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Abstract 

Urban congestion presents considerable challenges to time-definite transportation service providers. 

Package, courier, and less-than-truckload (LTL) operations and costs are severely affected by increasing 

congestion levels. With congestion increasing at peak-hour morning and afternoon periods, public 

policies and logistics strategies that avoid or minimize deliveries during congested periods have become 

crucial for many operators and public agencies. However, in many cases these strategies or policies can 

introduce unintended side-effects such as higher labor costs, shorter working hours, and tighter customer 

time windows. Research efforts to analyze and quantify the impacts of congestion are hindered by the 

complexities of vehicle routing problems with time-dependent travel times and the lack of network-wide 

congestion data. This research utilizes: (a) real-world road network data to estimate travel distance and 

time matrices, (b) land-use and customer data to localize and characterize demand patterns, (c) congestion 

data from an extensive archive of freeway and arterial street traffic sensor data to estimate time-dependent 

travel times, and (d) an efficient time-dependent vehicle routing (TDVRP) solution method to design 

routes. Novel algorithms are developed to integrate real-world road network and travel data to TDVRP 

solution methods. Results are presented to illustrate the impact of congestion on depot location, fleet size, 

and distance traveled.  
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1. Introduction  

Congested urban areas present considerable challenges for LTL (less-than-truckload) carriers, courier 

services, and industries that require frequent and time-sensitive deliveries. With congestion increasing at 

peak-hour morning and afternoon periods, public policies and logistics strategies that avoid or minimize 

deliveries during congested periods have become crucial for many operators and public agencies. 

However, in many cases, these strategies and policies can introduce unintended side-effects such as 

higher labor costs, shorter working hours, and tighter customer time windows. 

While current research on vehicle routing algorithms is extensive, much less attention has been 

devoted to investigating the impacts of congestion on carrier operations. Furthermore, most algorithms to 

solve the time-dependent vehicle routing problem (TDVRP) found in the existing literature do not deal 

with the estimation of distance and time-dependent travel time matrices. Thus, this research focuses on 

two primary objectives: (a) develop efficient algorithms to apply TDVRP solution methods to actual road 

networks using historical traffic data with a limited increase in computational time and memory, and (b) 

to utilize Google Maps™ open-source application programming interface (API) and network data to 

produce distance and travel time matrices. To the best of the authors’ knowledge, no research effort has 

integrated time-dependent routing algorithms, historical traffic data, real-world road network data, and 

public open-source APIs to incorporate the impacts of congestion on delivery routes.   

2. Literature Review 

This section covers two main areas of research: (a) the effects of congestion and travel time variability on 

vehicle routes and logistics operations, and (b) TDVRP solution algorithms and their application to urban 

areas. 

Direct and indirect costs of congestion on passenger travel time, shipper travel time and market 

access, production, and labor productivity have been widely studied and reported in the available 

literature. The work of Weisbrod et al. [1] provides a comprehensive review of this literature. Substantial 

progress has also been made in the development of econometric techniques to study the joint behavior of 

carriers and shippers in regards to congestion [2, 3]. 

Survey results suggest that the type of freight operation has a significant influence on how 

congestion affects carriers’ operations and costs. Survey data from California indicate that congestion is 

perceived as a serious problem for companies specializing in LTL, refrigerated, and intermodal cargo [4]. 

Similar conclusions are reached by reports analyzing  the effects of highway limitations and traffic 

congestion in the Portland region [5, 6]. A positive relationship between the level of local congestion and 

the purchase of routing software is identified by Golob and Regan [7]. Carriers that do not follow regular 
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routes, e.g. for-hire carriers, tend to place a higher value on the usage of real-time information to mitigate 

the effects of congestion  and  logistical services to plan  fleet deployments [8]. Other researchers attribute 

the   scant usage of TDVRP algorithms to the lack of reliable time-dependent travel time data, which can 

be particularly expensive or difficult to obtain for small carriers [9]. These authors recommend the 

implementation of open-access online TDVRP and data services in order to increase the efficiency of 

routes in congested urban areas.  

Another line of research has investigated carriers’ reactions to toll measures intended to shift 

freight traffic to off-peak hours. Holguin-Veras et al. [10] investigate the effects of congestion charges in 

New York City and find that delivery times are heavily dictated by customer time windows. Congestion 

charges increase carriers’ operating costs while inducing little shifting of deliveries from peak to off-peak 

hours. This suggests an inelastic relationship between freight congestion charges and routes with time 

definite delivery times. Quak and Koster [11] present a methodology to quantify the impacts of delivery 

constraints and urban policies utilizing a fractional factorial regression. Quak and Koster find that vehicle 

restrictions and delivery curfews have a compounding effect on customer costs whereas vehicle 

restrictions alone are costlier only when vehicle capacity is limited. Research into the effects of 

congestion on vehicle route characteristics is limited. Figliozzi [12] analytically models routes, extending 

Daganzo’s continuous approximations [13], and analyzes how routing constraints and customer service 

durations affect route characteristics using a classification based on supply chain characteristics. This 

analysis shows that a decrease in travel speed severely affects total distance traveled for routes with time 

window constraints while capacity constrained routes are less affected. The impact of travel time 

reliability on LTL delivery is also analyzed using continuous approximations and real-world data [14]. 

