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ABSTRACT 

This paper studies approximations to the average length of Vehicle Routing Problems (VRP) 

with time window, route duration, and capacity constraints. The approximations are valuable 

for the strategic and planning analysis of transportation and logistics problems. Using 

asymptotic properties of vehicle routing problems and the average probability of successfully 

sequencing a customer with time windows a new expression to estimate VRP distances is 

developed. The increase in the number of routes when time constraints are added is modeled 

probabilistically. This paper introduces the concept of the average probability of successfully 

sequencing a customer with time windows. It is proven that this average probability is a 

unique characteristic of a vehicle routing problem. The approximation proposed is tested in 

instances with different customer spatial distributions, depot locations and number of 

customers. Regression results indicate that the proposed approximation is not only intuitive 

but also predicts the average length of VRP problems with a high level of accuracy.  
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1. INTRODUCTION 

In many logistics problems it is necessary to estimate the distance that a fleet of vehicles 

travel to meet a set of customer demands. Traveled distance is not only an important element 

of carriers’ variable costs but it is also a key input in tactical and strategic models to solve 

problems such as facility location, fleet sizing, and network design.   

The transportation decisions associated with high value - high time sensitive products, are 

the most demanding activities in terms of transport service requirements and usually require 

service within a hard time windows (Figliozzi, 2006). Time windows are a key constraint also 

for make to order-JIT production systems as well as emergency repair work and express 

(courier) delivery services. Time windows have a significant impact on decreasing the 

efficiency of routes, reducing service areas, and significantly increasing distance travelled 

(Figliozzi, 2007).   

Despite the growing implementation of customer-responsive and made-to-order supply 

chains, the impact of time window constraints and customer demand levels on average VRP2 

distance traveled has not yet been studied in the literature. The existing body of literature has 

mostly focused on the estimation of distances for either the Traveling Salesman Problems 

(TSP) or the capacitated vehicle routing problems (CVRP). This research provides an intuitive 

and parsimonious mathematical framework to estimate average distances in VRP problems.  

The paper is organized as follows: Section two provides a literature review. Section three 

presents asymptotic results for the VRP and expressions to estimate the additional number of 

routes due to time window constraints. Section four presents a new expression to estimate 

distance traveled. Section five describes the experimental design and test results. Section six 

ends with conclusions.     

2. LITERATURE REVIEW 

A seminal contribution to the estimation of the length of a shortest closed path or tour 

through a set of points was established by Beardwood et al. (1959) . These authors 

demonstrated that for a set of n points distributed in an area A , the length of the TSP tour 

through the whole set asymptotically converges, with a probability of one, to the product of a 

constant k  by the square root of the number of points and the area, i.e. k nA  when n →∞ .  

 The asymptotic validity of this formula for TSP problems was experimentally tested by 

Ong and Huang (1989) using a nearest neighbor and exchange improvement heuristics. With 
                                                 
2 Hereafter, VRP denotes vehicle routing problems with time window, route duration, and capacity constraints. 
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an Euclidian metric and a uniform distribution of customers the constant term has been 

estimated at 0.765k =  (Stein, 1978). For reasonably compact and convex areas, the limit 

provided by Beardwood et al. converges rapidly (Larson and Odoni, 1981). Jaillet (1988) 

estimated the constant 0.97k =  for a Manhattan metric.  

Approximations to the length of capacitated vehicle routing problems were first published 

in the late 1960’s and early 1970’s (Webb, 1968, Christofides and Eilon, 1969, Eilon et al., 

1971). Webb (1968) studied the correlation between route distance and customer-depot 

distances. Eilon et al. (1971) proposed several approximations to the length of CVRP based 

on the shape  and area of delivery, the average distance between customers and the depot, the 

capacity of the vehicle in terms of the number of customers that can be served per vehicle, and 

the area of a rectangular delivery region.  

Daganzo (1984) proposed a simple and intuitive formula for the CVRP length when the 

depot is not necessarily located in the area that contains the customers.  

