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 Emissions Minimization Vehicle Routing Problem  
 

Abstract 
 

 

Environmental, social and political pressures to limit the impacts associated with green house 
gas (GHG) emissions are mounting rapidly. To date there has been no or limited research 
which seeks to reduce emissions as the primary objective of a routing problem despite the fast 
growth and high impact of commercial vehicles.  In the capacitated vehicle routing problem 
with time windows (VRPTW), it is traditionally assumed that carriers minimize the number of 
vehicles as a primary objective and distance travelled as a secondary objective without 
violating time windows, route durations, or capacity constraints. This research focuses on a 
different problem, the minimization of emissions and fuel consumption as the primary or 
secondary objective. This creates a new type of VRP which is denoted the Emissions Vehicle 
Routing Problem or EVRP. This research presents a formulation and solution approaches for 
the EVRP. Decision variables and properties are stated and discussed. Results obtained using 
a proposed EVRP solution approach under different levels of congestion are compared and 
analyzed.  
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1. Introduction 

The fast rate of commercial vehicle activity growth over recent years and the higher impact of 

commercial vehicles are increasing preexisting concerns over their cumulative effect in urban 

areas. In particular, environmental, social and political pressures to limit the impacts 

associated with greenhouse gas (GHG) emissions and our dependence on fossil fuels is 

mounting rapidly. A key challenge for public transportation agencies companies is to improve 

the efficiency of urban freight and commercial vehicle movements while ensuring 

environmental quality, livable communities, and economic growth.  

Private companies are also interested in reducing GHG emission not only for marketing 

purposes, i.e. the more favorable social perception towards companies that are “greening” 

their operations, but also for economic reasons.  The level of GHG emissions is a proxy for 

fuel consumption in diesel engines and in the near future it is likely that GHG emissions will 

have a monetary cost. Under cap and trade emissions system initiatives currently being 

proposed by the federal United States government (and several state governments), emission 

costs will have a clear economic value, e.g CO2 emissions in $/kg.   

This research aims to formulate, study, and solve a new vehicle routing problem where the 

minimization of emissions and fuel consumption is the primary objective or is part of a 

generalized cost function. In addition, departure times and travel speeds become decision 

variables.  To the best of the author’s knowledge, there is no research or formulation that 

minimizes vehicle emissions when designing routes in congested environments with time-

dependent travel speeds, hard time windows, and capacity constraints. This creates a new type 

of VRP which is denoted the Emissions Vehicle Routing Problem or EVRP. 

This research is organized as follows: Section 2 provides the necessary background and a 

literature review. Section 3 presents the mathematical formulation of the problem. Section 4 

formulates the EVRP. Section 5 describes a solution approach and properties of the emission 

function. Section 6 introduces an algorithm for the EVRP.  Section 7 describes experimental 

results and Section 8 ends with conclusions.  

2. Background and Literature Review 

There is an extensive literature related to vehicle emissions and several laboratory and field 

methods are available to estimate vehicle emissions rates [1]. Research indicates that carbon 

dioxide (CO2) is the predominant transportation GHG and is emitted in direct proportion to 



fuel consumption, with a variation by type of fuel [2]. For most vehicles, fuel consumption 

and the rate of CO2 per mile traveled decreases as vehicle operating speed increases up to 

approximately 55 or 65 mph and then begins to increase again [2]; hence, the relationship 

between emission rates and travel speed is not linear.  

Congestion has a great impact on vehicle emissions and fuel efficiency. In real driving 

conditions, there is a rapid non-linear growth in emissions and fuel consumption as travel 

speeds fall below 30 mph [3]. CO2 emissions double on a per mile basis when speed drops 

from 30 mph to 12.5 mph or when speed drops from 12.5 mph to 5 mph.  Frequent changes in 

speed, i.e. stop and go traffic conditions, increases emission rates because fuel consumption is 

a function of not only speed but also acceleration rates [4]. These results were obtained using 

an emission model and freeway sensor data in California and weighted on the basis of a 

typical light-duty fleet mix in 2005.  The volume of emissions per mile is a function of the 

speed profile from the departure time until reaching destination.  

