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Abstract 
 
This paper compares the performance of different sequential auction settings for the 

procurement of truckload services.  In this environment, demands arrive randomly over 

time and are described by pick up, delivery locations and hard time-windows. Upon 

demand arrival, carriers compete for the loads. Different auction and information 

disclosure settings are studied.  Learning methodologies are discussed and analyzed. 

Simulation results are presented.   
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INTRODUCTION 

Recent research in auction and marketplace design highlights the importance of 

auction rules on bidders and market performance (1 and 2). The principal focus of this 

research is to compare and evaluate the impact of distinct auction rules on the 

performance of a transportation marketplace. This investigation focuses on the dynamic 

procurement of truckload pickup-and-delivery services in a sequential auction 

transportation marketplace; this marketplace is denoted TLPM which stands for truckload 

procurement marketplace.  

The motivation for this work arises from the growth of network business-to-

business forecasts (3). This growth is partly supported by the increasing use of private 

exchanges, where a company or group of companies invites selected suppliers to interact 

in a real time marketplace, compete, and provide the required services. In the logistics 

sector, shippers have also set up private exchanges, which they use for confidential 

communications with their carriers, for example, DuPont has a logistic web portal to 

manage all inbound and outbound freight movements across all transportation modes (4). 

These exchanges allow for freight visibility as well as for consolidation and optimization 

opportunities (5). On the supply side, carriers have begun to offer more internet based 

services, particularly the larger motor carriers (6).  

Carriers participating in a TLPM face complex interrelated decision problems.  

Two distinct problems stand out (a) profit maximization problem (chose best pricing or 

bidding policy) and (b) cost minimization problem (operate the fleet in the most efficient 

manner). Sequential auctions are notoriously complex problems; furthermore, no 

equilibrium solution exists when there are several auctions (three or more) and multi-unit 

demand bidders (7).  Therefore, in this work carriers are assumed boundedly rational. In 

addition, due to the inherent complexity, it is assumed that TLPM carriers make not 

attempt to acquire or use knowledge about competitors’ explicit decision (bidding) 

processes. Carriers solely learn about the distribution of past market prices or the 

relationships between realized profits and bids. Previous work has already dealt with the 

importance of dynamic vehicle routing technology and cost estimation in a TLPM (8).    

 



     

The goal of this paper is not to find the “optimal” rules or procedures that lead to 

the best possible bidding. Rather, the goal is to define and simulate plausible bounded 

rational procedures and behaviors of carriers competing in a TLPM. Three different 

auction formats are compared using simulation experiments: second price auctions, first 

price auctions with minimum information disclosure, and first price auctions with 

maximum information disclosure.  

The paper is organized as follows: the next section describes the marketplace 

framework and operation. Learning in a TLPM is discussed in the third section. Section 

four describes the utilized learning mechanisms. Section five describes the simulation 

framework. The experimental results are analyzed and discussed in section six, followed 

by concluding comments in the final section.  

 
 
MARKET DESCRIPTION 

The TLPM enables the sale of cargo capacity based mainly on price, yet still 

satisfies customer level of service demands. The specific focus of the study is the reverse 

auction format, where shippers post loads and carriers compete over them (bidding).  The 

auctions operate in real time and transaction volumes and prices reflect the status of 

demand and supply. A framework to study transportation marketplaces is presented by 

Figliozzi, Mahmassani, and Jaillet (9).  

The market is comprised of shippers that independently call for shipment 

procurement auctions, and carriers, that participate in them (we assume that the 

probability of two auctions being called at the same time is zero). Auctions are performed 

one at a time as shipments arrive to the auction market. Shippers generate a stream of 

shipments, with corresponding attributes, according to predetermined probability 

distribution functions. A shipment attribute is its reservation price, or maximum amount 

that the shipper is willing to pay for the transportation service. It is assumed that an 

auction announcement, bidding, and resolution take place in real time, thereby precluding 

the option of bidding on two auctions simultaneously.  