2 / 0.57) rn Q nACVRP(n ≈ +  

In this expression ( )CVRP n is the total distance of the CVRP problem serving n customers, the 

average distance between the customers and the depot is r , and the maximum number of 

customers that can be served per vehicle is Q . Hence, the number of routes m  is a priori 

known and can be calculated as /n Q .  Daganzo’s approximation can be interpreted as having: 

(a) a term related to the distance between the depot and customers and (b) a term related to the 

distance between customers. The coefficients of Daganzo’s approximation were derived 

assuming 6Q >  and 24n Q> . Daganzo’s approximation works better in elongated areas as the 

routes were formed following the “strip” strategy. Robuste et al. (2004) tested Daganzo’s 

approximation using simulations and elliptical areas; they propose adjustments based on area 

shape, vehicle capacity, and number of customers. A dissertation produced by Erera (2000) 

extended the  usage of continuous approximations to estimate the distance of detours and 

routes in a stochastic version of the CVRP.  

Chien (1992) carried out simulations and linear regressions to test the accuracy of 

different models to estimate the length of TSP.  Chien tested rectangular areas with 8 different 

length/width ratios ranging from 1 to 8 and circular sectors with 8 different central angles 

ranging from 45 to 360 degrees. Exact solutions to solve the TSP problems were used and the 

size of the problems ranged from 5 to 30 customers. The depot was always located at the 

origin, i.e. the left-lower corner of a rectangular area. Chien randomly generated test problems 

and using linear regressions found the best fitting parameters. The mean absolute percentage 
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error (MAPE) was the benchmark to compare specifications. Chien finds that the lowest 

MAPE for the best model is equal to 6.9%.   
22.1 0.67 0.99 6.9) r RnRTSP(n MAPE≈ + = =    

In this expression, ( )TSP n is the total distance of the TSP problem serving n  customers. The 

area of the smallest rectangle that covers the customers is denoted R .  The usage of R  instead 

of the total area, A ,  containing all customers may not be convenient for planning purposes 

when there may be many possible subsets of customers that are not known a priori. Chien 

also estimated the previous models for each of the 16 different regions; linear regression 2R  

and MAPE  are reported for each type of region and model. The estimated parameters change 

according to the shape of the region.  

Kwon et al. (1995) also carried out simulations and linear regressions but in addition to 

Chien’s work also used neural networks to identify better approximations. To test the 

accuracy of different models they tested TSP problems in rectangular areas with 8 

length/width ratios ranging from 1 to 8.  Models were estimated with the depot being located 

at the origin and at the middle of the rectangle. The sizes of the problems range from 10 to 80 

customers.  Kwon et al. proposed approximations that make use of the geometric information 

proportioned by the ratio length/width of the rectangle and a shape factor S . The results 

obtained for the depot located at the origin are as follows: 
2[0.83 0.0011( 1) 1.11 /( 1)] 0.99 3.71) n S n RnATSP(n MAPE≈ − + + + = =   
20.41 [0.77 0.0008( 1) 0.90 /( 1)] 0.99 3.61) r n S n RnATSP(n MAPE≈ + − + + + = = . 

By accounting for the shape of the area, Kwon et al. improved the accuracy of the 

estimations although this came at the expense of adding two extra terms. dR is defined as the 

area of the smallest rectangle that covers the customers and the depot; with the depot located 

at the center of the rectangle the results obtained by Kwon et al. are as follows: 
2[0.87 0.0016( 1) 1.34 /( 1)] 0.99 3.88) dn S n RnRTSP(n MAPE≈ − + + + = =   
21.15 [0.79 0.0012( 1) 0.97 /( 1)] 0.99 3.70) dr n S n RnRTSP(n MAPE≈ + − + + + = =    

It can be observed that MAPE slightly increases when the depot is located at the center of 

the rectangle. Kwon et al. also used neural networks to find a model that better predicts TSP 

length. They concluded that the capability of neural networks to find “hidden” relationships 

provides a slight advantage against regression models. However, the models are less 

parsimonious and the approximations harder to interpret in geometric terms.  
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A simple and intuitive analytical model of VRP with time window constraints is provided 

by Daganzo (1987a, 1987b). Daganzo divides a day into time periods or bins of equal length 

and then clusters customers in rectangles. Each customer is then placed in a balanced time 

period or bin, consistent with his or her time window; this allows a simplification of the 

problem as customer individual time window characteristics are now associated with a time 

period. Using this time bin-cluster first-route second approach, Daganzo analyzes main 

routing tradeoffs and determines that distance traveled is a function of the square root of the 

number of time periods and that lower distances are possible when routes are allowed to 

overlap. Different approximations are provided if the dominant constraint is either vehicle 

capacity or route duration. Although Daganzo’s formulas are useful and intuitive they are not 

easily applied to estimate VRP distance since his approach does not guarantee feasibility. 