In congested urban areas with significant speed changes due to recurrent congestion, e.g. 

predictable low speeds due to capacity constraints at peak hours, departure time must be 

considered when designing EVRP routes. The Time Dependent Vehicle Routing Problem 

(TDVRP) takes into account that links in a network have different costs or speeds during the 

day. Typically this is used to represent varying traffic conditions. The TDVRP was originally 

formulated by Malandraki and Daskin [5]. Time dependent models are significantly more 

complex and computationally demanding than static VRP models; recent approaches to solve 

the TDVRP can be found in [6-8]. The reader is referred to [8] for an up-to-date and extensive 

TDVRP literature review.  

TDVRP instances are more data intensive than static VRP instances but their solution is likely 

to achieve environmental benefits in congested area albeit in an indirect way because 

emissions are not directly optimized [9]. Other researchers have conducted surveys that 

indicate that substantial emission reductions can be obtained if companies improve the 

efficiency of routing operations [10, 11]. Woensel et al. [12] used queuing theory to model the 

impact of traffic congestion on emissions and recommend that private and public decision 

makers should take into account the high impact of congestion on emissions. Goodchild and 

Sandoval [13] discuss the factors that affect emissions in urban areas and potential solution 

methods, case studies, and public policy applications. However, no formulation, solution 

methods, or results are provided. To the best of the author’s knowledge, there is no published 

research that deals with the formulation, properties, or solution approaches for the EVRP.  



The EVRP considered in this paper has time windows and capacity constraints as well as 

time-dependent travel times. The paper deals with a static problem, the dispatcher is assumed 

to know the impact of recurrent congestion on travel speeds, i.e morning/evening rush hours. 

For example, in a practical case, the dispatcher/carrier designs the routes the night before the 

route is serviced; the carrier is committed to visit a specific group costumers within a pre-

determined and hard time-window. 

3. Notation 

Using a traditional flow-arc formulation [14], the EVRP with hard time windows and  time 

dependent speeds studied in this research can be described as follows. Let ( , )G V A=  be a 

graph where {( , ) : , }i jA v v i j i j V= ≠ ∧ ∈  is an arc set and the vertex set is 0 1( ,...., )nV v v += . 

Vertices 0v  and 1nv +  denote the depot at which vehicles of capacity maxq  are based.  Each 

vertex in V  has an associated demand 0iq ≥  , a service time 0ig ≥ , and a service time 

window [ , ]i ie l ; in particular the depot has 0 0g =  and 0 0q = . The set of vertices 

1{ ,...., }nC v v=  specifies a set of n  customers. The arrival time of a vehicle at customer 

,i i C∈  is denoted ia and its departure time ib . Each arc ( , )i jv v  has an associated constant 

distance 0i jd ≥  and a travel time ( ) 0i j it b ≥  which is a function of the departure time from 

customer i . The set of available vehicles is denoted K . The cost per unit of route duration is 

denoted tc ; the cost per unit distance traveled is denoted dc ; the cost per unit of emission 

generated is denoted ec ; and the cost per vehicle is denoted kc . The unit costs are finite and 

non-negative real numbers. 

  

Emission Costs 

Emission costs are proportional to the amount of GHG emitted which is a function of travel 

speed and distance traveled.  This assumes a market value for the ton of CO2; however this 

approach may have limitations as it is difficult to estimate social, health, and environmental 

costs [15]. 

To incorporate recurrent congestion impacts and following a standard practice in TDVRP 

models, the depot working time 0 0[ , ]e l  is partitioned into M  time periods 1 1, , ..., MT T T=T ; 



each period mT  has an associated constant travel speed 0 ms≤  in the time interval

[ , ]m m mT t t= .   

For each departure time ib   and each pair of customers i  and j , a vehicle travels a non-empty 

set of speed intervals 1( ) { ( ), ( ),..., ( )}m m m p
ij i ij i ij i ij iS b s b s b s b+ += where ( )m

ij is b  denotes the speed at 

departure time, ( )m p
ij is b+  denotes the speed at arrival time, and 1p + is the number time 

intervals utilized. The departure time at speed  ( )m
ij is b  takes place in period mT , the arrival 

time at speed  ( )m
ij is b  takes place in period m pT + , and 1 m m p M≤ ≤ + ≤ . 