In the TLPM there are n  carriers competing, a carrier is denoted by i∈ℑ  

where is the set of all carriers. Let the shipment/auction 

arrival/announcement epochs be  such that

{1, 2,..., }nℑ =

1 2{ , ,..., }Nt t t 1i it t +< . Let be the 1 2{ , ,..., }Ns s s

 



     

set of arriving shipments. Let jt represent the time when shipment js  arrives and is 

auctioned. There is a one to one correspondence between each jt  and js  (i.e. for each jt  

there is just one js ). Arrival times and shipments are not known in advance. The arrival 

instants follow some general arrival process. Furthermore, arrival times and 

shipments are assumed to come from a probability space , with 

outcomes

1 2{ , ,..., }Nt t t

( , , )Ω F P

1 2{ , ,..., }Nω ω ω . Any arriving shipment js  represents a realization at time jt  

from the aforementioned probability space, therefore { , }j j jt sω = . 

In an auction for shipment js , each carrier i∈ℑ simultaneously bids a monetary 

amount i
jb R∈  (every carrier must participate in each action, i.e. submit a bid). A set of 

bids 1{ ,..., }n
j j jb b b
ℑ

= generates publicly observed information jy . Under maximum 

information disclosure, all bids are revealed after the auction, this is j jy b
ℑ

= .  Under 

minimum information disclosure, no bids are revealed after the auction, this is {}jy = . 

Each carrier is solely informed about his bidding outcome: successful or unsuccessful.  

The fleet status of carrier  when shipmenti js  arrives is denoted as i
jz , which 

comprises two different sets:   (set of shipments acquired up to time i
jS jt  by carrier i∈ℑ) 

and  (set of vehicles in the fleet of carrier , vehicle status updated to timei
jV i jt ). The 

estimated cost of serving shipment js  by carrier i∈ℑ of type i
jz   is denoted . 

Let 

c ( , )i i
j js z

i
jI  be the indicator variable for carrier  for shipmenti js , such that  if carrier  

 secured the auction for shipment

1i
jI =

i js  and 0i
jI =  otherwise. The set of indicator 

variables is denoted 1{ ,..., }n
j j jI I Iℑ =  and 1i

j
i

I
∈ℑ

≤∑ .  Let i
jπ  be the profit obtained by 

carrier i  (if this carrier wins) for shipment js , then [ , ]i
j

i i i
j j jb c sπ θ= − .  

 

 

 

 

 



     

LEARNING IN A TLPM  

In an auction context, learning methods seek good bidding strategies by 

approximating the behavior of competitors. Most learning methods assume that 

competitors’ bidding behavior is stable. This assumed bidding stability is akin to 

believing that all competitors are in a strategic equilibrium.  

Walliser (10) distinguishes four distinct dynamic processes to play games. In a 

decreasing order of cognitive capacities they are: eductive processes, epistematic learning 

(fictitious play), behavioral learning (reinforcement learning), and evolutionary 

processes. An eductive process requires knowledge about competitors’ behavior (agents 

simulate competitors’ behavior).  Epistemic and behavioral learning are similar to 

fictitious play and reinforcement learning respectively (fully described in the next 

section). In the evolutionary process, a player has (is born with) a given strategy; after 

playing that strategy the player dies and reproduces in proportion to the utilities obtained 

(usually in a game where it has been randomly matched to another player). 

This work studies the two intermediate types of learning. Eductive-like type of 

play requires carriers to have almost unbounded computational power and expertise.  On 

the other hand, evolutionary model players seem too simplistic: they have no memory, 

and simply react in response to the last result. Furthermore, the notion that a company is 

born, dies, and reproduces with each auction does not fit well behaviorally in the defined 

TLPM. Ultimately, neither extreme approach is practically or theoretically compelling in 

the TLPM context. Carriers that survive competition in a competitive market like TL 

procurement cannot be inefficient or unskilled. They are merely limited in the strategies 

they can implement. It is assumed that carriers would like to implement the strategy 

(regardless of its complexity) that ensured higher profits, but they are restricted by their 

cognitive and informational (which give rise to bounded rationality).  

