between the B-axioms and the rules and 
conditions for an F-based DDAG forX - Y. Axiom Bl corresponds to rule Rl 
for constructing DDAGs. Axiom B2 corresponds to rule R2. Axiom B3 is em- 
bodied in condition D2 of the definition of a DDAG for X - Y. 

Let P be a RAP-derivation sequence for X - Y on F. Let X - Z1, X - Zz, 
. . . , X - Zk be all the FDs in P, in order, that have X as the left side. We shall 
show inductively that we can construct a sequence of F-based DDAGs HI, Hz, 
. . .( Hk such that Hi is obtained from Hi-l by the rules for constructing 
DDAGs, and Hi is a DDAG for X - Zi. 
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We know that X - Zr must be X - X. We use rule Rl to construct DDAG 
Hi that consists of unconnected nodes labeled with the attributes from X. 
Suppose HI, HZ, . . . , Hi-rareDDAGsforX-Zr,X-ZZ2, . . . . X-Z+,. 
Consider X - Zj. This FD could have come from one of three places: 

1. from F, 
2. from FDs X - Zj and Z - C W by axiom B2. In this casej < i, Z - 

C W is in F, Zj contains Z, and Zi = C Zj. 
3. Froman FDX - Zj by axiom B3. In this casej < i, Zj containsZi, and 

Zi = Ye 

Incasel,letZi=BIBZ.. - B,. DDAG Hi-r contains DDAG HI. Apply rule 
2 once for each attribute in Zi (m times) to Hi-1 to add nodes labeled B,, Bz, 
. . . , B,, and edges to these nodes from nodes labeled with the attributes of X. 
The result is Hi. In case 2, we know Hi-1 contains Hj and Hj contains nodes 
labeled with the attributes in Zj. Use rule 2 to add a node labeled C to Hi-1 to 
form Hi. In case 3, Hj is already a DDAG for X - Zi and SO is Hi-l, since it 
contains Hj. Let Hi = Hi- 1. 

When the process of constructing the His is completed, Hk will be an F- 
based DDAG for X - Y. 

Now let H be an F-based DDAG forX - Y. We construct a RAP-derivation 
sequence from H. Let HI, Hz, . . . , Hk be a sequence of F-based DDAGs such 
that Hi is constructed from Hj-l by rule R2, 2 I i I k, and Hk = H. Let Zi 
be the set of node labels in Hi. We shall construct a RAP-derivation sequence 
P with X - Zr, X - Zz, . . . , X - Z, as a subsequence. 

Z1 must be X and HI must be the DDAG with unconnected nodes labeled 
with the attributes in X. Let P begin with X - X = X - Zr. Now look at Hi, i 
2 2. Hi comes from Hi-l by rule 2, using an FD Z - C W in F, where C is the 
label of the node added to Hi-1 and Zi- 1 contains Z. Thus Zi = C Zi-1. If Z 
- C W is not in P, add it to the end of P. Then add X - Zi to the end of P. X 
- Zi can be obtained by axiom B2, using X - Z+r and Z - C W. 

When this process terminates, we have a RAP-derivation sequence for X - 
Z,, where Z, contains Y. Add X - Y to the end of P using axiom B3. P is now 
a RAP-derivation sequence for X - Y. 

Corollary There is an F-based DDAG H for X - Y with U(H) = G only if 
there is a RAP-derivation sequence on F for X - Y with use set G. 

Proof Immediate from the proof of Theorem 4.3. (Why is this corollary not if 
and only if?) 
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Example 4.16 The F-based DDAG in Figure 4.1(d) can be constructed from 
the RAP-derivation sequence in Example 4.12. The sequence of DDAGs in 
Figure 4.1(a)-(d) yields the RAP-derivation sequence 

1. AB-AB 
2. AB-E 
3. AB -ABE 
4. E-G 
5. AB -ABEG 
6. BE-I 
7. AB -ABEGI 
8. GI-H 
9. AB -ABEGHI 

10. A B - G H. 

4.5.3 More about Derivation DAGs 

Axiom B2 and rule R2 can both be strengthened in a similar manner. B2 can 
be strengthened to the following form, where V is also a subset of R. 

