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Abstract 

In urban areas, congestion creates a substantial variation in travel speeds during peak morning 
and evening hours. This research presents a new solution approach, an iterative route 
construction and improvement algorithm (IRCI), for the time dependent vehicle routing 
problem (TDVRP) with hard or soft time windows. Improvements are obtained at a route 
level; hence the proposed approach does not rely on any type of local improvement procedure. 
Further, the solution algorithms can tackle constant speed or time-dependent speed problems 
without any alteration in their structure. A new formulation for the TDVRP with soft and hard 
time windows is presented. Leveraging on the well known Solomon instances, new test 
problems that capture the typical speed variations of congested urban settings are proposed. 
Results in terms of solution quality as well as computational time are presented and discussed. 
The computational complexity of the IRCI is analyzed and experimental results indicate that 
average computational time increases proportionally to the square of the number of customers.  
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1. Introduction 
 
Congestion is a common phenomenon in most urban areas of the world. Congestion creates a 
substantial variation in travel speeds during peak morning and evening hours.  This is 
problematic for all vehicle routing models that rely on a constant value to represent vehicle 
speeds. Urban route designs that ignore these significant speed variations result in inefficient 
and suboptimal solutions. Poorly designed routes that lead freight vehicles into congested 
arteries and streets not only increase supply chain and logistics costs but also exacerbate 
externalities associated with freight traffic in urban areas such as greenhouse gases, noise, and 
air pollution. Travel time between customers and depot is found to be a crucial factor that 
exacerbates the negative impacts of congestion; congestion also affects carriers’ cost structure 
and the  relative weight of wages and overtime expenses (Figliozzi, 2009). 
 
Routing models with time-varying travel times are gaining greater attention in vehicle routing 
literature and industry.  However, research on the time dependent vehicle routing problem 
(TDVRP) is still comparatively meager in relation to the body of literature accumulated for 
the classical vehicle routing problem (VRP) and vehicle routing problem with time windows 
(VRPTW). In addition, published algorithms and related results can neither be readily 
benchmarked nor do they cover all practical and relevant objective functions or time window 
constraint types.  
 
The goals of this research are to: (a) formulate a time dependent vehicle routing problem with 
a general cost function and time window constraints, (b) present an intuitive and efficient 
solution methodology for time dependent problems, (c) introduce readily replicable time 
dependent instances and analyze the computational results, and (d) analyze the computational 
complexity of the solution approach. This paper is organized as follows: Section two presents 
a literature review for the TDVRP. Section three introduces notation and formulates the 
problems. Section four presents the iterative route construction and improvement algorithm 
(IRCI) to solve time dependent routing problems and minimize fleet size. Section five 
presents algorithms to reduce soft time window penalties and route durations. Section six 
presents benchmark problems. Section seven discusses computational results. Section eight 
analyses the worst case and average computational complexity of the algorithms presented in 
section four and five. Section nine concludes the paper. 
 

2. Literature Review 
 
Unlike widely studied versions of the VRP, i.e. capacitated VRP or time windows VRP, time 
dependent problems have received considerably less attention. The time dependent VRP was 
first formulated by Malandraki and Daskin (1989, 1992) using a mixed integer linear 
programming formulation. A greedy nearest-neighbor heuristic based on travel time between 
customers was proposed, as well as a branch and cut algorithm to solve TDVRP without time 
windows. Hill and Benton (1992) considered a node based time dependent vehicle routing 



problem (without time windows). Computational results for one vehicle and five customers 
were reported. Ahn and Shin (1991) discussed modifications to the savings, insertion, and 
local improvement algorithms to better deal with TDVRP. In randomly generated instances, 
they reported computation time reductions as a percentage of “unmodified” savings, 
insertion, and local improvement algorithms.  Malandraki and Dial (1996) proposed a 
“restricted” dynamic programming algorithm for the time dependent traveling salesman 
problem, i.e. for a fleet of just one vehicle.  A nearest-neighbor type heuristic was used to 
solve randomly generated problems.  
 
An important property for time dependent problems is the First In - First Out (FIFO) property 
(Ahn and Shin, 1991, Ichoua et al., 2003). A model with a FIFO property guarantees that if a 
vehicle leaves customer i to go to customer j at any time t, any identical vehicle with the same 
destination leaving customer i at a time t+ε, where ε >0, will always arrive later. This is an 
intuitive and desirable property though it is not present in all models. Earlier formulations and 
solutions methods, Malandraki and Daskin (1989, 1992), Hill and Benton (1992), and 
Malandraki and Dial (1996), do not guarantee the FIFO property as reported by Ichoua et al. 
(2003). Later research efforts have modeled travel time variability using “constant speed” 
time periods which guarantees the FIFO property, as shown by Ichoua et al. (2003). 
 
Ichoua et al. (2003) proposed a tabu search solution method, based on the work of Taillard et 
al. (1997),  in order to solve time dependent vehicle routing problems with soft time windows. 
Ichoua et al. showed that ignoring time dependency, i.e. using VRP models with constant 
speed, can lead to poor solutions. Ichoua et al. tested their method using the Solomon problem 
set, soft time windows, three time periods, and three types of time dependent arcs. The 
objective was to minimize the sum of total travel time plus penalties associated with time 
window violations. 
 
Fleischmann et al. (2004) utilized route construction methods already proposed in the 
literature, savings and insertion,  to solve uncapacitated time dependent VRP with and without 
time windows.  Fleischmann et al. tested their algorithms in instances created from Berlin 
travel time data. Jung and Haghani proposed a genetic algorithm to solve time dependent 
problems (Jung and Haghani, 2001, Haghani and Jung, 2005). Using randomly generated test 
problems, the performance of the genetic algorithm was evaluated by comparing its results 
with exact solutions (up to 9 customers and 15 time periods) and a lower bound (up to 25 
customers and 10 time periods). 
 