In practical and theoretical applications, the process of setting initial beliefs has 

always been a thorny issue. Implemented learning models must specify what agents 

initially know. Ideally, how or why these initial assumptions were built should always be 

reasonable justified or explained. In this respect, restricting the research to the TLPM 

context has clear advantages.  

 



     

Normal operating ratios in the TL industry range from 0.90 to 0.95 (11). It is 

expected that operating ratios in a TLPM would not radically differ from that range. If 

prices are too high shippers can always opt out, abandon the marketplace and find an 

external carrier. Prices cannot be substantially lower because carriers would run 

continuously in the red, which does not lead to a self-sustainable marketplace. Obviously, 

operating ratios fluctuations in a competitive market are expected, in response to natural 

changes in demand and supply. However, these fluctuations should be in the 

neighborhood of historical long term operating ratios unless the market structure is 

substantially changed.    

Another practical consideration is the usage of ratios or factors in the trucking 

industry. Traditionally, the trucking industry has used numerous factors and indicators to 

analyze a carrier’s performance, costs, and profits. It seems natural that some carriers 

would obtain a bid after multiplying the estimated cost by a bidding coefficient or factor. 

Actually, experimental data show that the use of multiplicative bidding factors is quite 

common (12).  

 

LEARNING MECHANISMS 

In reinforcement learning the required knowledge about the game payoff structure 

and competitors behavior is extremely limited or null. From a single carrier’s perspective 

the situation is modeled as a game against nature; each action (bid) has some random 

payoff about which the carrier has no prior knowledge. Learning in this situation is the 

process of moving (in the action space) in a direction of higher profit. Experimentation 

(trial and error) is necessary to identify good and bad directions.  

Let  be the ordered set of real numbers that are multiplicative 

coefficients

M

0M { ,..., }Kmc mc= , such that if Mkmc ∈  and 1 Mkmc + ∈ , then 1k kmc mc +< . 

Using multiplicative coefficients the profit obtained for any shipment js , when using the 

multiplicative coefficient   is equal to: kmc

( ) ( ) ( 1) (1i
j

i i i i i
k k j j j j j kmc mc c c I c I mcπ = − = − )

)

  

(2)( ) ( ) (2i
j

i i
k j j jmc b c Iπ = −   

 



     

The first equation applies to first price auctions while the second equation applies 

to second price auctions. Adapting the reinforcement model to TLPM bidding, the 

probability of carrier  using a multiplicative coefficient  in the auction for 

shipment 

(i
j kmcϕ ) i kmc

js  is equal to: 

  1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (3i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − + )

)k

)

To use equation (3), each bidder only needs information about his bids and the 

result of the auction.  To use this model the profits must be normalized to lie 

between zero and one so that they may be interpreted as probabilities. The indicator 

variable 

1(i
j mcπ −

(i
j kI mc  is equal to one if carrier i  used the multiplicative coefficient  when 

bidding for shipment

kmc

js , the indicator is equal to zero otherwise. The parameter λ  is 

called the reinforcement learning parameter, it usually vary between 0 1λ< < .  

The stimulus response model with reinforcement had its origin in the 

psychological literature and has been widely used to try to explain human and even 

animal behavior. Some computer science literature calls this model the learning 

automaton. Narenda and Tatcher (13) showed that a players’ time average utility, when 

confronting an opponent playing a random but stationary strategy, converges to the 

maximum payoff level obtainable against the distribution of opponents’ play. The 

convergence is obtained as the reinforcement parameter λ goes to zero.  

The reinforcement is proportional to the realized payoff, which is always positive 

by assumption. Any action played with these assumptions, even those with low 

performance, receives positive reinforcement as long as it is played (14). Furthermore, in 

an auction context there is no learning when the auction is lost 

since  if1( ) 0 Mi
j k kmc mcπ − = ∀ ∈ 1 0i

jI − = .  