B2’. X- YZandZ- VWimplyX- VYZ. 

The corresponding change in rule R2 is left to the reader (see Exercise 4.18). 
Although the definition of DDAG allows multiple nodes with the same 

label, the freedom is not needed. 

Lemma 4.1 Let H be an F-based DDAG for X - Y. There is an F-based 
DDAG for X - Y wherein every node has a distinct label. 

Proof Suppose H has two nodes with the same label, say v1 and v2 are both 
labeled C. In the construction of H, either v1 and v2 were added at the same 
time with rule Rl, or one was added later than the other using rule R2. 
Assume v2 was added to H at the same time as or later than vl. There can be 
no directed path from v2 to v1 in H. 

In the construction of H, any time rule R2 was applied using ~2, vl could 
have been used instead, as shown in Figure 4.3. Thus there is an F-based 
DDAGH’forX- Y that has the same nodes and labels as H, as well as the 
same set of initial nodes, but v2 has no outgoing edges in H ‘. H ’ is still a 
DDAG for X - Y when v2 and its incoming edges are removed, since the set of 
attributes labeling nodes does not change, and if v2 is an initial node, so is vl. 
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J-l originally 

(a) 

Using v1 for v2 

(W 

This transformation can be applied iteratively to all pairs of nodes with 
equal labels to remove all duplicate labels. 

We have observed that if H is an F-based DDAG for X - Y, then it is also 
an F-based DDAG for X - Y’, where Y I> Y’. Similarly, if X c X’, His 
almost a DDAG forX ’ - Y. The only problem is that not all the attributes in 
X ’ label some initial node in H. This problem can be solved by adding uncon- 
nected nodes to H with labels in X ’ - X. 

Lemma 4.2 Let H and J be F-based DDAGs for X - Y and Y - Z, respec- 
tively. There is an F-based DDAG K for X - Z with U(K) c U(H) U U(J). 

Proof We splice H and J together by overlapping the initial nodes of J with 
the same-labeled nodes of H. Figure 4.4 gives an example of the overlapping 
process where F = (A - E. A B - C, A C - D, C D - E, E - I). Notice 
thatU(H)={A-E,AB- C,AC-D}),U(J)={CD-E,E-I},and 
U(K) = F. 

Lemma 4.3 If H is an F-based DDAG for X - Y, and V - W is in U(H), 
then F I= X - V. 
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DDAG K = H overlapped with J 

w 

Figure 4.4 

Proof For V- W to be used in constructing H, H must contain nodes with 
labels for every attribute in V. Hence H is an F-based DDAG for X - V. 

Corollary If H is an F-based DDAG forX - Y and V - W is in U(H), there 
is an F-based DDAG for X - V that does not use V - W. 

Lemma 4.3 does not hold for derivation sequences, since V - W could be in 
the use set of a sequence without it being necessary to derive X - Y. 
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4.6 TESTING MEMBERSHIP IN F+ 

To determine if a set of FDs F != X - Y, we need only test if X - Y E I;+. 
However, as we saw in Example 4.8, I;+ can be considerably larger than F. We 
would like to find a means to test if X - Y is in F+ without generating all of 
P+. In this section we present such a membership algorithm. The core of the 
algorithm is a procedure that generates the closure of X under F. Once we 
have found Xt , we can test if P implies X - Y. 

We seek an algorithm for testing membership that is more efficient than 
generating all of F + . One way to compare algorithms is to examine the max- 
imum amount of time they consume for an input of a given size. The (worst- 
case) time-complexity of an algorithm is a function T(n) that gives the max- 
imum number of steps the algorithm will take on an input of size n. Naturally, 
T(n) depends on what is counted as one step of computation. We shall use the 
RAM (random access machine) model as presented in Aho, Hopcroft, and 
Ullman as our model of computation. A RAM is basically a model of a simple 
digital computer with random access memory. 

For a particular algorithm, T(n) can be messy and complex, but often there 
is some “nice” function that approximates the behavior of T(n). We write 
T(n) = O(f(n)) (read “T(n) h as orderf(n )“) if there are constants c > 0 and 
nl 1 0 such that T(n) I Q(n) for all n r nl. 