More recently Van Woensel et al. (2008) used a tabu search to solve the capacitated vehicle 
routing problem with time dependent travel times. To determine travel speed, approximations 
based on queuing theory and the volumes of vehicles in a link were used. Van Woensel et al.  
solved capacitated VRP (with no time windows) for between 32 and 80 customers. Donati et 
al. (2008) proposed a solution adapting the ant colony heuristic approach and a local search 
improvement approach that stores and updates the slack times or feasible delays. The heuristic 
was tested using a real life network in Padua, Italy, and some variations of the Solomon 
problem set.  



 
Only two papers use well known benchmark problems with time windows. Ichoua et al. (2003) 
used the widely known Solomon problems for the VRP with time windows. However, 
capacity constraints were not considered, optimal fleet size was given, and no details were 
provided regarding how links were associated with “categories” that represent differences in 
the urban network (i.e. main arteries, local streets, etc.). Donati et al. (2008) also used 
Solomon instances, however, the results cannot be compared with previous results by Ichoua 
et al (2003) because a different time speed function was used and capacity constraints were 
considered. In addition, the exact instances used by Donati et al. (2008) cannot be 
reconstructed because the different travel speeds were randomly assigned to arcs. Therefore, 
no study can be swiftly replicated and solution qualities and computation times cannot be 
compared. 
 
Comparisons are also problematical because objective functions and routing constraints for 
time dependent problems are often dissimilar, unlike VRPTW research where the objective 
function is hierarchical and usually considers fleet size (primary objective), distance 
(secondary objective), and total route duration. Ichoua et al. (2003) study the TDVRP with 
soft time windows and consider as the objective function total duration plus lateness and 
assume that the optimal fleet size is given a priori. Haghani and Jung (2005) minimize the 
sum of costs associated with number of vehicles, distance, duration, and lateness.  
Fleischmann et al. (2004) minimize number of vehicles and total duration.  Donati et al. (2008) 
optimizes fleet size (primary objective) and total route duration (secondary objective).  
 
Benchmark instances that can be clearly and unmistakably replicated by future researchers are 
detailed in Section six.  The next section introduces mathematical notation and defines the 
problem under study. 
 

3. Problem Definition 
 
Using a traditional flow-arc formulation (Desrochers et al., 1988), the time dependent vehicle 
routing problem with hard time windows studied in this research can be described as follows. 
Let ( , )G V A=  be a graph where {( , ) : , }i jA v v i j i j V= ≠ ∧ ∈  is an arc set and the vertex set 

is 0 1( ,...., )nV v v += . Vertices 0v  and 1nv +  denote the depot at which vehicles of capacity maxq  

are based.  Each vertex in V  has an associated demand 0iq ≥  , a service time 0ig ≥ , and a 

service time window [ , ]i ie l ; in particular the depot has 0 0g =  and 0 0q = . The set of vertices 

1{ ,...., }nC v v=  specifies a set of n  customers. The arrival time of a vehicle at customer 

,i i C∈  is denoted ia and its departure time ib . Each arc ( , )i jv v  has an associated constant 

distance 0i jd ≥  and a travel time ( ) 0i j it b ≥  which is a function of the departure time from 

customer i . The set of available vehicles is denoted K . The cost per unit of route duration is 
denoted tc ; the cost per unit distance traveled is denoted dc . 



 
The primary objective function for the TDVRP is the minimization of the number of routes; 
the optimal number of routes is unknown. A secondary objective is the minimization of total 
time or distance. There are two decision variables in this formulation; k

ijx  is a binary decision 

variable that indicates whether vehicle k travels between customers i  and j . The real decision 

variable k
iy  indicates service start time for customer i served by vehicle k . The TDVRP is 

formulated as follows: 
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The primary and secondary objectives are defined by (1) and (2) respectively. The constraints 
are defined as follows: vehicle capacity cannot be exceeded (3); all customers must be served 
(4); if a vehicle arrives at a customer it must also depart from that customer (5); routes must 
start and end at the depot (6); each vehicle leaves from and returns to the depot exactly once, 
(7) and (8) respectively; service times must satisfy time window start (9) and ending (10) 
times; and service start time must allow for travel time between customers (11). Decision 
variables type and domain are indicated in (12) and (13).  
 
In the TDVRP with soft time windows, customer service time windows are defined by two 
intervals [ , ]i ie l  and # #[ , ]i ie l  where # #,i i i ie e l l≤ ≤ . The interval # #[ , ]i ie l  indicates the interval of 



time where service can start without incurring a penalty. The interval [ , ]i ie l  indicates the 

interval of time where service can start but there are additional costs, ec  or lc , if service starts 

early or late, respectively – i.e. during the early interval #[ , ]i ie e  or during the late interval
#[ , ]i il l . Defining e

ix  and l
ix as auxiliary binary variables that indicate whether a penalty is 

incurred, the objective functions can be expressed as follows: 
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The primary objective function for the TDVRP with soft time windows is still the 
minimization of the number of routes. Using a customer service perspective ranking, a 
secondary objective is the minimization of the number of late penalties1  (14); a tertiary 
objective is the minimization of early penalties (15); a final objective is the minimization of 
the combined distance, route duration, and soft time window costs (16). Logical constraints 
(17) and (18) are used to determine if service times must be penalized due to early or late time 
window utilization, respectively.  
 
It is important to notice that the depot time windows as well as the maximum route duration 
are not changed as a result of the customers’ time window relaxation. The TDVRP with hard 
time windows is a special case of the soft time window formulation. If #

i ie e=  and #
i il l= , 

then (14) and (15) are redundant and (16) is reduced to (2). The travel time speed in any arc is 
a positive and continuous function of time, ( ) 0i js t > , which guarantees the FIFO property 

(Ahn and Shin, 1991). In addition, in the presented TDVRP travel times may be asymmetrical, 
i.e. , ,( ) ( )k k

i j i j i jt y t y≠ even if k k
i jy y= .   

 

                                                 
1 Although the cost of early and late service times are application dependent, in numerous real life 
problems early services are preferred over late services, e.g. blood transport, just-in-time production 
systems, express mail delivery, etc. 



