
Chapter 1 

RELATIONS AND 
RELATION SCHEMES 

One of the major advantages of the relational model is its uniformity. All data 
is viewed as being stored in tables, with each row in the table having the same 
format. Each row in the table summarizes some object or relationship in the 
real world. Whether the corresponding entities in the real world actually 
possess the uniformity the relational model ascribes to them is a question 
that the user of the model must answer. It is a question of the suitability of 
the model for the application at hand. 

Whether or not the rektional model is appropriate for a particular set of 
data shall not concern us. There are plenty of instances where the model is 
appropriate, and we always assume we are dealing with such instances. 

1.1 BRASS TACKS 

So much for philosophy. Let us consider an example. An airline schedule cer- 
tainly exhibits regularity. Every flight listed has certain characteristics. It is a 
flight from an origin to a destination. It is scheduled to depart at a specific 
time and arrive at a later time. It has a flight number. Part of an airline 
schedule might appear as in Table 1.1. 

What do we observe about this schedule? Each flight is summarized as a 
set of values, one in each column. There are restrictions on what information 
may appear in a given column. The FROM column contains names of air- 
ports served by the airline, the ARRIVES column contains times of day. The 
order of the columns is immaterial as far as information content is con- 
cerned. The DEPARTS and ARRIVES columns could be interchanged with 
no change in meaning. Finally, since each flight has a unique number, no 
flight is represented by more than one row. 

The schedule in Table 1.1 is an example of a relation of type FLIGHTS. 
The format of the relation is determined by the set of column labels 
{NUMBER, FROM, TO, DEPARTS, ARRIVES}. These column names are 
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Table 1.1 FLIGHTS (airline schedule). 

NUMBER FROM TO DEPARTS ARRIVES 

83 JFK O’Hare 11:30a 1:43p 
84 O’Hare JFK 3:oop 55513 

109 JFK LAX Angeles 9:sop 252a 
213 JFK Boston 11:43a 12:45p 
214 Boston JFK 2:2op 3:12p 

called attribute names. Corresponding to each attribute name is a set of per- 
missible values for the associated column. This set is called the domain of the 
attribute name. The domain of NUMBER could be the set of all one-, two- or 
three-digit decimal integers. Each row in the relation is a set of values, one 
from the domain of each attribute name. The rows of this relation are called 
S-tuples, or tuples in general. The tuples of a relation form a set, hence there 
are no duplicate rows. Finally, there is a subset of the attribute names with 
the property that tuples can be distinguished by looking only at values cor- 
responding to attribute names in the subset. Such a subset is called a key for 
the relation. For the relation in Table 1.1, {NUMBER) is a key. 

1.2 FORMALIZATION OF RELATIONS 

We now formalize the definitions of the last section and add a couple of new 
ones. A relation scheme R is a finite set of attribute names {Al, AZ, . . . , 
A, ). Corresponding to each attribute name Ai is a set Di, 1 I i I it, called 
the domain of Ai. We also denote the domain of Ai by dom(Ai). Attribute 
names are sometimes called &tribute symbols or simply attributes, particu- 
larly in the abstract. The domains are arbitrary, non-empty sets, finite or 
countably infinite. Let D = D, U D2 U - - . U D,. A relation r on relation 
scheme R is a finite set of mappings { tl, t2, . . . , tp } from R to D with the re- 
striction that for each mapping t E r, t(Ai) must be in Di, 1 5 i 5 12. The 
mappings are called tuples. 

Example 1.1 In Table 1.1 the relation scheme is FLIGHTS = 
{NUMBER, FROM, TO, DEPARTS, ARRIVES}. The domains for each 
attribute name might be: 

1. dom(NUMBER) = the set of one-, two- or three-digit decimal 
numbers, 
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2. dom(FROM) = dom(T0) = (JFK, O’Hare, Los Angeles, Boston, 
Atlanta}, 

3. dom(DEPARTS) = dom(ARRIVES) = the set of times of day. 

The relation in Table 1.1 has five tuples. One of them is t defined as 
t(NUMBER) = 84, t(FROM) = O’Hare, t(T0) = JFK, t(DEPARTS) = 
3:OOp, t(ARRIVES) = 555~. 

Where did the mappings come from? What happened to tables and rows? 
We use mappings in our formalism to avoid any explicit ordering of the at- 
tribute names in the relation scheme. As we noted in the last section, such an 
ordering adds nothing to the information content of a relation. We do not 
want to restrict tuples to be sequences of values in a certain order. Rather, a 
tuple is a set of values, one for each attribute name in the relation scheme.* 
The mappings we defined are nothing more than correspondences of this 
type. Now that we have taken the trouble of avoiding any explicit ordering in 
relations, in nearly every case we shall denote our relations by writing the at- 
tributes in a certain order and the tuples as lists of values in the same order. 