Example 4.17 3n2 + 2 log2 log2 n = O(n2), since 3n2 -I- 2 log* log2 n 5 4n2 
for n 1 1. Of course, 3n2 + 2 log2 log2 n = O(n3) as well, but we are more in- 
terested in the slower growing function, since it is a better approximation of 
3n2 + 2 log2 log2 n. 

For most algorithms, the time complexity T(n) is at least O(n), since most 
algorithms read all their input, which takes n steps. We first present a 
membership algorithm for FDs that is not O(n), but is easy to understand. We 
then present a version of the algorithm that is more complex, but has O(n) 
time complexity. 

We start with the function CLOSURE given below. CLOSURJ?$X, F) 
returns X+ under F, where X is a set of attributes and F is a set of FDs. 
OLDDEP and NEWDEP are variables for sets of attributes. 

Algorithm 4.2 CLOSURE 
Input: A set of attributes X and a set of FDs F. 
Output: The closure of X under F. 
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CLOSURE(X, F) 

begin 
OLDDEP : = Q); NEWDEP : = X, 
while NEWDEP # OLDDEP do begin 

OLDDEP : = NE WDEP; 
for every FD W - Z in F do 

if NEWDEP I> W then 
NEWDEP : = NE WDEP U Z 

end; 
retum(NE WDEP) 
end 

Example4.18 LetF={A-D,AB-E,BI-E,CD--E-CC). 
CLOSURE@&‘, F) begins with NEWDEP = A E. On the first pass through 
F, A - D is used to add D to NEWDEP, and E - C is used to add C to 
NEWDEP, so NEWDEP = A C D E at the end of the for loop. The second 
time through F. C D - I is used to add I to NEWDEP, so NEWDEP = 
A C D E I at the end of the for loop. The next pass through F causes no 
changes in NEWDEP, so A C D E I is returned as (A E)+. 

The algorithm essentially constructs an F-based DDAG for X - X+, using 
a modified version of rule R2 in the definition of DDAG where more than one 
node is added at a time (see Exercise 4.18). We start with initial nodes labeled 
X and keep adding nodes to the DDAG until no new labels can be added. It is 
not necessary to record the edges of the DDAG, however, since whether or not 
we can use an FD W - Z depends only on there being nodes in the DDAG 
with labels for all the attributes in W. The value of X’ does not depend on the 
edges in the DDAG either, just on the final set of node labels. Thus, it suffices 
to keep track of only the set of node labels in the DDAG during its construc- 
tion. We keep track of the labels in OLDDEP and NEWDEP. 

Since we are constructing an F-based DDAG with initial nodes labeled X, it 
follows that at any point in the execution of CLOSURE, NEWDEP E X+. 
For any attribute A in X +, A will eventually be added toNEWDEP. Since A is 
in X+ , F I= X - A, and there must be an F-based DDAG H for X - A. Any 
FD W - Z used in constructing H can eventually be used in the construction 
of the DDAG for the algorithm, and the DDAG in the algorithm will contain 
labels for every attribute in Z. Therefore A will be added to NEWDEP and we 
conclude that CLOSURE correctly computes X+. 

Using CLOSURE, it is simple to devise an algorithm to test membership in 
F+. Algorithm 4.3 MEMBER performs this test. 
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Algorithm 4.3 MEMBER 
Input: A set of FDs F and an FD X - Y. 
Output: true ifF I= X - Y, false otherwise. 
MEMBER@‘, X - Y) 

begin 
if Y C CLOSURE(X, F;) then retum(true) else return 
end. 