Unlike previous formulations of the TDVRP (Malandraki, 1989, Jung and Haghani, 2001) 
time is not partitioned into discrete intervals. Furthermore, the decision variable k

iy  allows for 
waiting at customer i ; service start time may not necessarily be the same as arrival time. For 
example, if the vehicle arrives too early, it can wait at the customer location to avoid early 
service penalties. However, waiting may have an impact on future travel times. The following 
two sections describe a solution approach to tackle the TDVRP. 
 

4. Solution Approach 
 
Time dependent travel times require significant modifications to local search approaches and 
metaheuristics that have been successfully applied to the traditional constant time VRPTW 
(Braysy and Gendreau, 2005a, Braysy and Gendreau, 2005b).  A customer insertion or a local 
improvement not only influences the arrival and departure times of a “local” subset of 
customers but it may also significantly change travel times among “local” customers. 
Furthermore, the impact of altering a routing sequence is not just “local” but potentially 
affects all subsequent travel times.  Changes in travel times have a subsequent impact on 
feasibility. To a certain degree, introducing soft time windows ameliorates the computational 
burden and loss of efficiency introduced by time dependent travel times. However, hard time 
constraints are more difficult to accommodate and this is reflected in the literature review. 
There are no published results in a set of standard benchmark problems with hard time 
windows and time dependent travel times.  
 
The presented IRCI solution approach for the TDVRP employs algorithms that do not require 
modifications to accommodate constant or time dependent travel speeds. The construction and 
improvement procedure are sequential and originally designed at the route level, i.e. it is not a 
local improvement. Hence, the presented algorithm produces routes for time dependent 
vehicle routing problems with hard and soft time windows with similar computation times. 
This research builds upon previous work to solve the VRP with soft and hard time windows 
(Figliozzi, 2008). 
 
The solution method to minimize fleet size is divided into two phases and algorithms: route 
construction and route improvement. A third algorithm, an auxiliary route building heuristic, 
is repeatedly executed during the execution of the construction heuristic. Similarly, the route 
construction algorithm is repeatedly executed during the execution of the improvement 
algorithms. Using a bottom up approach the algorithms are introduced in the following order: 
(a) an algorithm to sequence any given set of customers, (b) a route construction algorithm, 
and (c) a route improvement algorithm. In addition, due to the nature of the TDVRP, 
advancing or delaying service time may have a favorable impact on future travel times and 
costs. Hence another algorithm (d) is described in Section five to optimize service times given 
a set of routes obtained from (c).  Travel time calculations are necessary to execute (a) to (d). 
However, unlike algorithms (a) to (d), travel time calculations are heavily dependent on the 



specific type of speed function. Hence, the algorithm used to calculate travel times is 
presented in Appendix A for a specific type of speed function.    
  



 
  
(a) The Auxiliary Routing Algorithm rH   
 
The auxiliary routing algorithm rH can be any heuristic that given a starting vertex, a set of 
customers, and a depot location returns a set of routes that satisfy the constraints of the 
TDVRP with soft or hard time windows. The auxiliary route heuristic is defined as 

r 0( , , , )iv C vΔH where 0 1 6{ , ,...., }δ δ δΔ =  are the parameters of the generalized cost function, 

iv  is the vertex where the first route starts, C  is the set of customers to route, and 0v is the 
depot where all routes end and all additional routes  start, with the exception of the first route 
which starts at iv .  
 
In this research, rH is a generalized nearest-neighbor heuristic (GNNH). The GNNH starts 

every route k by finding, from a subset of C , the unrouted customer with the least appending 
“generalized cost”.  At every subsequent iteration, the heuristic searches for the remaining 
unrouted customer with the least appending cost. Let i  denote the initial vertex and let j  

denote a potential customer to append next. Let k
iq  denote the remaining capacity of the 

vehicle k after serving customer i . The service at customer i  in route k begins at the earliest 

feasible time, which is max( , )k
i i iy a e= , and the departure time is given by k

i iy g+ . The 
generalized cost of going from customer i  to customer j  is estimated as: 
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If customer j  is infeasible, i.e. it cannot be visited after serving customer i , the cost of ending 
customer 'i s route and starting a new one to serve customer j  is estimated as:  
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where 0δ  is the cost of adding a new vehicle.  
 
The parameter 1δ takes into account the relative distance between customers and 2δ  accounts 
for the “slack” between the completion of service at i  and beginning of service at j . 
Following Solomon’s approach (Solomon, 1987), the parameter 3δ  takes into account the 
“urgency” of serving customer j , expressed as the time remaining until the vehicle’s last 
possible service time start. The parameter 4δ  takes into account the capacity slack of the 



vehicle after serving customer j . The parameters 5δ  and 6δ  are added to account for 
possible early or late service penalties, respectively.   
 
 
(b) The Route Construction Algorithm cH  
 
In this algorithm, denoted cH , routes are constructed sequentially. Given a partial solution 

and a set of unrouted customers, the algorithm uses the auxiliary heuristic rH to search for the 

feasible least cost set of routes. The algorithm also uses an auxiliary function w( , ,g, )iv C W

that, given a set of unrouted customers C , a vertex ,i iv v C∉ , and a generalized cost function 

g( , , , )i j kΔ , returns a set of vertices of cardinality | |W with the lowest generalized costs 
g( , , , )i j kΔ  for all jv C∈ .  

 
Parameters: 

rH : Route building heuristic. 

W : Width of the search, the number of solutions to be built and compared before adding a 
customer to a route, | |w C≤ . 
Δ :  Search space of the route heuristic generalized cost parameters 

Data:  
C : Set of customers to route  

0 :v  the depot 

:iv  initial vertex 
 
START cH

0start v←  1 

lowestCost ←∞   2 

0bestSequence v←  3 

for each Δ∈Δ  4 
while C ≠∅  do 5 

* w( , ,g, )C start C W←  6 
for each *

iv C∈  7 

if  r 0c( ( , , , ))ibestSequence v C v∪ ΔH < lowestCost  then 8 

    r 0c( ( , , , ))ilowestCost bestSequence v C v← ∪ ΔH   9 

ilowestNext v←  10 
end if  11 

end for  12 
start lowestNext←  13 



\C C lowestNext←  14 
bestSequence bestSequence lowestNext← ∪  15 

r 0( , , , )R bestSequence lowestNext C v← ∪ ΔH  16 
end while 17 

end for18 
Output:   
Best set of routes R  that serve all C  customers 
END cH  
 
This algorithm will sequentially construct routes. In line 7, up to W  “potentially” good 
candidates are selected. In lines 9 to 11 complete routes, built using the W  candidates and 
the heuristic rH , are compared. The candidate with the least generalized cost is selected. The 

generalized cost function g  that is used in rH  must not be confused with the objective cost 

function c  that is used in cH  or the improvement heuristic iH ; the latter cost function is the 
sum of the accrued vehicle, distance, time, or penalty costs as indicated in the objective 
function.  
 