This research concludes that travel time variability has a significant impact in carriers’ costs when 

average distance to delivery areas increases and average travel speed decreases.  

Classic versions of the vehicle routing problem (VRP) such as the capacitated VRP (CVRP) or 

VRP with time windows (VRPTW) have been widely studied. However, time-dependent problems have 

received considerably less attention. A comprehensive review of TDVRP approaches and an efficient 

TDVRP algorithm is presented by Figliozzi [15]. This work also creates benchmark problems for the 

TDVRP altering the classical VRPTW Solomon instances. Fleischmann et al. [16] reviews the adaptation 

of the VRP algorithms to time-dependent data from traffic information systems in the city of Berlin. The 

construction of a time-dependent travel time database is also analyzed by Eglese et al. [17] utilizing 

Dijkstra’s algorithm for time-dependent links. Eglese et al. apply their methodology to a real-world 

network in England. However, these research efforts [16, 17] do not incorporate into their analysis the 

influence of time windows and recurring bottlenecks or the impacts of congestion on fleet size and total 

distance traveled.  
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3. Portland Case Study 

Considered a gateway to international sea and air freight transport, the city of Portland has established 

itself as an important hub for international and domestic freight movements. Its favorable geography to 

both International Ocean and domestic river freight via the Columbia River is complemented by its 

highway connections. Interstate-5 (I-5) is the most important freeway connecting the West Coast from 

Mexico to Canada as well as southern California ports and main West Coast population centers [5]. The I-

5 freeway is also used by many carriers delivering in Portland and the city’s surrounding suburbs because 

it also provides the main north-south freight corridor through the city of Portland itself.  

Recent increases in regional traffic congestion have negatively impacted freight operations. A 

recent report  investigates the impacts of congestion on Portland-area businesses and LTL deliveries [5]. 

This report provides insightful, yet qualitative information, on various strategies employed by businesses 

to cope with congestion, additional delivery costs, and uncertainty. The report indicates that congestion 

has made some afternoon deliveries completely infeasible which requires deliveries during non-business 

hours early in the morning. However, avoiding congesting by shifting deliveries to early morning periods 

generate additional costs by reducing route durations. In some cases, early deliveries are not feasible in 

close proximity to residential areas where parking problems and noise can lead to sound/traffic ordinance 

violations and conflicts with residents [5]. 

The recurrent effects of traffic congestion at peak periods present daily challenges to LTL carriers 

in the Portland metropolitan area. The numerical analysis presented in Section 7 aims to represent the 

above mentioned conditions. Customer data and depot locations are generated using a land-use zoning 

map of the Portland metropolitan area as detailed in Section 6. Network and congestion data sources, 

including recurrent bottlenecks, are described in Section 4. A methodology to apply TDVRP algorithms 

to real-world networks is described in Section 5. The methodologies and algorithms developed in this 

research assume that customers’ demands and time windows are known a priori, e.g. the night before 

delivery. Congestion data related to non-recurrent conditions, e.g. due to accidents, is not analyzed and 

left as a future research topic.  

4. Data Sources 

Two main data sources were utilized in this research: Google Maps API for the implementation of the 

TDVRP algorithm and the Portland Transportation Archived Listing (PORTAL) for obtaining historical 

travel time data. These two sources are described in the following subsections. 
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Overview of the Google Maps API 

The use of the Google Maps API allows access to up to date street network in the studied region 

with a high level of geographical detail. The open-source nature of the application also allows for 

considerable freedom in modifying the program and user interface [18]. Figure 1 shows the process of 

creating customer distributions and obtaining optimized routes from the TDVRP algorithm as 

implemented with the API. The API consists of several interfaces: 

 A customer selection screen where a set of customers and a single depot can be created by 

clicking on locations on the map. A coordinate output is provided that is then copied into a 

text (.txt) file 

 An interface that calculates the shortest paths between pairs of customers and constructs the 

distance and travel time Origin-Destination (O-D) matrices. Distance and travel time matrices 

are estimated and stored as text files. 

 Travel speed, occupancy and vehicle flow data from traffic sensors are used to incorporate 

the impact of congestion on travel times.  