In either case, it makes sense, given a tuple t, to discuss the value of t on 
attribute A, alternatively called the A-value of t. Considering t as a mapping, 
the A-value of t is t(A). Interpreting t as a row in a table, the A-value of t is 
the entry of t in the column headed by A. Since t is a mapping, we can restrict 
the domain of t. Let X be a subset of R. The usual notation for t restricted to 
X is tlx. We, in our infinite knowledge, shall confuse the issue and write this 
restriction as t(X) and call it the X-value of t. Technically, t(A) and t((A }) 
are different objects, but in keeping with the confusing customs of relational 
database theory, we often write A for the singleton set {A }. We also blur the 
distinction between t(A) and t({A )), even though one is just a value and the 
other is a mapping from A to this value. We assume there is some value h 
such that t( 8) = X for any tuple t. Thus tl (@) = t2( @) for any tuples tl and t2. 

Example 1.2 Let t be the tuple defined in Example 1.1. The FROM-value 
of t is t(FROM) = O’Hare. The {FROM, TO)-value of t is the tuple t ’ 
defined by t ‘(FROM) = O’Hare, t ‘(TO) = JFK. We shall denote such a tu- 
ple as (0’Hare:FROM JFK:TO) or simply (O’Hare JFK) where the 
order of attributes is understood. 

We have been treating relations as static objects. However, relations are 
supposed to abstract some portion of the real world, and this portion of the 
world may change with time. We consider that relations are time-varying, so 
that tuples may be added, deleted, or changed. In Table 1.1, flights may be 
added or dropped, or their times may be changed. We do assume, though, 

*Actually, a tuple could be a multiset (a set with duplicates) of values, if domains for different 
attribute names intersect. 
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that the relation scheme is time-invariant. Henceforth, when dealing with a 
relation, we shall think of it as a sequence of relations in the sense already 
defined, or, in some cases, as potential sequences that the relation might 
follow, that is, possible states the relation may occupy. We shall discuss 
restrictions on the states a relation may assume, although nearly all of these 
restrictions will be memoryless: they will depend only on the current state of 
the relation and not on its history of previous slates. 

1.3 KEYS 

A Key of a relation r on relation scheme R is a subset K = { Bl, B,, . . . , B, ) 
of R with the following property. For any two distinct tuples tl and t2 in Y, 
there is a B E K such that t,(B) # t2(B). That is, no two tuples have the same 
value on all attributes in K, We could write this condition as t,(K) # t2(K). 
Hence, it is sufficient to know the K-value of a tuple to identify the tuple 
uniquely. 

Example 1.3 In Figure 1.1, (NUMBER} and {FROM, TO } are both keys. 

Let us formulate some notation for relations, schemes, and keys. Our con- 
vention will be to use uppercase letters from the front of the alphabet for at- 
tribute symbols, uppercase letters from the back of the alphabet for relation 
schemes, and lowercase letters for relations. We denote a relation scheme R = 

1~41, -42, . . ..A.}byR[ArAz---AJ,orsometimesArA2--.A,whenwe 
are not concerned with naming the scheme. (Another confusing custom of 
relational database theory is to use concatenation to stand for set union be- 
tween sets of attributes.) A relation r on scheme R is written r(R) or 
r(Adz - . -A,). To denote the key of a relation, we underline the attribute 
names in the key. Relation r on scheme AZKD with AC as a key is written 
r(&?@). We can also incorporate the key into the relation scheme: 
R[A_B@]. Any relation r(R) is restricted to have AC as a key. 

Example 1.4 We can write the relation scheme for the relation in Table 1.1 
as FLIGHTS [NUMBER FROM TO DEPARTS ARRIVES]. 

If we wish to specify more than one key for a scheme or relation, we must 
list the keys separately, since the underline notation will not work. The keys 
explicitly listed with a relation scheme are called designated keys. There may 
be keys other than those listed; they are implicit keys. Sometimes we 
distinguish one of the designated keys as the primary key. 
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Our definition of key is actually a bit too broad. If relation r(R) has key 
K ‘, and K ’ C K C R, then K is also a key for R. For tuples tt and t2 in I, if 
ti(K ‘) # tz(K ‘), then surely t,(K) # Q(K). We shah restrict our definition 
slightly. 

Defiith 1.1 A Key of a relation r(R) is a subset K of R such that for any 
distinct tuples tl and t2 in r, t,(K) # t2(K) and no proper subset K’ of K 
shares this property. K is a superkey of I if K contains a key of r. 

The new definition of superkey is the same as the former definition of key. 
We shall still use the old definition of key in designated key, that is, a 
designated key may be a superkey. 

Example 1.5 In Table 1.1, {NUMBER} is a key (and a superkey), so 
{NUMBER, FROM} is a superkey but not a key. 