(c) The Route Improvement Algorithm iH  
 
The route construction algorithm generates an initial grouping or clustering of customers.  
Any route obtained from cH   is a special cluster of customers; a cluster of customers with the 
desirable property that there is at least one feasible sequence that satisfies all the constraints of 
the TDVRP.  Fleet size and routing costs can be further reduced using a route improvement 
algorithm. The improvement algorithm works on a subset of routes. 
 
The motivation of the route improvement algorithm is to combine these routes, “feasible 
clusters”, to consolidate or improve the efficiency of routes that are not fully utilized in terms 
of vehicle capacity, route duration, number of customers serviced, etc. In the iH  algorithm 

two functions are introduced. The function k ( , )s R s  orders the set of routes R  from smallest 
to largest based on the number of customers per route and then returns a set of 1s ≥  routes 
with the least number of customers; e.g. k ( ,1)s R  will return the route with the least number 
of customers. The number of customers per route is used as a proxy measure of potential route 
capacity utilization. If two or more routes have the same number of customers, ties are solved 
drawing random numbers.  
 
The function k ( , , )g ir S p  returns a set of p  routes that belong to S  and are good “matches” 

for route ir . Good “matches” refers to routes that as a group have the potential to be 
consolidated or improved. In this research two measures are used to evaluate the quality of a 
potential “match”: (1) Geographical proximity, the distance between any two routes’ center of 



gravity is used as a proxy measure of geographic proximity assuming that close routes have 
the potential to be improved and (2) Utilization, the number of customers per route is used as 
a proxy measure of potential route capacity utilization assuming that routes are poorly utilized 
have the potential to be combined. By definition, the route ir  is always included in the output 

of the set function k ( , , )g ir S p . To simplify notation the term ( )C G  is the set of customers 

served by the set of routes G .  
 
Data:  
R : Set of routes 

Parameters: 

cH : Route building heuristic 

W : Number of solutions to be built and compared in the construction heuristic 
Δ :  Generalized cost parameters of the auxiliary route heuristic  
s :  Number of routes potentially considered for improvement 
p : Number of neighboring routes that are reconstructed 
k s  and k g : route selection functions 

 
 START iH

min( ,| |)s s R←  1 
min( , )p s p←  2 
k ( , )sS R s R← ⊆  3 

' \S R S←  4 
* k ( ,1)sr S←  5 

while | | 1S >  do 6 
*k ( , , )gG r S p←  7 

c' ( , , , ( ))rG W C G← ΔH H  8 

if c( ')G < c( )G  then 9 
  \R R G←  10 
  'R R G← ∪  11 

\S S G←  12 
  'S S G← ∪  13 

  
* k ( ,1)sr S←  14 

  end if 15 
\ k ( ,| | 1)sr S S S← −  16 

\S S r=  17 
if | ' | 0S > then 18 

  ' k ( ',1)sr S=  19 



 ' '/ 'S S r←  20 
'S S r← ∪  21 

end while22 
Output:   
R  set of improved routes 

END iH  
 
The smallest route is selected in line 6 using function k s  while “matching” routes are selected 

in line 7 using function k g .  The routes are reconstructed in line 8. If the generalized cost is 

improved (line 9), the routes with the least generalized cost are selected.  The algorithm 
continues adding new routes until all routes have had at least one opportunity to be 
reconstructed and “re-optimized”. 
 

5. Service Time Improvement 
 
The previous algorithms deal with the minimization of costs via sequencing of customers and 
their assignment to routes. The yH algorithm aims at reducing costs by improving customer 

service start times for a given set of routes produced by iH .  
 
For any given route, a dynamic programming approach can be used to determine the optimal 
service start times k

iy  for customer i belonging to route k given the arrival time ia : each 

customer is associated with a stage, the decision variable is the service time k
iy , and the state 

is defined by the arrival time ia .  For any given route k defined by the sequence of customers
(0,1,2,..., , 1)q q +  where 0 and 1q +  denote the depot. If the cost to minimize is the sum of 

distance traveled, route durations, and soft time window utilization given by expression(16), 
the cost function, ( , )q qy aπ , for the last customer is 2: 

# #
, 1 1( , ) ( ) ( ) ( )k k

q q d q q t q q e q q l q ly a c d c a y c e y c y eπ + +
+ += + − + − + −     (22) 

 
where 1 , 1( )q q q q q q qa y g t y g+ += + + +  and subject to q q ql y a≥ ≥ . 

 
Using a backward solution approach, for each customer it is possible to define a stage cost 
and an optimal cost to go function. Further, for each customer, it is possible to limit the 
feasible space of customer service time to a closed time interval.  For a customer i  belonging 

to route k , let k
iy and k

iy  denote, respectively, the earliest and latest feasible service times.   

 

                                                 
2 The distance term can be eliminated from (22) because it is not affected by service time.  
 



Lemma 1: given any route k , the optimal service times at any customer i  belong to the time 
interval [ , ]k k

i iy y   and can be calculated using a forward and backward algorithm.  
Proof:  starting from the depot, earliest possible arrival at customer 1 is 1 0 01 0( )a e t e= + due to 

FIFO property; earliest service time at customer 1 is 1 1 1max( , )ky a e= ; earliest departure at 

customer 1 is 1 1
ky g+ .  Earliest possible arrival at customer 2  is 2 1 1 1,2 1 1( )k ka y g t y g= + + +

due to FIFO property; earliest service time at customer 2  is 2 2 2max( , )ky a e= ; earliest 

departure at customer 2 is 2 2
ky g+  and so on until reaching the last customer. 