For the sake of notational simplicity the departure time will be dropped even though speed 

intervals and distance intervals are a function of departure time ib .The corresponding set of 

distances and times travelled in each time period are denoted 1( ) { , ,..., }m m m p
ij i ij ij ijD b d d d+ +=  and 

1( ) { , ,..., }m m m p
ij i ij ij ijT b t t t+ += respectively. The following conditions are necessary:  

0
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For heavy duty vehicles, the Transport Research Laboratory has developed a function that 

links emissions and travel speeds [16]: 

3
0 1 2 3 2

1( ) )
( )

l l l
ij ij ijl

ij

s s d
s

α α α α+ + +         (1) 

The coefficients  0 1 2 3{ , , , }α α α α  = {1,576 ; -17.6 ; 0.00117 ; 36,067} are constant parameters 

for each vehicle type and for other vehicle types there may be other polynomial terms or their 

inverse [16]. The optimal travel speed that minimizes emissions is assumed to be the speed

*s , which for expression (1) the value is *s ≈44 mph or 71 kmh.   Expression (1) outputs 



CO2 emissions in Kg/km when the speed is expressed in kmh. As congestion increases, the 

amount and cost of emissions increases dramatically [3], see Figure 1 which has been 

produced for light utility vehicles in California highways real-world conditions. The volume 

of emissions generated by travelling from customer i  to customer j  and departing at time ib   

is denoted ( )ij iv b : 

( )ij iv b = 3
0 1 3 4 2

0

1( ( ) )
( )

l p
l l l
ij ij ijl

l ij

s s d
s

α α α α
=

=

+ + +∑       (2) 

 

Figure 1. CO2 emissions as a function of average speed – source reference [3]. 

 

 

Total emission costs for a departure time ib  is the product ( )e ij ic v b .  Expression (2) provides a 

simple yet good approximation for real-world CO2 emissions vs.  travel speed profiles.  

Finally, in the EVRP, the emission function can be tailored to the travel/path characteristics 

between any two customers i and j. 

4. Problem Formulation 

Two formulations are presented. The first formulation assumes a multi-objective function that 

includes the costs of vehicles, distance travelled, route durations, and emissions.  The second 

formulation follows the more traditional hierarchical approach.  



Formulations of the VRP have only one type of decision variable, k
ijx .There are two decision 

variables in the EVRP formulation; k
ijx  is a binary decision variable that indicates whether 

vehicle k travels between customers i  and j .  The real decision variable k
iy  indicates service 

start time if customer i is served by vehicle k ; hence the departure time is given by the 

customer service start time plus service time k
i i ib y g= + . The real variable k

iy  allows for 

waiting at customer i ; service start time may not necessarily be the same as arrival time, 

formally:    

( )k k
i i i i i ij

j V k K

a g b y g x
∈ ∈

+ ≤ = +∑∑         (3) 

In addition, travel speed is also a decision variable because the amount of emissions is a 

function of travel speed. However, under some mild assumptions, the EVRP problem can be 

simplified as analyzed in Section 5.  It is assumed that vehicle engines are turned off while 

serving a customer (service times are ½ hour or longer); the emissions generated by a stop do 

not change because the total number of stops (customers) is constant. In this reseach stopping 

after leaving a customer is not allowed. 

 

(a) Total Cost Minimization EVRP 

0 1 0 0
( , ) ( , )

( ) ( )k k k k k k k
k j d ij ij t n j ij e ij i i

k K j C k K i j V k K j C k K i j V

minimize
c x c d x c y y x x c v y g+

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

+ + − + +∑∑ ∑ ∑ ∑∑ ∑ ∑
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subject to: 

max
k
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i C j V

q x q
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0 1k
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j V

x
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j V
e x y
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k k
i ij i

j V
l x y

∈

≥∑ , ,i V k K∀ ∈ ∀ ∈         (12) 

, ,( ( ))k k k k
i j i i i j i i jx y g t y g y+ + + ≤ , ( , ) ,i j A k K∀ ∈ ∀ ∈     (13) 

{0,1}k
ijx ∈ , ( , ) ,i j A k K∀ ∈ ∀ ∈        (14) 

k
iy ∈ℜ , ,i V k K∀ ∈ ∀ ∈         (15) 

The constraints are defined as follows: vehicle capacity cannot be exceeded (5); all customers 

must be served (6); if a vehicle arrives at a customer it must also depart from that customer 

(7); routes must start and end at the depot (8); each vehicle leaves from and returns to the 

depot exactly once, (9) and (10) respectively; service times must satisfy time window start (11) 

and ending (12) times; and service start time must allow for travel time between customers 

(13). Decision variables type and domain are indicated in (14) and (15).   