Unfortunately, no systematic method or general expression for clustering and determining the 

number of periods that guarantees balanced periods and feasible routes is provided.   

Approximations to the average length of vehicle routing problems have recently been 

contributed by Figliozzi (2008b) to estimate VRP distance when the number of customers 

served ( )n and the number of routes ( )m  are given. The formula proposed accounts for the 

tradeoffs between connecting distance and local tour distance as the number of routes 

increases: 

( ) 2l
n mVRP n k An m r

n
−

≈ + . 

The term ( ) /n m n−  is shown to improve MAPE values in problems with capacity constraints, 

time windows constraints, and a varying number of customers served ( )n .  

3. CHARACTERIZATING THE IMPACT OF TIME WINDOW CONSTRAINTS 

This section introduces a probabilistic approach to capture the impact of time windows on 

distance traveled for VRP instances that serve {1, 2,...., }N n=  customers. Associated with 

each customer i N∈ there is a quintuplet ( , , , , )i i i i ix q s e l  that represents, respectively, the 

coordinates, demand, service time, earliest service starting time, and latest service ending 

time. The depot quintuplet is denoted 0 0 0 0 0( , , , , )x q s e l  with 0 00, 0q s= = and 0 0e = . The 

distance between each customer i N∈  and the depot is denoted ( )id x ; feasibility conditions 

include ( )i id x l≤ , 02 ( )i id x s l+ ≤ , and iq Q≤ .  Customers with time windows are drawn from 

a probability measure ν  with bounded support. Without loss of generality, attributes of the 

quintuplet are scaled and shifted so they belong to the real interval [0,1] . The coordinates ix  
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are independently and identically distributed according to a distribution with compact support 

in 2ℜ , [0,1] [0,1]× ; the customer parameters ( , , , )i i i iq s e l  are drawn from a joint probability 

distribution Φ  with a continuous density function φ . The support of φ  is the feasible subset 

of 4
1 2 3 4( , , , ) [0,1]x x x x ∈ . It is also assumed that costumer locations and their parameters are 

independent of each other.  

Customers without time windows are drawn from the same probability measure but their 

time windows are relaxed, i.e. ( , )i ie l is replaced by 0 0( , )e l . The “relaxed” probability measure 

is denoted μ , whose support is the feasible subset of 2
1 2( , ) [0,1]x x ∈ with 3 40, 1x x= = . The 

expected number of routes needed to serve n  customers with and without time windows is 

denoted ( )m nν and ( )m nμ respectively. 

Known results for the capacitated vehicle routing problem (Bramel et al., 1992) indicate 

that: 
* ( , )lim 2 ( )n

CVRP n E d
n μ

μ γ→∞ =  

where 0μγ >  is a constant that depend only on μ , ( )E d  is the expected distance between 

the depot and customers, and *( )CVRP n is the best VRP solution for travel distance. The ratio

1/ μγ  is the average number of customers per route. Similar results can be derived for the 

vehicle routing problem with time windows   (Bramel and Simchi-Levi, 1996, Federgruen and 

Van Ryzin, 1997):  
*( , )lim 2 ( )n

VRP n E d
n ν

ν γ→∞ = . 

The next lemma provides a useful bound for the additional number of routes due to time 

window constraints.   

Lemma 1. The contribution of time windows to the distance traveled is bounded. 

Asymptotically, the number of additional routes due to time window constraints can be 

expressed as kn , being k  a constant such that 0 1k≤ ≤ .  

Proof.  Asymptotically, the contribution of time windows to the distance travelled per 

customer can be expressed as 2 ( ) ( )n E d ν μγ γ− . The increase in the number of routes due to 

time windows, denoted mνμ , can be approximated by ( ) ( ) ( ) ( )m n n m n m nνμ ν μ ν μγ γ= − = − . 