Starting from the depot, latest possible departure time from customer q  is: 

, 1 1arg max , . .( ( ) )y q q qy s t y t y l∈ℜ + ++ ≤ ; due to the continuous speed function and the FIFO 

property this value is unique. The latest possible service time at customer q  is

min( , )k
q q qy y g l= − .  Latest possible departure time from customer 1q−  is 

1,arg max , . .( ( ) )k
y q q qy s t y t y y∈ℜ −+ ≤ ; latest possible service time at customer 1q−  is

1 1 1min( , )k
q q qy y g l− − −= −  and so on until reaching the first customer. 

 
Based on the workings of the algorithms , ,r cH H and iH  it is possible to state properties that 
simplify the determination of service start times.  
 
Property 1:  Given a route k  outputted by iH , the customer service times are the earliest 
feasible times.  
Proof: Due to the workings of the rH algorithm, the service at any customer i  in route k  
begins at the earliest feasible time, which is max( , )k k

i i i iy y a e= = , and the departure time is 

given by k
i iy g+ .  Due to the FIFO property, for the given routes, customers cannot be 

serviced earlier than the provided service start times.  
 
Property 2: Given a route k  outputted by iH , total route duration cannot be reduced.   
Proof:  Due to Property 1, service times cannot be advanced. Then, the FIFO property 
guarantees that route duration cannot be reduced further unless the set of routes is altered. The 
arrival times at each customer are the earliest possible for the sequence given by route k .  
 
Property 3: Given a route k  outputted by iH , a TDVRP with hard time windows requires no 
service time optimization for route k . 
Proof: Due to Property 2, route durations cannot be reduced. Start times do not affect distance 
traveled and there are no soft time windows penalties or costs to be reduced. Hence, altering 
service start time will not reduce any objective function.  
 
Property 4: Given a route k  outputted by iH , if a customer uses the “late” soft time window, 
no improvement can be made by changing the service time.  



Proof:   Due to property 1, the service time cannot be advanced without losing feasibility. If 
the service time is delayed, there is a greater late penalty. Hence, if a customer in the route 
outputted by iH  uses a late time window, the provided service time for that customer cannot 
be improved.  
Corollary:  In a route outputted by iH , the service time optimization problem can be 
decomposed into smaller problems delimited by customers using “late” soft time windows.   
 
Service Time Improvement Algorithms (d) 
For each customer that uses an early soft time window, the ybH algorithm attempts to reduce 

early soft time window usage without allowing the introduction of service delays that increase 
late time window usage.  This algorithm operates backwards. For the sake of presentation 
simplicity, periods of constant travel time are assumed. The depot working time 0 0[ , ]e l  is 

partitioned into p  time periods 1 2, , ..., pT T T=T ; each period kT  has an associated constant 

travel speed ks  in the time interval [ , ]k k kT t t= .   

 
Data:  

T and S : time intervals and speeds 

, ,i j jv v y : two customers served in this order in route k , k
jy  is the current service 

time at customer j  
START ybH

if  # &k k k
j j j jy l y y< <  then 1 

 #min( , )k k
j j jy l y←  2 

end if  3 
find k, k

k j kt y t≤ ≤  4 

/k
i j ji kb y d s← −  5 

, k
ji jd d t y← ←  6 

while i kb t<   do 7 

( )k kd d t t s← − −   8 

kt t←  9 

1/i kb t d s +← −  10 
1k k← +  11 

end while  12 
min( , )k

i i i iy b g l← −  13 
Output:   

,k k
j iy y  

END ybH  



 
After early time windows have been reduced, a final task is to reduce route duration without 
increasing the number of soft or late time windows. The following forward algorithm, yfH , 

reduces route duration without increasing soft time windows. 
 
Data:  

T and S : time intervals and speeds 

, ,i j jv v y : two customers served in this order in route k , k
iy  is the current service 

time at customer j  
 
START yfH

if  # &k k k
i j i iy e y y> >  then 1 

 #max( , )k k
i i iy e y←  2 

end if  3 
find k, k

k i kt y t≤ ≤   4 

/k
j i ij ka y d s← +  5 

, k
ij id d t y← ←  6 

while j ka t>   do 7 

( ) kkd d t t s← − −   8 

kt t←  9 

1/j ka t d s +← +  10 

1k k← +  11 
end while  12 

max( , )k
j j jy a e←  13 

Output:   
,k k

i jy y  

END yfH  
 
Both algorithms try to reduce the interval [ , ]k k

i iy y  where the optimal service start time is found for a 

given a route k .  

 

6. Proposed Benchmark Problems 
As mentioned in section two, results provided in previous research efforts cannot be 
compared in terms of solution quality or computational time. This is revealing of a still 
incipient body of work for the TDVRP.  The proposed set of benchmark problems are based 
on the classical instances of the VRP with time windows proposed by Solomon (1987). The 



Solomon instances include distinct spatial customer distributions, vehicles’ capacities, 
customer demands, and customer time windows. These problems have not only been widely 
studied in the operations research literature but the datasets are readily available3.  
 
The well-known 56 Solomon benchmark problems for vehicle routing problems with hard 
time windows are based on six groups of problem instances with 100 customers. The six 
problem classes are named C1, C2, R1, R2, RC1, and RC2. Customer locations were 
randomly generated (problem sets R1 and R2),   clustered (problem sets C1 and C2), or mixed 
with randomly generated and clustered customer locations (problem sets RC1 and RC2). 
Problem sets R1, C1, and RC1 have a shorter scheduling horizon, tighter time windows, and 
fewer customers per route than problem sets R2, C2, and RC2 respectively.  
 
This section proposes new test problems that capture the typical speed variations of congested 
urban settings. The problems are divided into three categories of study: (1) constant speed 
Solomon instances, (2) time dependent problems with hard time windows, and (3) time 
dependent problems with soft time windows. Some previous research efforts may have used 
standard problems but they allocated travel speed distributions randomly to customer arcs or it 
is ambiguous the type of time dependency allocated to each arc. In order to provide readily 
replicable instances, the travel speed distributions apply to ALL arcs among customers, i.e. in 
the arc set: 

{( , ) : , }i jA v v i j i j V= ≠ ∧ ∈ .  