 

(b) Partial Cost Minimization EVRP   

In the capacitated vehicle routing problem with time windows (VRPTW) it is traditionally 

assumed that carriers minimize the number of vehicles as a primary objective and distance 

travelled as a secondary objective without violating time windows, route durations, or 

capacity constraints.  This second formulation follows the traditional approach and allows for 

a partial reduction of potential emissions. The primary and secondary objectives are defined 

by (16) and (17) respectively. The tertiary objective is the minimization of distance traveled 

and route duration costs. 

0
k

j
k K j C

minimize x
∈ ∈
∑∑ ,         (16) 

( , )
( )k k

ij e ij i i
k K i j V

minimize x c v y g
∈ ∈

+∑ ∑ ,       (17) 

1 0 0
( , )

( )k k k k
d ij ij t n j

k K i j V k K j C
minimize c d x c y y x+

∈ ∈ ∈ ∈

+ −∑ ∑ ∑∑      (18) 

The same constraints (5) to (15) apply to this hierarchical objective function.  



 

5. Solution Approaches for the partial EVRP   

The solution approach for the partial EVRP can benefit from the application of existing 

algorithms for the TDVRP. After finding a solution for the TDVRP there are at least two 

alternative approaches:  (a) the values of the k
ijx  decision variables are fixed and the volume of 

emissions is reduced by an algorithm that can only alter the departure times k
i i ib y g= +  and 

(b) the volume of emissions is reduced by an algorithm that can alter both departure times
k

i i ib y g= +  and assignment variables k
ijx   subject to constraint (19) : 

0 *k
j

k K j C
x K

∈ ∈

≤∑∑    (19) 

where *K   is the best fleet size solution obtained with a TDVRP algorithm.  

Given that approach (a) is clearly suboptimal, this research focuses on the development of an 

algorithm that follows approach (b). This section discusses properties of the emission 

functions (1) and (2). These properties are useful to reduce the computation effort required to 

evaluate emission levels for the partial EVRP.  

 

Properties of the Emission Function 

Waiting at a customer location may be necessary to reduce emission costs, e.g. waiting at a 

customer location may be beneficial during periods of high congestion and reduced travel 

speeds. However, waiting may have an impact on future travel times and reduce the capacity 

to serve subsequent customers in the route. For any given route k defined by the sequence of 

customers (0,1,2,..., , ,..., , 1)i j q q + , where 0 and 1q +  denote the depot, it is possible to 

define k
iy and k

iy  for customer i  where k
iy and k

iy are the earliest and latest feasible service 

times respectively.  

 

Property 1:  It may be better to wait at a customer location if travel speeds are lower that a 

certain speed threshold. 

Proof: Due to the last component of emissions function (1) it always possible to find a speed 

0ms ≥ such that the cost of emissions is larger than the cost of waiting but departing before or 



at k
iy .  Emissions per unit of distance traveled increases as travel speeds approach zero and 

there is a speed at time k
iy  where costs are reduced only if the vehicle waits at a customer 

location.  

 

Property 2:  for speeds below the optimal level *s  and strictly decreasing travel speeds in 

the union of intervals defined by ( )k
ij i iS y g+  and ( )k

ij i iS y g+ , the departure time that 

minimizes emissions is given by k
i i ib y g= + . 

Proof: travel speeds are below optimal and strictly decreasing if: 

1m ms s s +> ≥ ( ) ( )k k
ij i i ij i im S y g S y g∀ ∈ + ∪ +  

Emission levels increase as speeds decrease from the optimal value. Given that the emissions 

function (2) has a unique global minimum at s , delaying the departure time will only increase 

emission costs.  

 

Property 3:  for speeds below the optimal level s  and strictly increasing travel speeds in the 

union of intervals defined by ( )k
ij i iS y g+  and ( )k

ij i iS y g+ , the departure time that minimizes 

emissions is given by k
i i ib y g= + . 

Proof: travel speeds are below optimal and strictly increasing if: 

1m ms s s+< < ( ) ( )k k
ij i i ij i im S y g S y g∀ ∈ + ∪ +  

Given that the emissions function (2) has a unique global minimum at *s , delaying the 

departure time will only decrease emission costs.  