The time complexity for MEMBER is the same as the time complexity for 
CLOSURE, since CLOSURE makes up the body of MEMBER. The worst 
case for CLOSURE occurs when only one new right side of an FD is added to 
NEWDEP for each execution of the for loop. If F = {A2 - Al, A3 - AZ, A4 

-A39 ..,,A, -&-I), in the computation for CLOSURE(A,, F), only at- 
tribute Am-i, is added to NEWDEP on the i’h execution of the for loop. If a is 
the number of different attribute symbols in F and p is the number of FDs in 
F, then each execution of the for loop takes O(ap) time, since a steps are re- 
quired to test containment of two sets over a elements, The while loop can be 
executed p times before no changes occur to NEWDEP. Therefore, the time 
complexity of CLOSURE, and hence of MEMBER, is O(ap2). Note that the 
length of the input, IZ, is O(ap) (see Exercise 4.21). 

To see how the time complexity of CLOSURE can be improved, observe 
that during the execution of CLOSURE, if for some FD W - Z, W is con- 
tained in NEWDEP, then Z is added to NEWDEP and W - Z is of no further 
use. At this point we could exclude W - Z from F and still compute the cor- 
rect closure. By excluding FDs from F after their right sides are added to 
NEWDEP, we can reduce the number of FDs scanned during each execution 
of the for loop. We can save even more time if we also know which FDs in 1;‘ 
currently have their left sides contained in NEWDEP. If such information is 
available we can consider an FD W - Z in F only when its left side is con- 
tained in NEWDEP and then remove it from subsequent consideration. Thus 
every FD in F would be considered only once. If each FD in F can be processed 
in time proportional to its length in attribute symbols, we would have an O(n) 
membership algorithm, where n is the number of symbols required to repre- 
sent F and X - Y. 

We accomplish these ends as follows. For each FD W - Z in I; we shall 
keep track of the number of attributes in W that are not in NEWDEP. When 
this count becomes zero, it will be time to consider W - Z. To decrement the 
count properly for each ED when a new attribute A is added to NEWDEP, it is 
necessary to access all FDs with attribute A on their left sides. We therefore 
maintain a series of lists, one for each attribute, consisting of all FDs in F with 
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that attribute on the left side. Whenever an attribute is added to NEWDEP, 
the list for that attribute is traversed, and all FDs on the list have their counts 
decremented by 1. If some FD IV - Z on the list has its count decremented to 
zero, then W is a subset of NEWDEP and Z is added to NEWDEP. 

We must be careful when adding Z to NEWDEP. Suppose there is an at- 
tribute A in Z that is already in NEWDEP. If we traverse the list for A a sec- 
ond time, we get erroneous values for the counts of FDs on the list. To prevent 
this problem, we keep a set of attributes called UPDATE that is the subset of 
NEWDEP consisting of attributes that have not yet had their lists traversed. 
When an attribute is added to NEWDEP for the first time, it is also added to 
UPDATE until its list can be traversed. UPDATE allows us to do away with 
OLDDEP, since when UPDATE = a>, there are no more FDs that can be 
used to add new attributes to NEWDEP. 

In the algorithm LINCLOSURE, below, there is an array COUNT of in- 
tegers containing the counts for each FD in F, and an array LIST of lists of 
FDs for each attribute symbol in F. While an FD may seem to occur in lists for 
more than one attribute, we actually store only one copy of the FD and have 
the various lists point to this copy. 

Algorithm 4.4 The function LINCLOSURE 
Input and Output: identical to CLOSURE in Algorithm 4.2 
LINCLOSURE(X, I;*) 
1. Initialization 

for each FD W 4 ZinFdobegin 
COUNT[W - Z] := ) WI; 
for each attribute A in W do add W - Z to LIST[A ] 
end; 

NEWDEP : = x; UPDATE : = X. 
2. Computation 

while UPDATE # @ do begin 
choose an A in UPDATE; 
UPDATE := UPDATE - A; 
for each FD W - Z in LIST[A] do begin 

COUNT[ w - Z] := COUNT[W - Z] - 1; 
if COUNT[ W - Z] = 0 then begin 

ADD := Z - NEWDEP, 
NEWDEP := NEWDEP U ADD; 
UPDATE := UPDATE U ADD 
end 

end 
end. 