Most recent research efforts, as stated in section two, have used constant speed intervals. The 
same approach is adopted in this research because constant speed intervals guarantee the 
FIFO property and can be readily replicated.  The algorithm used to calculate travel times is 
presented in Appendix A. 
 
1. Constant speed problems with hard time windows 
 
Constant travel speed is a special case of the general time dependent problem. These instances 
are the classical Solomon problems that have been widely studied and provide an indication 
of the performance of the algorithm with constant travel speed.    
 
2. Time dependent problems with hard time windows 
These instances introduce fast periods between depot opening and closing times. The depot 
working time 0 0[ , ]e l  is divided into five time periods of equal durations:  

[0, 0.2 0l ); [0.2 0l , 0.4 0l );   [0.4 0l , 0.6 0l );   [0.6 0l , 0.8 0l ); and [0.8 0l , 0l ].    
and the corresponding travel speeds are: 
TD1 = [1.00 , 1.60, 1.05 , 1.60, 1.00], 
TD2=  [1.00 , 2.00, 1.50 , 2.00, 1.00], 
TD3 = [1.00 , 2.50, 1.75 , 2.50, 1.00]. 

                                                 
3 Several websites maintain downloadable datasets of the instances including Solomon’s own website: 
http://web.cba.neu.edu/~msolomon/problems.htm 



 
If the vehicles were to travel non-stop in the interval 0 0[ , ]e l  the vehicle would travel an extra 
25%, 50%, and 75% more for speeds TD1, TD2, and TD3 respectively than in the original 
Solomon instances.  
 
3. Time dependent problems with soft time windows 
  
These instances introduce two congested periods between depot opening and closing times. 
The depot working time 0 0[ , ]e l  is divided into the same five periods and the corresponding 
travel speeds are: 
TD4 = [1.10 , 0.85, 1.10 , 0.85, 1.10], 
TD5 = [1.20 , 0.80, 1.00 , 0.80, 1.20], 
TD6 = [1.20 , 0.70, 1.20,  0.70, 1.20]. 
 
If one vehicle were to travel non-stop in the interval 0 0[ , ]e l , this vehicle would travel the same 
distance as in the original Solomon instances but with increasing travel speed variability, i.e. 
same average speed but with increased variability. However, soft time windows are required 
because some Solomon problems would be infeasible otherwise (Ichoua et al., 2003, Donati et 
al., 2008). An allowable time window violation per customer equal to:

# #
max 0 00.1( ) i i i iP l e e e l l= − = − = −  

is allowed. However, the depot working time 0 0[ , ]e l  is not relaxed. The penalty cost for an 
early or late delivery is one unit of cost per unit time which is the same value used in constant 
speed Solomon instances with soft time windows (Balakrishnan, 1993, Chiang and Russell, 
2004).  
 

7. Experimental Results  
Proper benchmarking of algorithms, solution quality and computation times can be performed 
using standardized instances and computers. However, computation times can be difficult to 
compare if there are significant differences in computer processing power or equipment. 
Detailed information regarding computer equipment (brand, model, processor, RAM) can be 
used to estimate relative computer power using Dongarra (2007) and SPEC4 results. All the 
results presented in this section were obtained with a laptop Dell Latitude D430, with an Intel 
Core CPU 1.2 GHz and 1.99 GB of RAM.  Even after standardizing problems and equipment 
there may be differences in running time due to different compilers, programming language, 
or code efficiency and implementation. 
 
As indicated by Cordeau et al. (2002), results presented in the VRP literature usually present 
better results on benchmark problems at the expense of (a) too many parameters or 
complicated coding that lacks flexibility to accommodate real-life constraints, (b) too many 

                                                 
4 Comparison among computers can be found at http://www.specbench.org/ 



parameters that are difficult to calibrate or even understand, and (c) solution approaches that 
are markedly tailored to perform well on the benchmark problems but that may lack 
generality and robustness in real-life problems. Golden et al. (1998) indicates that algorithms 
should be compared not only by the number of parameters but also by how intuitive and 
reasonable these parameters are from a user’s perspective. To avoid excessive “tailoring”, all 
the results presented in this research use the exact same procedure and parameter values in all 
cases, i.e. the same code, with the parameters described in Section four, and the same 
parameter values.  The exact same parameters are used not only in different types of problems, 
e.g. soft vs. hard, but also in different types of instances, e.g. R1 and C2.  Travel time 
calculations were performed using the algorithm presented in Appendix A. It is also assumed 
that the algorithm does not “know” anything regarding the type of problem or its 
characteristics, e.g. average number of customers per route, binding constraints, or lower 
bounds.  This type of information can be exploited to reduce computational times, e.g. usage 
of lower bounds (Figliozzi, 2008), but if new parameters, steps, or lines of code are needed 
they have to be explicitly stated to provide a level playing field when it comes to comparisons 
among algorithms.  
 

1) Constant speed problems with soft time windows 
The first set of results corresponds to the extensively studied Solomon instances with constant 
travel speeds; results are presented in Table 1. In these instances the primary objective is to 
minimize the number of vehicles and the secondary objective to minimize travel distance. The 
first row presents the combination of the absolute best solutions found to date which have 
been obtained by different researchers, algorithms, machines, and computational times 
(Donati et al., 2008, SINTEF, 2008).  
 