Similar mirror properties can be derived for speeds above the optimal level and strictly 

decreasing or increasing travel speeds.  

 

Property 4:  for arbitrary travel speeds in the union of intervals defined by 
( ) ( )k k

ij i i ij i iS y g S y g+ ∪ + and no stops between customers ,i j the departure time that 

minimizes emissions can be found after comparing a finite number of departure times. The 



number of comparisons is less or at most equal to two times the number of time intervals that 

define ( ) ( )k k
ij i i ij i iS y g S y g+ ∪ + . 

Proof: travel speeds and their intensity of emissions are constant during each time interval. 

Without stops, for any given departure time, the emissions function is a strictly increasing 

function of travel time duration and the extremes can be found either for departures that 

coincide with the beginning of time intervals or for departures that result in arrivals at the end 

of time intervals. Hence, it is sufficient to check the level of emissions for departure times that 

coincide with the beginning of each time period or for departure times that arrive to customer

j the end of a time period.  

 

 

 

6. An Algorithm for the Partial EVRP   

A strategy to solve the Partial EVRP is to first minimize the number of vehicles using a 

TDVRP algorithm and then optimize emissions subject to a fleet size constraint. A description 

of the TDVRP algorithm used in this experiment along with a full problem statement is 

described in detail in Figliozzi [8]. This approach, also denoted IRCI for Iterated Route 

Construction and Improvement has also been successfully applied to VRP problems with soft 

time windows [17]. The IRCI algorithm consists of a route construction phase and a route 

improvement phase, each utilizing two separate algorithms.  During route construction, the 

auxiliary routing algorithm H୰ determines feasible routes with the construction algorithm Hୡ 

assigning customers and sequencing the routes utilizing a greedy heuristic to approximate the 

cost of adding customers to a route. Route improvement is performed with the route 

improvement algorithm H୧ which groups underutilized routes or routes with a low number of 

customers looking to consolidate customers into a set of improved routes.  

Optimization of Departure Times 

 In Section 5 we have derived an algorithm to optimize the departure time between any given  

customers i, j, and an initial condition, i.e. ia  the arrival time at customer i. Let b ( , , )ii j aH  

be the algorithm that optimizes the departure time for any pair of customer and initial 

condition.  



Before defining b ( , , )ii j aH  it is necessary to define an auxiliary function to calculate 

backward travel time bt( )k
jy : 

Data:  
T and S : time intervals and speeds 

, ,i j jv v y : two customers served in this order in route k , k
jy  is the current service 

time at customer j  
START bt( )k

jy

if  &k k k
j j j jy l y y< <  then 1 

 min( , )k k
j j jy l y←  2 

end if  3 
find k, k

k j kt y t≤ ≤  4 

/k
i j ji kb y d s← −  5 

, k
ji jd d t y← ←  6 

while i kb t<   do 7 

( )k kd d t t s← − −   8 

kt t←  9 

1/i kb t d s +← −  10 
1k k← +  11 

end while  12 
min( , )k

i i i iy b g l← −  13 
Output:   14 

,k k
j iy y  15 

END bt( )k
jy  16 

 17 

 The algorithm b ( , , )ii j aH  is defined as follows:  18 

1. for customer i  in a route the earliest and latest feasible service times k
iy and k

iy are 19 

found using min( , )k
i i iy e a= and bt( )k k

i jy y=  20 

2. for customer i  define the union of intervals defined by ( ) ( )k k
ij i i ij iS y g S y+ ∪  as the 21 

intervals of time needed to cover the periods of time between ( , )k k
i i iy g y+ . The times 22 

periods that cover the ordered pair of times [ , ]x y  is denoted { ( , )}T x y  and is 23 

constructed as follows: for each mT ∈T add a time period to { ( , )}T x y :  24 



14 
 

- if ,m mx t t y≤ ≤ , then { ( , )}mT T x y∈ , or 1 

- if ,m mt x y t< ≤ , then { , } { ( , )}mx t T x y∈  , or 2 

- if ,m mx t y t≤ < , then { , } { ( , )}mt y T x y∈ . 3 

3. Define:  min ← ( )k
ij i iv b y=  , *

i ib b=  4 

a. For each period of time { ( , )}m k k
i i iT T y g y∈ +  calculate ( )m

ij iv b t=  5 

i. if  ( )m
ij iv b t=  ≤ min  6 

then:  min ← ( )m
ij iv b t=  , *

i ib b=  7 

b. For each period of time { ( , )}m k k
i i iT T y g y∈ +  calculate ( bf( ))m

ij iv b t=  8 

i. if  ( bf( ))m
ij iv b t=  ≤ min  9 

then:  min ← ( bf( ))m
ij iv b t= , *

i ib b=    10 

4. Return   best departure time *
ib  and emissions costs “min”   11 

Hence, departure times can be optimized given any pair of feasible customers.  12 