There are some subtleties with keys. As we mentioned in the last section, 
we consider relations to be time-varying. For any given state of the relation,’ 
we can determine the keys and superkeys. Different states of the relation may 
have different keys. We consider relation schemes, though, to be time- 
invariant; we would like the keys specified with relation schemes not to vary 
either. Thus, in determining keys for a relation scheme, we look across all 
states a relation on the scheme may assume. Keys must remain keys for .a11 
permissible data. 

Exampb 1.6 In Table 1.1, {FROM, TO) is a key for the relation. 
However, it is likely that there could be two flights between the same origin 
and destination, although they would undoubtedly leave at different times. 
Hence {FROM, TO, DEPARTS} is a key for the relation scheme FLIGHTS. e 

We shall mainly concern ourselves with keys and superkeys of relation 
schemes, thinking in terms of all permissible states of a relation on the 
scheme. What is and is not a key is ultimately a semantic question. 

1.4 UPDATES TO RELATIONS 

Now that we have relations, what can be done with them? As noted, the con- 
tent of a relation varies with time, so we shall consider how to alter a relation. 
Suppose we wish to put more information into a relation. We perform an add 



6 Relations and Relation Schemes 

operation on the relation. For a relation r(AlA2 . . * A,), the add operation 
takes the form 

ADD(r; A, = d,, A2 = d,, . . ., A,, = d,). 

Example 1.7 Call the relation in Table 1.1 sched. We might perform the 
update 

ADD&&d; NUMBER = 117, FROM = Atlanta, TO = Boston, 
DEPARTS = lO:OSp, ARRIVES = 12:43a). 

When there is an order assumed on the attribute names, the shorter ver- 
sion 

ADD(r;d,,d,, . . ..d.) 

suffices. 

Example 1.8 The short version of Example 1.7 is 

ADD(sched; 117, Atlanta, Boston, 10:05p, 12:43a). 

The intent of the add operation is clear, to add the tuple described to the 
relation specified. The result of the operation might not agree with the intent 
for one of the following reasons: 

1. The tuple described does not conform to the scheme of the specified 
relation. 

2. Some values of the tuple do not belong to the appropriate domains. 
3. The tuple described agrees on a key with a tuple already in the relation. 

In any of these cases, we consider ADD(r; dl, dz, . . . , d,) to return r un- 
changed and in some manner indicate the error. 

Example 1.9 If sched is the relation in Table 1.1, then 

ADD(sched; NUMBER = 117, FROM = Atlanta, TO = Boston, 
DATE = 4 March) 

is disallowed for reason 1 above. The operation 
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ADD(sched; NUMBER = 84, FROM = O’Hare, TO = JFK, 
DEPARTS = 25:15p, ARRIVES = 6:OOp) 

is disallowed for both reasons 2 and 3. (Examine DEPARTS and NUMBER). 

We must be able to undo what we do, which calls for a delete operation. 
On a relation r as above, the delete operation takes the form 

DEL(r; A, = dl, A2 = dz, . . ., A, = d,). 

Again, when there is an assumed order on the attribute names, we abbreviate 
to 

DEL(r; d,, dz, . . ., d,). 

Example 1.10 If sched is the relation in Table 1.1, we can have 

DEL(sched; NUMBER = 83, FROM = JFK, TO = O’Hare, 
DEPARTS = 11:30a, ARRIVES = 1:43p), 

with short version 

DEL(sched; 83, JFK, O’Hare, 11:30a, 1:43p). 

Actually, we do not need to give so much information to identify uniquely 
the tuple to be removed. Specifying the values on some key will suffice. If K = 
{Bl, B2, . . . , B, ) is a key, then we may use the form 

DEL(r; B1 = el, Bz = e2, . . . , B, = e,). 

Example 1.11 A shorter version of the delete in Example 1.10 is 

DEL(sched; FROM = JFK, TO = O’Hare, DEPARTS = 11:30). 

If there is a primary designated key, such as (NUMBER}, we could even 
shorten this form to DEL(sched; 83). 

The result of the delete operation is as expected. The specified tuple is 
removed from the relation, except when the tuple is not present in the rela- 
tion. In this case, the relation is left unchanged and an error condition is 



8 Relations and Relation Schemes 

signaled. There is no restriction on removing the last tuple from a relation; 
the empty relation is allowed. 

Instead of adding or deleting an entire tuple, we may want to modify only 
part of a tuple. Modification is achieved with the change operation. For a 
relation r as before, with { C1, Cz, . . ., C, > c (A,, AZ, . . . , A,}, the change 
operation takes the form 

CH(r;A, = d,,Az = dZ, . . .,A, = d,; 
Cl = el, C2 = e2, . . ., C, = ep). 

If K = {Br, B*, . . . , B, ) is a key, then we abbreviate to 

CH(r; B, = dl, B2 = dz, . . . , B, = d,; Cl = el, C2 = e2, . . . , C, = ep). 