Table 1. VRPTW Results for classical Solomon Instances – Constant Speed 
Average Number of Vehicles by Problem Class    

Method  R1  R2  C1  C2  RC1  RC2 

(1) Best  Ever (1987‐…)  11.92 2.73 10.00 3.00 11.50  3.25
(2) Taillard et al. (1997)  12.64 3.00 10.00 3.00 12.08  3.38
(3) Donati et al.  (2008)  12.61  3.09  10.00  3.00  12.04  3.38 
(4) IRCI  12.58  3.00  10.00  3.00  12.12  3.38 

Average Distance                   

Method  R1  R2 C1 C2 RC1  RC2

(1) Best  Ever (1987‐…)  1,210  952  828  590  1,384  1,119 
(2) Taillard et al. (1997)  1,220 1,013 828 591 1,381  1,199
(2) Donati et al.  (2008)  1,199  967  828  590  1,374  1,156 
(4) IRCI  1,248  1,124  841  626  1,466  1,308 

Computation time for all 56 problems: (1) different authors, machines and computation times; 
(2) Sun Sparc 10, 261 min; (3) Pentium IV 2.66 GHz, 168 min (4) Dell Latitude D430, 1.2 GHz, 
19.0 min 

 
The second row presents the results of Taillard et al. (Taillard et al., 1997) using the tabu 
search algorithm for soft time window problems and constant travel speed that was 



implemented by Ichoua et al (Ichoua et al., 2003). Taillard et al. reported better results but at 
the expense of significantly longer computational times. The results reported by Taillard et al. 
and Donati et al. are average results and computation times over independent runs.  
 
 The performance of the IRCI algorithm, in relation to other approaches that can solve 
problems with both soft and hard time windows have been used in time dependent problems, 
is somewhat comparable. The IRCI solutions have relatively low computational times – an 
average of 21.3 seconds for each 100 customer problem but comparisons in terms of speed 
with Taillard et al. (1997) are difficult. Computers and their architecture have evolved 
significantly in the last 10 years. However, the IRCI is faster than the method presented by 
Donati et al (2008). In terms of solution quality, the IRCI is outperformed by the best local 
search approaches (Braysy and Gendreau, 2005b). The IRCI solutions are, on average, 
slightly less than 4% from the best results ever obtained for the Solomon instances with 
constant travel times. The IRCI can obtain slightly better performances, around 3%, in terms 
of number of vehicles with longer computational times or by tailoring some parameters to 
each problem type. However, to avoid any kind of “distortion”, the same general code is 
utilized to obtain all the results presented in this section. 
 

Table 2. VRPTW Results – Hard Time Windows 
Average Number of Vehicles by Problem Class   

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD1  11.67  2.82  10.00  3.00  11.38  3.25 
(2) TD2  10.75  2.55  10.00  3.00  10.50  2.88 
(3) TD3  9.92  2.27  10.00  3.00  10.00  2.75 

Average Distance                   

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD1  1,295 1,216 879 657 1,405  1,444
(2) TD2  1,258  1,244  864  654  1,395  1,454 
(3) TD3  1,237  1,269  880  697  1,362  1,434 

Average Travel Time             

Travel time Distribution  R1 R2 C1 C2 RC1  RC2

(1) TD1  1,080  990  729  563  1,164  1,177 
(2) TD2  897  861  644  495  989  993 
(3) TD3  793 774 608 485 860  867

Computation time for all 56 problems: (1) TD1,  19.1 min; (2) TD2, 17.7 min;  (3) TD3, 17.3 min – 
in all cases using Dell Latitude D430, 1.2 GHz 

 
2) Time dependent problems with hard time windows 

The second set of results corresponds to the Solomon instances with time dependent travel 
speeds and soft time windows. In these instances the primary objective is to minimize the 
number of vehicles, the secondary objective is to minimize time and distance traveled.  
 
To the best of the author’s knowledge this is the first reporting of Solomon instances with 
hard time windows and time dependent speeds; results are presented in Table 2. As expected, 



with increased travel speeds, the number of vehicles is reduced significantly. However, there 
is relatively minimal change in the distance traveled. Time traveled decreases as average 
travel speed increases though not at the same rate.  Results for problem sets C1 and C2 are 
largely unchanged due to the binding constraint of the vehicle capacity.  
 

3) Time dependent problems with soft time windows 
  
The second set of results corresponds to the Solomon instances with time dependent travel 
speeds and soft time windows; results are presented in Table 3. In these instances the primary 
objective is to minimize number of vehicles, the secondary objective is to minimize time 
window violations, and the tertiary objective is to minimize the soft time window penalties 
and distance traveled. Table 3 presents the results in terms of fleet size, distance, and travel 
time.  
 

Table 3. VRPTW Results – Soft time windows 
Average Number of Vehicles by Problem Class    

Travel time Distribution  R1  R2 C1 C2 RC1  RC2

(1) TD4  10.42  2.82  10.00  3.00  10.50  3.00 
(2) TD5  10.42 2.64 10.00 3.00 10.63  3.00
(3) TD6  10.58  2.73  10.00  3.00  10.75  3.00 

Average Distance       

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  1,142  1,010  856  666  1,241  1,135 
(2) TD5  1,131  1,016  860  665  1,226  1,156 
(3) TD6  1,127  1,016  869  660  1,236  1,149 

Average Travel Time             

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  1,139 1,023 871 669 1,237  1,150
(2) TD5  1,134  1,039  884  672  1,220  1,184 
(3) TD6  1,143  1,061  938  685  1,253  1,213 

Computation time for all 56 problems: (1) TD4,  19.5 min; (2) TD5, 19.6 min;  (3) TD6, 19.4 min – 
in all cases using Dell Latitude D430, 1.2 GHz 

 
 
The travel speed distributions TD4, TD5, and TD6 are listed in increasing order of travel 
speed variability. Without changing overall average speed, travel speed variability worsens 
the results in terms of number of vehicles for R1 and RC1 problems. Results in terms of 
distance traveled have little variation. Travel time slightly increases. Problem sets C1 and C2 
are mostly unchanged because the binding constraint is vehicle capacity.  
 
As customary in the VRP with time windows literature, Table 4 reports the number of soft 
time windows used, broken down into early and late service times as well as the penalty paid 
for early or late services. Usage of early soft time windows is more prevalent than the usage 



of late time windows.  As expected, time window violations and penalties decrease as the 
number of vehicles used increases.   
 