 13 

Improvement of Emissions Costs by Changing Routes 14 

In Section 5 we have derived an algorithm to optimize the departure time between any given. 15 

Emissions are further reduced adapting a heuristic approach developed by Kontoravdis and 16 

Bard [18] using a greedy randomized adaptive search concept (GRASP) for the VRPTW. The 17 

improvement approach combines the construction phase proposed by Figliozzi [17] with 18 

GRASP.    19 

 20 

The psude-code can be summarized as follows: 21 

- Select any two routes and joined the customers into a set 'C . 22 

o Choose from 'C   two customers i1 and  i2  that are the most time constrained 23 

o 1 2' '/{ , }C C i i←  24 

o Initialize two routes r1 and r2 by selecting i1 and i2  as the first customers 25 

respectively. 26 

o Do until no 'i C∈  can be feasibly inserted into r1 or r2 27 



15 
 

 For each 'i C∈  1 

 Find the best feasible insertion location into r1 and r2 (the feasible 2 

insertion with minimum emissions cost given by b ( , , )ii j aH  ) 3 

 Insert the minimum emissions cost customers into  r1 or r2  4 

o  Complete the routes using a greedy approach (minimizing emissions), 5 

calculate insertion costs using b ( , , )ii j aH   6 

 After a customer is inserted, try to insert any unrouted customer into  r1 7 

or r2 8 

-  Evaluate if there is an improvement in the total volume of emissions without 9 

exceeding the original number of routes. 10 

- Tabu the previously selected customers and pick a pair of not yet selected routes. 11 

- Continue until there are no more unselected pairs.  12 

 13 

7. Experimental Results 14 

The experimental setting is based on the classical instances of the VRP with time windows 15 

proposed by Solomon [19]. The Solomon instances include distinct spatial customer 16 

distributions, vehicles’ capacities, customer demands, and customer time windows. These 17 

problems have not only been widely studied in the operations research literature but the 18 

datasets are readily available.  19 

The well-known 56 Solomon benchmark problems for vehicle routing problems with hard 20 

time windows are based on six groups of problem instances with 100 customers. The six 21 

problem classes are named C1, C2, R1, R2, RC1, and RC2. Customer locations were 22 

randomly generated (problem sets R1 and R2),   clustered (problem sets C1 and C2), or mixed 23 

with randomly generated and clustered customer locations (problem sets RC1 and RC2). 24 

Problem sets R1, C1, and RC1 have a shorter scheduling horizon, tighter time windows, and 25 

fewer customers per route than problem sets R2, C2, and RC2 respectively.  26 

This section proposes new test problems that capture the typical speed variations of congested 27 

urban settings. The problems are divided into three categories of study: (1) uncongested, (2) 28 



16 
 

somewhat congested, and (3) congested. In order to provide readily replicable instances, the 1 

travel speed distributions apply to ALL arcs among customers, i.e. in the arc set: 2 

{( , ) : , }i jA v v i j i j V= ≠ ∧ ∈  3 

 4 

The depot working time 0 0[ , ]e l  is divided into five time periods of equal durations:  [0, 0.2 0l ); 5 

[0.2 0l , 0.4 0l );   [0.4 0l , 0.6 0l );   [0.6 0l , 0.8 0l ); and [0.8 0l , 0l ] and the corresponding travel 6 

speeds are in the 3 cases as follows: 7 

Uncongested   = [2.00, 2.00, 2.00, 2.00, 2.00], 8 
Somewhat Congested   = [2.00, 1.25, 2.00, 1.25, 2.00], 9 
Congested    = [2.00, 0.90, 1.20, 0.90, 2.00]. 10 

 11 

It is assumed that the optimal travel speed, i.e. 44 mph, is equivalent to a speed of 2.0 in the 12 