Borgers and Sarin (15) propose a model that deals with the aforementioned 

problems. In this model the stimulus can be positive or negative depending on whether 

the realized profit is greater or less than the agent’s “aspiration level”. If the agent’s 

aspiration level for shipment js  is denoted i
jρ  and the effective profit is 

denoted , then  1 1( ) ( ) (4i i i
j k j k jmc mcπ π ρ− −= −% )

 



     

1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (5i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − +% % )  

When , the equation (5) provides the same probability updating equation as 

(3). Borgers and Sarin explore the implications of different policies to set the level of the 

aspiration level. These implications are clearly game dependent.  A general observation 

applies for aspiration levels that are unreachable. In this case equation (4) is always 

negative; therefore the learning algorithm can never settle on a given strategy, even if the 

opponent plays a stationary strategy.  

0i
jρ =

These learning mechanisms were originally designed for games with a finite 

number of actions and without private values (or at a minimum for players with a 

constant private value). In the TLPM context, the cost of serving shipments may vary 

significantly. Furthermore, even the “best” or optimal multiplier coefficient can get a 

negative reinforcement when an auction is lost simply because the cost of serving a 

shipment is too high. This negative reinforcement for the “good” coefficient creates 

instability and tends to equalize the attractiveness of the different multiplicative 

coefficients.  This problem worsens as the number of competitors is increased causing a 

higher proportion of lost auctions, i.e. negative reinforcement.  

This research proposes a modified version of the stimulus response model with 

reinforcement learning that better adapts to TLPM bidding. Each multiplicative 

coefficient  has an associated average profit value km ( )i
j kmπ  that is equal to: 

{1,..., }

{1,..., }

( ) ( )
( )

( )

i i
t t t k

t ji
j k i

t k
t j

s I m
m

I m

π
π ∈

∈

=
∑
∑

 

The aspiration level is defined as the average profit over all past auctions: 

 {1,..., }

( )i i
t t t

t ji
j

s I

j

π
ρ ∈=

∑
 

Therefore the average effective profit is defined as 1 1( ) ( )i i
j k j kmc mc i

jπ π ρ− −= − . 

Probabilities are therefore updated using equation (6).  

1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (6i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − + )  

 



     

With the latter formulation (6), a “good” multiplicative coefficient does not get a 

negative reinforcement unless its average profit falls below the general profit average. At 

the same time, there is learning even if the auction is lost.  

Stimulus-response learning requires the least information and can be applied to 

both first and second price auctions. The probability updating equations (3), (3), and (6) 

are the same for first and second price auctions. Therefore the application of the 

reinforcement learning model does not change with the auction format that is being 

utilized in the TLPM.  Using this learning method, a carrier does not need to model 

neither the behavior nor the actions of competitors. The learning method is essentially 

myopic since it does not attempt to measure the effect of the current auction on future 

auctions. The method clearly fits in the category of no-knowledge/myopic carrier 

bounded rationality.  

Since the method is myopic, for the first price auction the multiplicative 

coefficients must be equal or bigger than one, i.e. . A coefficient smaller than 

one, generates only zero or negative profits. In a second price auction the multiplicative 

coefficients can be smaller than one and still generate positive profits since the payment 

is dependent on the competitors’ bids.  

0 1mc ≥

In both types of auctions it is necessary to specify not just the set of multiplicative 

coefficients but the initial probabilities. If equation (5) is used it is also necessary to set 

the aspiration level. If equation (6) is used it is necessary to set the level of the initial 

profits but not the aspiration level. A uniform probability distribution is the classical 

assumption and indicates a complete lack of knowledge about the competitive 

environment.  