There cannot be more routes than customers, hence 1 νγ≥ . Time windows, additional 

constraints, cannot reduce the VRP distance; hence ( ) 0ν μγ γ− ≥ .   
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The increase in the number of routes when time constraints are added is modeled 

probabilistically. Given any two customers ,i j N∈  there is a probability ijp  that a vehicle can 

successfully visit customer j  after visiting customer i  without violating 'j s  time window. In 

general, ijp  is a random variable that will depend on the probability measure ν . The goal is 

to find an expression that provides the average number of additional vehicles needed due to 

time window constraints, i.e. ( )m nνμ . An exact solution using ijp  is likely to be intractable 

and to the best of the author’s knowledge there is no general analytical expression that can be 

used to estimate the impact of time window constraints on VRP distances.  

To model ( )m nνμ , the concept of an average probability of successfully sequencing any 

given customer with time window constraints is introduced; let’s denote this average success 

probability pν . Let’s denote 1/b μγ=  as the average number of customers per route or “bin” 

without time window constraints. The probability associated to finding a feasible route with 

c b≤  customers, each with time window constraints, can be expressed as: 
1( ) ( )cp c pν
−=  

By definition (1) 1p =  because it is assumed that all customers can feasibly be served from 

the depot. When 1b =  the number of routes is simply m n= . When 2b = , the number of 

expected routes needed to serve n  customers can be expressed as the weighted sum of routes 

with one and two customers: 

(2) (1 (2) )
2
n p n p+ −  

and generalizing for any b : 

1 1

( )[ ( )] (1 ( ) )
bc b

c j c

n p cE m n p j
cν

=

= = +

= −∑ ∏ .       

A similar expression can be found in the work of Diana et al. (2006) which estimated 

demand responsive transit fleet sizes. The expected number of additional routes due to time 

window constraints, [ ]E mνμ , can be expressed as: 

1 1

( )[ ( )] [ (1 ( ) ) ]
bc b

c j c

n p c nE m n p j
c bνμ

=

= = +

= − −∑ ∏       (1) 

Lemma 2. The expected number of additional routes due to time window constraints,

[ ( )]E m nνμ , is a continuously decreasing function of pν  .  
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Proof. The complete proof is presented in Appendix A; a sketch of the proof is presented 

in this section. The sum of weight factors ( )w c  

1

( ) ( ) (1 ( ) )
b

j c

w c p c p j
= +

= −∏  

adds up to one 

1 1 1

( ) ( ) (1 ( ) ) 1
bc b c b

c c j c

w c p c p j
= =

= = = +

= − =∑ ∑ ∏
 
. 

As pν  increases from zero to one, the weight factors are shifted from 1c =  to c b= , hence, 

the sum 

1

( )c b

c

n w c
c

=

=
∑   

decreases as sp  increases.  

 

Lemma 3. The expected number of additional routes due to time window constraints

[ ( )]E m nνμ  is bounded between (0, / )n n b− . The value of [ ( )]E m nνμ  is a fraction of the 

number of customers.    

Proof.  By substitution, it can be shown that [ ( )] /E m n n n bνμ = −  when 0pν =  and

[ ( )] 0E m nνμ =  when 1pν = . Since [ ( )]E m nνμ  is a decreasing function it is bounded between

(0, / )n n b− . 

 

Theorem 1.  A routing problem with customers drawn from a probability measure ν  has 

a unique pν  such that [ ( )] ( )E m n nνμ ν μγ γ= −  as n →∞ . 

Proof. Asymptotically, the additional number of routes is ( ) ( )m n nνμ ν μγ γ= − with

0 ( ) 1ν μγ γ≤ − ≤ . Due to Lemma 2 and 3, [ ( )]E m nνμ is a continuously decreasing function. 

Hence, there is a unique pν  such that [ ( )] ( )E m n nνμ ν μγ γ= − . 

Corollary. The value of 1 pν− , the average probability of “failing” to sequence a 

customer with time window constraints provides a measure, in a scale (0,1) , of the impact of 

time window constrains on VRP distance. As 1 pν−  increases the relative impact of time 

windows constraints on the number of routes and the distance traveled increases. 
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4.  APPROXIMATING VRP DISTANCES 

This section provides an approximation to VRP distance assuming a distribution center 

that serves a set of {1, 2,...., }N n=  customers on any given day or time period. The number of 

daily requests may vary but it never exceeds n , i.e. n n≤ . The total number of customers 

with time windows is denoted tn , tn n≤ , and the total demand is denoted N i
i N

q q
∈

= ∑ . The 

focus of this research is the derivation of general approximations to the average distance 

traveled to serve a total of n  customers with tn  time windows, 1 n n≤ ≤ and 0 tn n≤ ≤ . This 

average distance is denoted ( , , )tVRP n n ν .  Instances of daily demands are formed by joining

tn  customers, drawn according to a probability measure ν , and tn n−  customers drawn 

according to probability measure μ . A customer has a time window if either 0ie e> or 0il l< .  