Example 1.12 For the relation sched in Table 1.1 we could have 

CH(sched; NUMBER = 109, FROM = JFK, TO = Los Angeles, 
DEPARTS = 9:5Op, ARRIVES = 2:52a; DEPARTS = 9:4Op, 
ARRIVES = 2:42a), 

with short version 

CH(sched; NUMBER = 109; DEPARTS = 9:4Op, ARRIVES = 2:42a). 

The change operation is mainly a convenience. The same result can be ob- 
tained with a delete followed by an add. Therefore, all the possible errors for 
add and delete apply to the change operation: the specified tuple does not ex- 
ist, the changes have the wrong format or use values outside the appropriate 
domain, or the changed tuple has the same key value as a tuple already in the 
relation. 

Example 1.13 The effect of applying the operations 

1. ADD(sched; 117, Atlanta, Boston, 10:05p, 12:43a), 
2. DEL(sched; FROM = JFK, TO = O’Hare, DEPARTS = 11:30a), and 
3. CH(sched; NUMBER = 109; DEPARTS = 9:4Op, ARRIVES = 2:42a) 

to Table 1.1 is shown by Table 1.2. 

1.5 EXERCISES 

1.1 (a) Let R be the relation scheme (EMPLOYEE, MANAGER, JOB, 
SALARY, YEARS-WORKED}, where EMPLOYEE and MANAGER 
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Table 1.2 New version of sched(FLIGHTS). 

NUMBER FROM TO DEPARTS ARRIVES 

a4 O’Hare JFK 3:oop 5:ssp 
109 JFK Los Angeles 9:4op 2:42a 
117 Atlanta Boston 1o:osp 12:43a 
213 JFK Boston 11:43a 12:45p 
214 Boston JFK 2:2op 3:12p 

are names, JOB is a job title, SALARY is yearly salary, and YEARS- 
WORKED is the number of complete years the employee has been at 
the job. Construct a relation on R based on the following information. 

i. Roberts, Ruskin, and Raphael are all ticket agents. 
ii. Rayburn is a baggage handler. 

iii. Rice is a flight mechanic. 
iv. Price manages all ticket agents. 
v. Powell manages Rayburn. 

vi. Porter manages Rice, Price, Powell and himself. 
vii. Powell is head of ground crews and Porter is chief of operations. 

viii. Every employee receives a 10% raise for each complete year 
worked. 

ix. Roberts, Ruskin, Raphael, and Rayburn all started at $12,000. 
Roberts just started work, Ruskin and Raphael have worked for a 
year and a half, and Rayburn has worked for 2 years. 

x. Rice started at $18,000 and now makes $21,780. 
xi. Price and Powell started at $16,000 and have both been working 

for three years. 
xii. Porter started at $20,000 and has been around two years longer 

than anyone else. 

(b) Give appropriate update operations for the following changes to 
the relation for part (a): 

i. Ruskin and Raphael complete their second year. 
ii. Rice quits. 
iii. Powell quits. His duties are assumed by Porter. 
iv. Randolph is hired as a ticket agent. 

1.2 Consider the relation scheme R = {FLIGHT-NUMBER, DATE, 
GATE, TIME, DESTINATION}. A tuple (d, d2 d3 d4 ds) of r(R) has 
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the meaning “flight dl departs on date d2 from gate d3 at d4 for d5.” 
What are the keys of R ? 

1.3 Let t be a tuple in r(R) and let X and Y be subsets of R. When does the 
expression t(X)(Y) make sense? When it does make sense, how can it 
be simplified? 

1.4 (a) Can the union of two keys be a key? 
(b) Is the intersection of two superkeys necessarily a key? 

1.5” Given a relation scheme R [A 1A2 - - + A .I, what is the maximum 
number of keys R can have? The maximum number of superkeys? 

1.6 What can be said about a relation with a key K = a? 

1.7 LetIT = (z&J32 ,..., B, ) be a key of the relation scheme R [A ,A2 . - - 
A, ] and let r be a relation on R. Consider the operation 

CH(r;A, =dl,A2=d2, . . ..A.=d,; 
Bt =et,Bz=ea, . . . . B,=e,). 

Suppose that no tuple in T has K-value (eI e2 - - - e,), there is a tuple 
(dl d2 --. d,) in r, and that ci E dom(Bi), 1 I i I m. Is this change 
operation necessarily legal? 

1.8 Let C be a sequence of update operations to be applied to relation r. If 
the order of the operations is changed in C, will the result necessarily be 
the same when C consists of 

(a) only add operations? 
(b) only delete operations? 
(c) add and delete operations? 
(d) add and change operations? 
(e) only change operations? 

1.6 BIBLIOGRAPHY AND COMMENTS 
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