Summarizing, in reinforcement learning, the agent does not consider strategic 

interaction.  The agent is unable to model an agent play or behavior but his own. This 

agent is informed only by his past experiences and is content with observing the sequence 

of their own past actions and the corresponding payoffs. Using only his action-reward 

experience, he reinforces strategies that succeeded and inhibit strategies which failed. He 

does not maximize but moves in a utility-increasing direction, by choosing a strategy or 

by switching to a strategy with a probability positively related to the utility index.  

 



     

Fictitious play came about as an algorithm to look for Nash equilibrium in finite 

games of complete information (16). It is assumed that the carrier observes the whole 

sequence of competitors’ actions and draws a probabilistic behavioral model of the 

opponents’ actions. The agent does not try to reveal his or her opponents’ bounded 

rationality from their actions although the agent may eventually know that opponents 

learn and modified their strategies too.  The agent models not behavior but simply a 

distribution of opponents’ actions. Players do not try to influence the future play of their 

opponents. Players behave as if they think they are facing a stationary, but unknown, 

distribution of the opponents’ strategies. Players ignore any dynamic links between their 

play today and their opponents’ play tomorrow.  

A player that uses a generalized fictitious play learning scheme assumes that his 

opponents' next bid vector is distributed according to a weighted empirical distribution of 

their past bid vectors. The method cannot be straightforwardly adapted to games with an 

infinite set of strategies (for example the real numbers in an auction). Two ways of 

tackling this problem are: a) the player divides the set of real numbers into a finite 

number of subsets, which are then associated with a strategy or b) the player uses a 

probability distribution, defined over the set of real number to approximate the 

probabilities of competitors play.  In either case, the carrier must come up with a 

estimated stationary price function ξ (in our experiments carriers estimate a normal 

distribution using on competitors’ past bids). If a second price auction format is used in 

the TLPM, the carrier bids using:  
*

( )arg max { ( , )}i i
j jb E c s

b R
ξ ξ∈ −

∈

i
jz

i
j

 

If a first price auction format is used in the TLPM, the carriers bids using:   

*
( )arg max { ( ( , )}i i

j jb E b c s z

b R
ξ∈ −

∈
 

 

SIMULATION FRAMEWORK 

This paper studies truckload carriers that compete over a square area; the sides’ 

lengths are equal to 1 unit of distance. For convenience, trucks travel at constant speed 

 



     

equal to one unit of distance per unit of time. Demands for truckload pickup-and-delivery 

arise over this area and over time. Origins and destinations of demands are uniformly 

distributed over the square area, so the average loaded distance for a request is 0.52 units 

of distance. All the arrivals are random; the arrival process follows a time Poisson 

process. The expected inter-arrival time is E [T] = 1/ (Kλ), where λ is the demand request 

rate per vehicle and K is the total market fleet size. Roughly, the average service time for 

a shipment is 0.77 units of time (approximately λ = 1.3). The service time is broken down 

into 0.52 units of time corresponding to the average loaded distance, plus 0.25 units of 

time that approximate the average empty distance (average empty distance vary with 

arrival rates and time windows considered). Different Poisson arrival rates per truck per 

unit of time are simulated (ranging from 0.5 to 1.5). As a general guideline, these values 

correspond to situations where the carriers are: 

• λ = 0.5  (uncongested) 

• λ = 1.0  (congested) 

• λ = 1.5  (extremely congested) 

The shipments have hard time windows. In all cases, it is assumed that the earliest pickup 

time is the arriving time of the demand to the marketplace. The latest delivery time 

(LDT) is  assumed to be:   

LDT = arrival time + 2 x (shipment loaded distance + 0.25) + 2 x uniform (0.0, 1.0).  

All the shipments have a reservation price distributed as uniform (1.42, 1.52). In 

all cases, reservation prices exceed the maximum marginal cost possible in the simulated 

area (≈1.41 units of distance). It is also assumed that all the vehicles and loads are 

compatible; no special equipment is required for specific loads. In all the simulations, 

two carriers are competing for the demands.  