The value of pν  is approximated as the value that minimizes the absolute value of the 

difference: 

1 1

( )min | ( ) (1 ( ) )|
bb

c j c

n p cm n p j
cν

= = +

− −∑ ∏          (2)  

s.t.: 1( ) ( )cp c pν
−= , 0 1pν≤ ≤ , and  / ( )b b n m nμ≈ = . 

From Theorem 1, it is guaranteed that there is only one pν  that minimizes the absolute value 

of (2). The value of ( )m nμ and ( )m nν  can be estimated by sampling from the respective 

distributions and determining the number of routes need.  
To estimate the number of additional routes due to time windows when 0 tn n< < , it is 

necessary to model how time windows are distributed among routes. Assuming a binomial 

distribution, the probability of having a route with k  time windows out of c  customers is: 

( )( ; , ) (1 )
t

c k c k
n k t tbinomial k c p p p −= −  

where: 

( ) !
!( )!

c
k

c
k c k

=
−

’ 

k =  number of successes in b trials, 

c =  number of independent trials, and 

/t tp n n= =  the probability of success on each trial. 

Then, the number of additional routes to serve a total of n  customers with tn  time windows 

can be approximated as follows: 
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1 1

( , , , )( , ) (1 ( ) ) ] ( )
bb

t
t

c j c

n p c n nm n n p j m n
cνμ μ

ν
= = +

= − −∑ ∏  

where 1

0
( , , , ) ( ; , ) ( )

t

c
k

t n s
k

p c n n binomial k c p pν −

=

=∑ . 

Approximating the number of routes related to “bin-packing” constraints such as vehicle 

capacity or tour duration is relatively straightforward: 

0 0

( ) max( , )Nq nm n
Q l eμ

τ⎡ ⎤⎡ ⎤
≈ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥

 

where τ  is the sum of estimated travel time plus service time per customer. 

Although asymptotic results indicate that number of routes is the only essential factor to 

estimate VRP distances, the literature review has shown that the best approximations to VRP 

distance account for (a) a term related to the distance traveled between the depot and 

customers and (b) a term related to the distance traveled between customers. The proposed 

approximation (3) also accounts for both types of distances but adding terms to estimate the 

additional impact of time windows. 

( , , ) 2 ( ) 2 ( , )m m
t t tVRP n n k nA k n A k r m n k r m n nμ λμ μ μ μ νμ νμν γ≈ + + +    (3) 

The vector of coefficients ( , , , )m mk k k kμ λμ μ νμ  is estimated by linear regression. The 

coefficients mkμ  and mkνμ  are related to the distance generated by the number of routes needed; 

the coefficients kμ  and kλμ  are related to the intercustomer distance, as in Beardwood et al. 

(1959). If tk n Aν  and k nAμ  approximate the intercustomer distance with and without time 

windows respectively, then, kνμ  represents the change in intercustomer distance when time 

window constraints are added: 

t tk n A k nA k n Aν μ νμ= +  where k k kνμ ν μ= −  and tn n= . 

The other two remaining coefficients relate to the number of routes as follows: 

( )m n nμ μ μγ γ→  as n →∞ , and  

( , ) ( ) tm n n nνμ νμ ν μγ γ γ→ −  as n →∞ . 

The next section describes the experimental setting where approximation (3) is tested. 
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5. EXPERIMENTAL SETTING AND RESULTS 

The experimental setting is based on the classical instances of the VRP with time windows 

proposed by Solomon (1987). The Solomon instances include distinct spatial customer 

distributions, vehicles’ capacities, customer demands, and customer time windows. These 

problems have not only been widely studied in the operations research literature but the 

datasets are readily available.  

The well-known 56 Solomon benchmark problems for vehicle routing problems with hard 

time windows are based on six groups of problem instances with 100 customers. The six 

problem classes are named C1, C2, R1, R2, RC1, and RC2. Customer locations were 

randomly generated (problem sets R1 and R2),   clustered (problem sets C1 and C2), or mixed 

with randomly generated and clustered customer locations (problem sets RC1 and RC2). 