Table 4. VRPTW Results – Soft time windows 
Average Number of Soft Time Windows (early)    

Travel time Distribution  R1  R2 C1 C2 RC1  RC2

(1) TD4  20.5  20.1  15.8  18.6  21.1  21.3 
(2) TD5  20.4 19.9 18.6 14.9 22.1  21.1
(3) TD6  20.4 20.1 16.1 13.9 21.3  21.5

Average Number of Soft Time Windows (late) 

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  18.0  13.6  8.2  17.0  16.3  14.1 
(2) TD5  17.5  12.5  8.7  10.4  14.5  14.8 
(3) TD6  15.8  12.5  6.2  8.4  15.1  15.1 

Soft Time Window Penalties (early)    

Travel time Distribution  R1  R2 C1 C2 RC1  RC2

(1) TD4  386.6 1,516.3 516.5 3,025.5 381.7  1,718.9
(2) TD5  425.1 1,609.4 861.5 1,467.7 448.5  1,664.4
(3) TD6  419.3  1,559.1  657.2  1,697.8  446.2  1,508.2 

Soft Time Window Penalties   (late)

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  210.4  681.2  480.5  3,267.1  197.8  695.9 
(2) TD5  208.2  637.6  547.6  1,797.7  173.2  692.1 
(3) TD6  187.6 629.5 363.2 1,708.8 189.2  787.8

 

8. Computational Complexity 
 
The relative simplicity of the IRCI allows for a straightforward algorithmic analysis. The 
auxiliary heuristic rH is called by the construction algorithm no more than | |nW Δ  times; 
where n  is the number of customers. Hence, the asymptotic number of operations of the 
construction algorithm is of order r( | | ( ( ) ) )nW O nΔ H  where r( ( ) )O nH  denotes the 
computational complexity of the auxiliary algorithm to route n customers.  Hence, the 
complexity and running time of the auxiliary heuristic rH will have a substantial impact on 
the overall running time.  
 
The improvement procedure calls the construction procedure a finite number of times. The 
number of calls is bounded by the number of routes | |R m= . Let in be largest number of 

customers contained a subset of routes u  that is improved in each iteration of iH . The 

computational complexity of a call to the construction algorithm is then r( | | ( ( ) ) )i in W O nΔ H .  



The complexity of the iH  algorithm is then of order r( | | ( ( ) ) )i iO mn W O nΔ H  where in n<   
if u m< . 
 
If constant speed intervals are used to represent time dependent speeds and the depot working 
time 0 0[ , ]e l  is partitioned into p  time periods, the computational complexity of the service 

start time algorithms, ybH  and yfH  is of order ( )O np . Each travel time calculation between 

any two customers has a computational complexity ( )O p -- see Appendix A.  
 
To test the increase in computational running time, instances with different numbers of 
customers are run. Firstly, the first 25 and 50 customers of each Solomon problem are taken 
to create instances with n = 25 and ( )O np =50 respectively. Secondly, to create and instance 
with n = 200 customer, for each customer in the original Solomon problem a “clone” is 
created but with new coordinates but still keeping the characteristics of the problem as 
clustered, random, or random-clustered.  
 
The summary results for each problem size are shown in Table 5. The results are expressed as 
the ratio between each average running time and the running time for n = 25. To facilitate 

comparisons, the corresponding increases in running time ratios for 2( )O n  and 3( )O n  are 
also presented.  
 

Table 5. VRPTW Average Run Time Ratios – TD3 
       

n   2( )O n   3( )O n   Ratio  % 3( )O n  

25  1  1  1.0  100%
50  4  8  3.3  41%
100  16  64  17.4  27%
200  64 512 90.5 18%

       

 
The results indicate that the average running time is increasing by a factor of 2( )O n . This is 
expected from the complexity analysis as the complexity of the nearest neighbor heuristic rH  

has a worse case of 2( )O n . As customer size n  increases, the ratio as a % of the 3n  growth 
factor is decreasing – see last column of Table 5. 
 

9. Conclusions 
 
Readily replicable time dependent instances with 100 customers were presented and solved 
with a new route construction and improvement algorithm. This is the first research effort to 
publish solutions to time dependent problems with hard time windows using standard and 
replicable instances. The computational results indicate that the proposed IRCI algorithms can 



solve soft and hard time window time-dependent vehicle routing problems in relatively small 
computation times. Furthermore, the analysis and experimental results of the computational 
complexity indicate that average computational time increases proportionally to the square of 
the number of customers.  
 
The solution quality of the new algorithm appears to be comparable to other approaches that 
can be used to solve constant speed and soft time windows problems with time dependent 
speeds. However, the proposed IRCI approach seems to have an advantage in TDVRP with 
hard time windows; problems that cannot be readily tackled by local search heuristics and 
have not yet been studied in the literature.  
 
The relative low computational complexity, simplicity, and generality of the IRCI are 
important factors in real-world applications with constant and time dependent travel times. 
The algorithms are relatively simple and flexible and their parameters are intuitive. This is a 
substantial benefit in practical implementations.  Two different methods were proposed to 
group routes and future research efforts may explore alternative grouping methodologies as 
well as route construction approaches.  
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Appendix A 
 
Unlike the algorithms presented in Section 4, the calculation of travel times is dependent on 
the specific data format and speed functions. Travel times from any two given customers i and 
j are calculated using an iterative forward calculation from the arrival time at customer i. The 
depot working time 0 0[ , ]e l  is partitioned into p  time periods 1 2, , ..., pT T T=T ; each period 

kT  has an associated constant travel speed ks .  The algorithm is adapted from Ichoua et al. 
(Ichoua et al., 2003): 
 
Data:  

1 2, , ..., pT T T=T ,  and corresponding travel speeds 

, ,i j iv v a :  given any two customers and the arrival time to customer i  
START 
if  ia < ie  then 

 i i ib e g← +  

else i i ib a g← +  
end if   
find k, k i kt b t≤ ≤   

/j i ij ka b d s← +  
,ij id d t b← ←  

while j ka t>   do 

( ) kkd d t t s← − −   

kt t←  

1/j ka t d s +← +  

1k k← +  
end while  
 
Output:   

ja , arrival time at customer j 

END rH  
 
The algorithm is guaranteed to find the arrival time in no more than p iterations.  

  
 