Multiple performance measures are used. The first is total profits, which equal the 

sum of all payments received by won auctions minus the empty distance incurred to serve 

all won shipments (it was already mentioned that shipment loaded distances are not 

included in the bids, loaded distances cancel out when computing profits). The second 

performance measure is number of auctions won or number of shipments served, an 

indicator of market share. The third is shippers’ consumer surplus, which is the 

accumulated difference between reservation prices and prices paid. The fourth is total 

 



     

wealth generated that is equal to the accumulated difference between reservation price (of 

served shipments) and empty distance traveled.   

Carriers fleet assignment and cost estimation is based on the static optimization 

based approach proposed by Yang, Jaillet and Mahmassani (17). This approach solves 

static snapshots of the dynamic vehicle routing problem with time windows using an 

exact mathematical programming formulation. As new load occurs, static snapshot 

problems are solved repeatedly, allowing for a complete reassignment of trucks to loads 

at each arrival instance.  

The second price auction used in the TLPM operates as follows: 

i. Each carrier submits a single bid  

ii. The winner is the carrier with the lowest bid (which must be below the 

reservation price; otherwise the auction is declared vacant) 

iii. The item (shipment) is awarded to the winner  

iv. The winner is paid either the value of the second lowest bid or the 

reservation price, whichever is the lowest 

v. The other carriers (not winners) do not win, pay, or receive anything 

The same procedure applies to first price auctions but the winner is paid the value 

of  the winning bid (only point iv changes).  

 

 ANALYSIS OF EXPERIMENTAL RESULTS  

 

Figure 1 illustrates the relative performance of Average Reinforcement Learning 

(ARL) and Reinforcement Learning (RL) in a first price auction. Both learning methods 

select a bidding factor among 11 different possibilities, ranging from 1.0 to 2.0 in 

intervals of 0.1. The learning factor is 0.10λ = . Figure 1 shows the relative performance 

of ARL and RL after 500 auctions. It is clear that RLA obtains higher profits as the 

arrival rate increases. RL has a poorer performance because it cannot converge steadily to 

the “optimal” coefficient.  The speed of reinforcement learning can be quite slow in an 

auction setting like TLPM. The “optimal” bidding factor can be used and there is still 

roughly a 50% chance of losing (assuming two bidders with equal fleets and 

technologies). If the “optimal” bidding factor loses two or three times its chances of 

 



     

being played again may reduce considerably which hinders convergence to the “optimal” 

or even convergence at all. As discussed previously, this issue can be avoided using 

“averages” (ARL method). The carrier RL tends to price lower (it keeps probing low 

bidding coefficients longer) and therefore serves a higher number of shipments. 

 The next experiment compares the performance of reinforcement learning and 

fictitious play in first price auctions. The latter uses more information than the former. 

Therefore, it is expected that a carrier using fictitious play must outperform a carrier 

using reinforcement learning. Figure 2 shows the relative performance of Fictitious Play 

(FP) and ARL after 500 auctions. The ARL player has the same characteristics as the 

ARL player utilized for Figure 1. The FP carrier divides the possible competitors’ bids in 

fifteen intervals (from 0.0 to 1.5 in intervals of width 0.1) and starts with a uniform 

probability distribution over them.  

Clearly, the FP carrier obtains higher profits across the board. The usage of a 

competitor past bidding data to obtain the bid that maximizes expected profits clearly 

pays off. In this case, carrier ARL tends to bid less and serve more shipments. Again, the 

difference diminished as the arrival rate increase. In the TLPM context, even a simple 

static optimization provides better results than a search based on reinforcement learning. 

Not surprisingly, more information and optimization lead to better results. Therefore, if 

there is maximum information disclosure, carriers will choose to use fictitious play or a 

similar bidding strategy, particularly since the complexity of FP (myopic) and ARL are 

not too different.  

In second price auctions fictitious play coincides with marginal cost bidding 

(regardless of the price distribution, the expected profit is always optimized with 

marginal cost bidding). RL or ARL do not perform better than FP in the simulated 

experiments.  