Problem sets R1, C1, and RC1 have a shorter scheduling horizon, tighter time windows, and 

fewer customers per route than problem sets R2, C2, and RC2 respectively. Random samples 

of the Solomon problems are used to examine the accuracy of models. Out of N =100 

possible customers in a service area A , a problem or instance is formed by a subset of n 

randomly selected customers. Using the first instance of the six problem types proposed by 

Solomon, 15 subsets of customers of sizes 70, 60, 50, 40, 30, 20, and 10 were randomly 

selected from the original 100 customers; 70n = . All problem instances in this research were 

solved with a VRP improvements heuristic that has obtained the best published solution in 

terms of number of vehicles (Figliozzi, 2008a). 

Real-world routes have a relatively small number of customers per route due to capacity, 

time windows, or tour length constraints (Figliozzi et al., 2007). For example, in Denver over 

50% of single and combination truck routes include less than 6 stops (Holguin-Veras and 

Patil, 2005) and 95% of the truck routes include less than 20 stops. This research tests the 

proposed VRP distance approximation in instances that range from 1 to over 35 customers per 

route. To obtain this range of customers per route, new instances were systematically created 

varying the levels of customer demand and the percentages of customers with time windows. 

To test different levels of customer demand, new instances were created applying the 

demand factors presented in Table 1 to each subset of customers. Applying the factors in the 

second row of demand factors in Table 1, the customers have similar demands as in the 

original Solomon problems (the row characterized by all ones [1]). The resulting problems 

using the highest demand multipliers (last row of Table 1) are such that some customers are 

truckload (TL) or almost TL customers.  Increasing some customer demands to or close to the 
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TL level was done in order to test the approximation when problems are highly constrained 

and have a large number of routes. In addition, for each sample, out of the n customers a 

random subset of time windows is turned off; the percentage of customers with time windows 

ranges from 0 to 100%, in increments of 20%. In all cases, route durations were limited by the 

depot time window. For each Solomon problem class, variability is introduced in three 

distinct ways: a) different subsets of customer locations, b) different levels of customer 

demands, and c) different percentages of time window constraints.  

 

Analysis of Experimental Results 

All the regression results presented in this section are obtained forcing the intercept or 

constant term to be zero; this is consistent with previous studies by Chien (1992) and Kwon et 

al. (1995). 

The average probabilities (1 )pν−  of failing to connect any two customers due to time 

window constraints are shown in Table 2. The values of (1 )pν− do reflect the characteristics 

of the underlying problem types. Type 1 problems where time windows are tight result in 

higher (1 )pν−  values. Table 2 also provides an understanding of the relative impact of time 

window constraints on distance traveled. As the level of demand increases, the relative size of 

the “bin” or vehicle capacity is reduced and there is a consequent reduction in the feasible 

number of customers per route. Hence, the impact of time window constraints is reduced as   

capacity constraints become more “binding”. 

The estimated regression parameters disaggregated by problem type are shown in Table 3. 

These parameters are obtained by pooling the data of all different demand levels per problem 

type, i.e. using one set of parameters ( , , , )m mk k k kμ λμ μ νμ for all instances. It is reassuring that the 

regression parameters are not only statistically significant but also reflect the characteristics of 

the underlying problem types. The values of kμ  are lowest and highest for clustered and 

random problems respectively. In all cases the coefficients kλμ  are significant and positive 

which suggests that time window constraints increase the distance traveled between 

customers. The coefficients kλμ  follow a similar trend as the kμ  coefficients; lowest and 

highest values for clustered and random problems respectively. As expected, the values of mkμ  

are slightly less than one but significantly different than zero.  The type C2 coefficients 

demonstrate that although mkνμ  is zero, kλμ  can be positive and significant; i.e. time window 
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constraints increase the intercustomer distance but do not affect the number of routes that is 

determined by capacity constraints.   