3. retum(NEWDEP). 
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Example 4.19 Let F be as in Example 4.18. LINCLOSURE(A E, F) ini- 
tializes NEWDEP, UPDATE, COUNT, and LIST as follows: 

NEWDEP = A E UPDATE =AE 
LIST[A] = A - D. A B - E COUiVT[A - D] = 1 
LIST[B] = B I - E, A B - E COUNT[A B - E] = 2 
LIST[C) = CD - I COUNT[B I - E] = 2 
LISTID] = C D - I COUNT[C D - I] = 2 
LIST[E] = E - C COUNT[E - C] = 1 
LZST[I] = B I - E 

We select the A in UPDATE and traverse LIST[A]. COUNT[A - D] goes 
to 0 and D is added to NEWDEP and UPDATE. COUNT[A B - E] goes to 
1. If we next select E from UPDATE the result is 

NEWDEP=ACDE UPDATE = CD 
COUNT[A - D] = 0 
COUNT[A B - E] = 1 
COUNT[B I - E] = 2 
COUNT[CD - I] = 2 
COUNT[E - C] = 0. 

Traversing the lists for C and D ieaves us with 
NEWDEP=ACDEI UPDATE = I 
COUNT[A - D] = 0 
COUNT[A B - E] = 1 
COUNT[B I - E] = 2 
COUNT[C D - I] = 0 
COUNT[E - C] = 0 

Traversing the list for1 fails to reduce any counts to 0, so the algorithm returns 
ACDEI. 

Let us review the workings of the computation step of LINCLOSURE. The 
whIIe loop continues to execute while there are attributes in NEWDEP whose 
lists have not been traversed. We choose one such attribute and traverse its 
list. For each FD W - 2 in the list, we reduce COUNT[ W - 21. If the count 
goes to 0, it is time to consider W - Z. We compute the set of attributes in 2 
that are not already in NEWDEP and add these attributes to both NEWDEP 
and UPDATE. The while loop stops executing when there are no more FDs 
whose counts can be reduced. 
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Theorem 4.4 LINCLOSURE has time complexity O(n) for input of length n. 

Proof Computing COUNT[ W - Z] in the initialization step takes time pro- 
portional to I WI if W is represented as a list of attributes. Computing all the 
initial values for COUNT therefore takes O(n) time. Each FD W - Z in F 
gets inserted into I WI lists in LIST. For an appropriate list representation, 
adding one FD to one list takes a constant amount of time. Thus, filling in 
LIST takes O(n) time. NEWDEP and UPDATE can also be initialized in 
O(n) time. 

In the computation step, each attribute is added to UPDATE once, at most. 
For each attribute A added to UPDATE, one pass of the while loop is per- 
formed. For each pass of the while loop, an operation (decrement COUNT) 
is performed for each FD in LIST[A]. Since any FD W - Z appears in 
I WI lists, the decrement operation is performed at most 

c IWI W-ZitlF 

times. Thus O(n) time is spent decrementing COUNT. 
For any FD W - Z in F, the predicate COUNT[ W - Z] = 0 evaluates to 

true at most once, since once COUNT[ W - Z] reaches 0, all the attributes in 
W have been added to NEWDEP and removed from UPDATE. Thus, W - 
Z does not appear in any attribute list remaining to be traversed. The com- 
putation involving ADD takes time proportional to 12 I if NEWDEP is 
represented as a bit vector. The total time spent with the statements involving 
ADD is proportional to 

c IZI, 
W-ZinF 

which is O(n). Since no step of the algorithm takes more than O(n) time, 
LINCLOSURE has time complexity O(n). 

Corollary Membership in F+ can be tested in O(n) time for inputs of length n. 

Proof Substitute LINCLOSURE for CLOSURE in Algorithm 4.3. Hence- 
forth we shall assume MEMBER uses LINCLOSURE. 
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4.7 EXERCISES 

4.1 Consider the relation r below. 

4.2 
4.3 

4.4 

4.5 

4.6 
4.7 

4.8 

4.9* 

4.10 

4.11 
4.12 

4.13 

r(A B C D E) 