The next experiment compares the performance of different sequential auction 

settings from carriers and shippers’ points of view. Four different measures are used to 

compare the auction environments: carriers’ profits, consumer surplus, number of 

shipments served, and total wealth generated. To facilitate comparisons amongst all four 

graphs that are presented subsequently, second price auctions with marginal cost bidding 

are used as the standard to measure up the two types of first price auctions.  

 



     

Figure 3 illustrates the profits obtained by carriers. FP carriers obtain higher 

profits than ARL carriers across the board. FP carriers use the obtained price information 

to their advantage. The highest carrier profit levels take place with the second price 

auctions. These results do not alter or contradict theoretical results. With asymmetric cost 

distribution functions, Maskin and Riley (18) show that there is no revenue ordering 

between independent value first and second price auctions.  

Figure 4 illustrates the consumer surplus obtained with the three auction types. 

Clearly, first price auction with reinforcement learning (minimum information disclosed) 

benefit shippers. Unsurprisingly, figure 4 is almost the reverse image of figure 3. Figure 5 

shows the number of shipments served with each auction setting. As expected, with 

second price auctions more shipments are served. Even in asymmetric auctions, it is still 

a weakly dominant strategy for a bidder to bid his value in a second price auction (this 

property of one-item second price auction is independent of the competitors’ valuations). 

Therefore, in the second price auction the shipment goes to the carrier with the lowest 

cost.   

In contrast, with ARL there is a positive probability that there are inefficient 

assignments since a higher cost competitor can use a bidding coefficient that results in a 

lower bid. Similarly with FP carriers, if the price functions are different (which is very 

likely since each carrier models the competitors’ prices), a higher cost carrier can 

underbid a lower cost carrier with a positive probability.   

Figure 6 shows the wealth generated with each auction setting. In second price 

auctions more wealth is generated across the board. Marginal cost bidding is the most 

“price efficient” mechanism of the tested auction settings. As the arrival rate increases, 

the gap in total wealth generated tends to close up (figure 6). Consistently with previous 

results, the lowest wealth generated corresponds to the case with FP bidders.  

Summarizing, under the current TLPM setting, carriers, shippers, and a social 

planner would each select a different auction setting. Carriers would like to choose a 

second price auction. If first price auction were used, carriers would like to have 

maximum information disclosure. More information allows players to maximize profits, 

though total wealth generated is the lowest. Shippers would like to choose a first price 

auction with minimum information disclosure; more uncertainty about winning leads 

 



     

carriers to offer lower prices. However, the uncertainty leads to a reduction in the number 

of shipments served. Finally, from society viewpoint the most efficient system is the 

second price auction. More shipments are served and more wealth is generated.  

 

CONCLUSIONS 

 A sequential auction framework was used to compare distinct sequential auction 

settings. Reinforcement learning and fictitious play, two learning mechanisms adequate 

for TLPM settings, are introduced and analyzed.  

 Computational experiments indicate that auction setting and information 

disclosure affect the TLPM performance. Maximum information disclosure allows 

carriers to maximize profits at the expense of shippers’ consumer surplus; minimum 

information disclosure allows shippers to maximize consumer surplus but at the expense 

of lowering the number of shipments served. Marginal bidding in second price auctions 

generates more wealth and more shipments served than first price auctions. The results 

illustrate that under critical arrival rate there is no incentive to use bidding factors (no 

deviations from static marginal cost bidding).   
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Figure 1. ARL vs. RL  (RL performance as a base) 
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Figure 2 ARL vs. FP  (RL performance as a base) 
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Figure 3 Carriers’ Profit level (Second Price Auction MC as base) 
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Figure 4 Consumer Surplus level (Second Price Auction MC as base) 
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Figure 5 Number of Shipments Served (Second Price Auction MC as base) 
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Figure 6 Total Wealth Generated (Second Price Auction MC as base) 
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