To evaluate the prediction accuracy, the MPE  (Mean Percentage Error) and the MAPE

(Mean Absolute Percentage Error) are used and calculated as follows: 

1

1 *100%
p

i i

i i

D EMPE
p D=

−
= ∑     

1

| |1 *100%
p

i i

i i

D EMAPE
p D=

−
= ∑     

Where the actual distance for instance i  is denoted iD  and the estimated distance is denoted

iE . For a given set of instances it is always the case that MPE MAPE≤ . The MPE  indicates 

whether the estimation, on average, overestimates or underestimates the actual distance. The 

MAPE  provides the average deviation between actual and estimated distance as a percentage 

of the actual distance.  

Model fit R2, MAPE, and MPE are displayed for each problem class and pooled data in 

Table 4. The approximation quality is high, particularly for random and random clustered 

problems. The values of MAPE range from 3.4 to 5.6% with an average of 4.5% for the 

pooled data.  As expected, a better fit can be obtained if a regression is run for each demand 

level. Approximation quality, as evaluated by MAPE, improves significantly as shown in 

Table 5.  

6. CONCLUSIONS 

This is the first research effort to study and test approximations to the average length of 

vehicle routing problems when there is variability in the number of customers, time window 

constraints, and demand levels. Based on asymptotic properties of vehicle routing problems, a 

probabilistic modeling approach was developed to approximate the average distance traveled. 

An expression to estimate the number of additional routes needed for a varying number of 

time windows constraints is derived using the average probability of successfully sequencing 

a customer with time windows. It is proven that this average probability is a unique 

characteristic of a vehicle routing problem. This probability also indicates the relative 

importance of time windows constraints on VRP distances. The experimental results 

demonstrate that the quality of the approximation is robust in terms of MAP and MAPE. In 

addition, the estimated regression parameters are intuitive and reflect the characteristics of the 

underlying routing problems.  
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TABLES 

 
Table 1. Demand Factors 

 
Problem  C1 R1 CR1 C2 R2 RC2 

Vehicle Capacity  200 200 200 700 1000 1000 

Max. Demand  50 41 40 41 41 40 

D
em

an
d 
Le
ve
l 

0  0.00 0.00 0.00 0.00 0.00 0.00 

1  1.00 1.00 1.00 1.00 1.00 1.00 

2  1.60 1.78 1.80 3.60 5.68 5.80 

3  2.20 2.56 2.60 6.20 10.36 10.60 

4  2.80 3.34 3.40 8.80 15.04 15.40 

5  3.40 4.12 4.20 11.40 19.72 20.20 

6  4.00 4.90 5.00 14.00 24.40 25.00 

 
 

Table 2. Average Probability (1 ( ))sp ν−  
 

      C1 R1 RC1 C2 R2 RC2

D
em

an
d 
Le
ve
l 

0  13.6% 25.4% 20.5% 0.0% 9.1%  10.6%

1  13.6% 25.4% 20.5% 0.0% 9.1%  10.6%

2  1.2% 23.1% 7.0% 0.0% 1.0% 1.0%

3  0.0% 9.8% 1.4% 0.0% 0.0%  0.0%

4  0.0% 2.6% 0.6% 0.0% 0.0%  0.0%

5  0.0% 1.8% 0.0% 0.0% 0.0% 0.0%

6  0.0% 0.0% 0.0% 0.0% 0.0%  0.0%
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Table 3. Estimated Regression Coefficients by Problem Class 
. 

Problem  kμ   t‐stat  kλμ   t‐stat mkμ   t‐stat  mkνμ   t‐stat 

C101  0.67  24.3  0.25 5.6 0.81 48.5 1.31 6.49 

R101  0.89  54.6  0.32 8.0 0.80 78.5 1.02 24.42 

RC101  0.70  40.8  0.21 4.1 0.94 108.2 0.98 16.51 

C201  0.70  37.5  0.29 10.1 0.78 55.7 ‐‐‐‐‐  ‐‐‐‐‐ 

R201  0.99  48.1  0.41 17.1 0.73 57.9 1.44 16.84 

RC201  0.77  48.8 0.34 12.5 0.88 106.9 1.54 25.87 

 
 

Table 4. Approximation Quality by Problem Class (Pooled data) 
 

Problem R2 MAPE MAP

C101  0.996 5.6% ‐0.6%

R101  0.999 3.4% ‐0.3%

RC101 0.999 3.3% ‐0.5%

C201 0.995 5.8% ‐1.8%

R201 0.997 5.2% ‐0.2%

RC201  0.999 4.0% ‐0.7%

 
 

Table 5. Average Approximation Quality by Problem Class (By Distribution) 
 

Problem R2 MAPE MAP

C101  0.998 3.9% ‐0.7%

R101  0.999 2.5% 0.4%

RC101 1.000 1.9% ‐0.4%

C201 0.994 5.5% 0.3%

R201  0.999 3.1% ‐0.4%

RC201  0.999 2.6% ‐0.3%

 
 
 
  



  18 

APPENDIX A 

 
Lemma 2. The expected number of additional routes due to time window constraints, ( )E mνμ , 

is a continuously decreasing function of pν  .  