=1 bl ~1 dl el 
al b2 ~2 4 di 
a2 bl ~3 4 el 
a2 bl ~4 d3 el 

a3 b2 ~5 4 el 

Which of the following FDs does r satisfy? 
A -D,AB-D,C-BDE,E--,A-E 
Prove that r satisfies X - Y if and only if X is a key of xx&-). 
Let r be a relation on R, with X a subset of R. Show that if xx(r) has the 
same number of tuples as r, then r satisfies X - Y for any subset Y 
ofR. 
Prove or disprove the following inference rules for a relation r(R) with 
IV, X, Y, and 2 subsets of R. 
(a) x - YandZ - W imply XZ - Y W. 
(b) X Y - Z and Z - X imply 2 - Y. 
(cl x - YandY-ZimplyX- YZ. 
(d) X - Y W - Z, and Y 2 W imply X - Z. 
Prove that inference axioms Fl, F2, and F6 are independent. That is, 
no one of them can be proved from the other two. 
Show that for any set of FDsF, F+ = (J’+)+. 
Suppose F is a set of FDs over scheme R. If F = @, what does F+ look 
like? 
For a set of FDs F, show that there is no relation satisfying all the FDs in 
F- and no others. 
Show inference axioms Fl, F3, F4, and FS are complete. Is this set of 
axioms independent? 
Show that if there is a derivation sequence for X - Y using inference 
axioms Fl to F6, then there is a derivation sequence for X - Y using 
only Armstrong’s axioms. 
Prove the B-axioms are correct. 
Find a set of two inference rules that is complete. The rules need not be 
a subset of axioms Fl to F6. 
LetF={AB-C,B-D,CD+E,CE+GH,G-A}. 
(a) Give a derivation sequence on F for A B - E. 
(b) Give a derivation sequence on F for B G - C using only Armstrong’s 

axioms 
(c) Give a RAP-derivation sequence on F for A B - G. 
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4.14” Complete the proof of Theorem 4.2. 
4.1.5 Let F be as in Exercise 4.13. Construct an F-based DDAG for A B - G. 
4.16 Prove that for sets F and G of FDs, if I; contains G, then F+ contains 

G+. 
4.17 Prove that an invalid inference rule can always be disproved with a two- 

tuple relation. 
4.18 Modify rule R2 in the definition of DDAG to reflect the change from 

axiom B2 to B2 ‘. 
4.19 Let F and G be sets of FDs. Suppose for every FD 2 - W in P there is a 

G-based DDAG for Z - W. Prove that if X - Y has an F-based 
DDAG, it has a G-based DDAG. 

4.20 Let F be a set of FDs over R. Find a bound on the size of F+ in FDs, in 
terms of the number of attributes in R. 

4.21 Let F be a set of FDs where a is the number of distinct attributes in I;, p 
is the number of FDs in F, and 12 is the number of symbols required to 
write F. Compare ap2 and n. 

4.22 The algorithm MEMBER (Algorithm 4.3) computes more information 
than is necessary to ascertain if F b X - Y. Once Y is found to be in 
X+ , the rest of Xf is immaterial. Modify MEMBER and LIN- 
CLOSURE to remove this unnecessary computation. 

4.8 BIBLIOGRAPHY AND COMMENTS 

FDs were present when Codd [1970] first introduced the relational model, in 
the form of keys. Codd [1972a] later introduced FDs that do not follow from 
keys, for the purpose of normalization (see Chapter 6). Delobel and Casey 
[1973] gave a set of inference axioms, which Armstrong [1974] showed were 
complete and correct. He also gave a method for constructing an Armstrong 
relation for a set of FDs. Beeri, Dowd, et al. [1980] explore the structure of 
Armstrong relations. 

The LINCLOSURE algorithm is from Beeri and Bernstein [1979]. They 
used derivation trees in their proofs. Derivation trees were the precursor of 
DDAGs, introduced by Maier [1980b]. An exposition of the RAM model of 
computation is given by Aho, Hopcroft, and Ullman [1974]. 

Much work on the implication of FDs has focused on the discovery of keys 
and the structure of sets of keys; see the papers by BCk&sy and Demetrovics 
[1979]; B&k&ssy, Demetrovics, et al. [1980]; Demetrovics [1978, 19791; Forsyth 
and Fadous [1975]; and Lucchesi and Osborn [1978]. 