Solomon problems. This assumption ensures that the properties stated in Section 5 are valid 13 

and applicable. This is a mild assumption in congested urban areas with low travel speeds and 14 

low speed limits. For example, the commercial vehicle maximum travel speed in the urban 15 

interstate freeways in Portland, Oregon, is only 55 mph. 16 

The average results per routing class are presented in Table 1 and 2. Table 1 compares the 17 

“Somewhat Congested” case against the “Uncongested” case. In all cases, the percentage 18 

change taking the uncongested situation as a base. For example, a positive % in the row of 19 

routes (or emissions levels) indicates that the average number of needed routes (or emissions 20 

levels) has increased.  21 

 22 

   R1  R2  C1  C2  RC1  RC2 
Vehicle  10%  17%  0% 0% 7% 10%
Distance  2%  0%  ‐7% ‐4% 0% ‐2%
Duration  28%  25%  18% 23% 25% 24%
Emissions  12%  ‐4%  ‐2% 0% 13% 19%
Table 1. Percentage Change, Somewhat Congested vs. Uncongested travel times 23 
 24 

It can be observed in Table 1 that emissions do not increase across the board. Types C1 and 25 

C2 are constrained by capacity and they register a small change in emissions. In addition, the 26 

customers are clustered. On the other hand, types RC1 and RC2 register the greatest changes 27 
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in emissions levels as travel speed decreases.  The greatest change in average fleet size  take 1 

place with the R1 and R2 types. As expected, duration or travel time increases across the 2 

board.  3 

Table 2 compares the “Congested” case against the “Uncongested” case. In all cases, the 4 

percentage change taking the uncongested situation as a base. As expected, duration increases 5 

across the board. It can be observed in Table 2 that emissions do not increase across the board. 6 

Types C1 and C2 are constrained by capacity and they register a small change in emissions. A 7 

similar pattern is observed but RC2 problems do not register an increase in emissions.  8 

 9 

   R1  R2  C1  C2  RC1  RC2 
Vehicle  27%  38%  0% 0% 22% 29%
Distance  4%  5%  ‐11% ‐10% 3% 0%
Duration  60%  68%  52% 35% 57% 60%
Emissions  26%  25%  6% 0% 30% 0%
Table 2. Percentage Change, Congested vs. Uncongested travel times 10 
 11 

These results highlight the fact that emissions are not easy to minimize. It is clear that 12 

uncongested travel speeds tend to reduce emissions on average, however, this is not always 13 

the case and in some cases the opposite trend can be observed. Further research is needed to 14 

explore alternative algorithms to minimize emissions in congested areas.  15 

 16 

   R1  R2  C1  C2  RC1  RC2 
Vehicle  29%  42%  0% 0% 26% 29%
Distance  12%  24%  0% 7% 7% 17%
Duration  73%  97%  59% 59% 63% 85%
Emissions  22%  ‐27%  4% ‐7% 28% ‐11%
Table 3. Percentage Change, Congested vs. Uncongested travel times 17 
 18 

If the objective function is to minimize emissions and lifting the constraint that restricts any 19 

increase in the number of routes, the results are encouraging (see Table 3).  It can be observed 20 

in Table 3 that relatively small increases in fleet size lead to dramatic reductions in emissions 21 

levels, for example R2 problems. Minor reductions are obtained for problems R1 and RC1. In 22 

some cases the reductions take place even maintaining the same number of vehicles on 23 

average, for example in C1, C2, and RC2 problems. These preliminary results indicate that 24 
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there may be significant emissions savings if commercial vehicles are routed taking emissions 1 

into consideration.   2 

8. Conclusions 3 

This research introduced a new kind of vehicle routing problem, the emissions Vehicle 4 

Routing Problem or EVRP. Two variants of the problem have been formulated.  Properties of 5 

the emissions formula and optimal departure times are stated. A heuristic is proposed to 6 

reduce the level of emissions given a number of feasible routes for the time-dependent VRP.  7 

These preliminary results indicate that there may be significant emissions savings if 8 

commercial vehicles are routed taking emissions into consideration.  In congested areas, it 9 

may be possible to reduce unhealthy or GHG emissions with a minimal or null increase in 10 

routing costs.  However, these benefits are not to be expected across the board. The results 11 

indicate that congestion impacts on emission levels are not uniform. The route characteristics 12 

and dominant constraint type seem to play a significant effect on emissions levels.  13 

  14 
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