1 1

( )( ) [ (1 ( ) ) ]
bc b

c j c

n p c nE m p j
c bνμ

=

= = +

= − −∑ ∏          

Proof. This is a continuous function because it is a linear combination of continuous functions 

of the variable pν . 

The weight factors: 

 
1

( ) (1 ( ) )
b

j c

p c p j
= +

−∏   

are applied to each feasible route with c  customers per route. Developing the sum of weight 

factors and denoting ( ) cp c p= for the sake of brevity: 

1 1

(1 )
bc b

c j
c j c

p p
=

= = +

− =∑ ∏  

1 2 1 3 1 1 2(1 ) .... (1 )(1 )...(1 ) (1 )(1 )...(1 )b b b b b b bp p p p p p p p p p p− − −= + − + + − − − + − − − =
 

making bp a common factor: 

1 2 1 3 1 1 2
1 1 1[1 ( .... (1 )...(1 ) (1 )...(1 )]b b b

b b b b
b b b

p p pp p p p p p p p
p p p− − −

− − −
= + + + − − + − − =

 

making 1 b

b

p
p
−  a common factor: 

1 2 1 3 1 1 2
1[1 [ .... (1 )...(1 ) (1 )...(1 )]]b

b b b b
b

pp p p p p p p p
p − − −

−
= + + + − − + − − =

 

The term 1[1 ] 1b
b

b

pp
p
−

+ = , then: 

1 2 1 3 1 1 2
1 1

(1 ) .... (1 )...(1 ) (1 )...(1 )
bc b

c j b b b
c j c

p p p p p p p p p
=

− − −
= = +

− = + + − − + − −∑ ∏
 

The same process can be continued until: 

2 1 2
1 1

(1 ) (1 ) 1
bc b

c j
c j c

p p p p p
=

= = +

− = + − =∑ ∏ . 

 



  19 

Since 1 1p =  as all customers can be served from the depot without violating time window 

constraints, this proves that: 

1 1

(1 ) 1
bc b

c j
c j c

p p
=

= = +

− =∑ ∏
 

Developing the sum and replacing 1 1( )c c
cp p pν

− −= =  for the sake of brevity, for any sum up 

to b i= : 

1 1

( ) (1 ( ) )
ic i

c j c

n p c p j
c

=

= = +

− =∑ ∏
 

1 2 3
1 1 2

1 0
1 2 2 1 2 2 1

[ (1 ) (1 )(1 ) ...
1 2

... (1 )(1 )...(1 ) (1 )(1 )...(1 )(1 )]
2 1

i i i
i i i

i i i i

p p pn p p p
i i i
p pp p p p p p p

− − −
− − −

− − − −

+ − + − − +
− −

+ − − − + − − − − =  

Making the terms
 
1 , 1,..., 1jp j i− = −  common factors: 

1 2 2 1
1 2 2 1 1[ [(1 )[ [(1 )[.... ... [ [(1 )[ [(1 ) ]]...]]

1 3 2 1

i i
i i pp p p pn p p p p

i i

− −
− −+ − + − + + − + −

−  
For any increase in pν , any , 1,..., 1jp j i= −  will have an increase. However, any increase in

jp  will reduce the term 1 jp− that multiplies the sum of the 1, 2,...., 2,1j j− −  terms. Since 

the sum of the weight factors remains constant and equal to one, as pν increases the weight 

applied to the terms: 
2 3 1

, ,...., , 1
1 2 2

j jp p pn n n n
j j

− −

− −
  

decreases whereas the term 
1jpn

j

−

 increases for any 1,..., 1j i= − . Hence, as pν increases

( )E mνμ decreases. In particular, as pν  increases the term with the largest index always 

increases whereas the term with index one always decreases.  

 

 