 A solution interface where solution sets outputted from the TDVRP algorithm can be loaded 

and plotted to provide a visual verification of results. 

 

 Perhaps the greatest advantage of the API is that the open-source software and high quality 

network data can be accessed free of charge1. This together with the TDVRP solution algorithm 

developed to interface with the API  offers the potential for very low cost solutions for route planning and 

optimization while accessing detailed and accurate network data such as road hierarchy and restrictions 

(e.g. one-way streets or no-left turn movements at intersections). The effects of congestion are included 

by modifying the travel times initially calculated by Google Maps. After the TDVRP algorithm design the 

routes, the API interface can be utilized to obtain detailed driving directions.   

 

 

 

<< INSERT FIGURE 1>> 

 

 

 

                                                            
1 http://code.google.com/apis/maps/ 
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Simulating Congestion Effects 

Google Maps already provides reasonable travel time estimations during uncongested periods. 

However, to increase the accuracy of travel time estimations highway sensor data are utilized. For 

example, segments along Interstate 5 located in proximity to traffic bottlenecks are selected to represent 

areas of decreased travel speed. The selected segments are between freeway interchanges and/or on/off-

ramps where vehicle detector loops are located.   

Detailed traffic data are obtained PORTAL, Portland’s implementation of an Archived Data User 

Service (ADUS) which coordinates and obtains data from approximately 436 inductive loop detectors 

along interstate freeways in the Portland metropolitan area. A description of this transportation data 

archive is given by Bertini et al. [19].  Bottlenecks are modeled as point locations surrounded by areas of 

reduced travel speed. Travel in proximity to a bottleneck is expressed as a percent reduction in travel 

speed proportional to the speed reduction at the bottleneck location. Figure 2 shows the bottleneck 

locations and areas of effective travel speed reduction.  

 

 

<< INSERT FIGURE 2>> 

 

 

Data obtained from PORTAL are also used to model the impacts of traffic queuing on the 

surrounding network. The areas of reduced travel speed for each bottleneck location are assumed as a 

function of the measured occupancy and vehicle inflow and outflow rates at each bottleneck location. 

Research has shown that traffic queues often begin to form at occupancies approximately equal to or 

greater than 20% [20], but according to speed flow data queues may form at occupancies as low as 13%. 

Utilizing these queuing concepts and assumptions, the radius of the area of travel speed reduction around 

each bottleneck where vehicle travel speed reduced is varied in proportion to the difference in the inflow 

and outflow rates multiplied by average vehicle spacing when the occupancy is above a certain threshold 

value. Strictly, this assumes that there is conservation of vehicles (i.e. no vehicles enter or exit the road 

segment in question) and ignores the presence of moving traffic queues.  

The travel speeds used in this research are calculated from 15 minute archived travel time data 

averaged over the year 2007 along the I-5 freeway corridor spanning from the Portland suburb of 

Wilsonville to Vancouver, Washington. These data are sufficient for purposes of demonstrations of the 

proposed methodology, but consideration of seasonal or monthly variability in travel time is important for 
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many LTL carriers and is entirely feasible via PORTAL. In this research it is assumed that carriers only 

account for recurrent congestion and plan their routes the night before making the deliveries.   

5. Methodology 

TDVRP Algorithm Overview 

A description of the TDVRP algorithm used in this experiment along with a full TDVRP formulation is 

presented by Figliozzi [15]. With hard time window constraints the primary objective is the minimization 

of the number of vehicles or routes; the secondary objective is the minimization of the travel time or 

distance. The TDVRP solution algorithm consists of a route construction phase and a route improvement 

phase, each utilizing two separate algorithms (FIGURE 3). During route construction, the auxiliary 

routing algorithm ࢘ࡴ determines feasible routes with the construction algorithm ࢉࡴ assigning customers 

and sequencing the routes. Route improvement is done first with the route improvement algorithm ࡴ 

which compares similar routes and consolidates customers into a set of improved routes. Lastly, the 

service time improvement algorithm ࢟ࡴ eliminates early time window violations, and then reduces the 

route duration without introducing additional early or late time window violations; these tasks are 

accomplished by using the arrival time and departure time algorithms ࢌ࢟ࡴ and ࢈࢟ࡴ, respectively, and 

customers are subsequently re-sequenced as necessary. It is with these algorithms that the PORTAL data 

and shortest-path travel speeds generated by the Google Maps API are inserted into the solution 

algorithm. 

Notation  

For the following travel time algorithms, the total depot working time ሾ݁#, ݈#ሿ is partitioned into a 

set of  time periods ܘ܂ ൌ ൛ ଵܶ, ଶܶ, … , ܶൟ. Each traffic bottleneck locations ߚ א ܖ ൌ ሼߚଵ, ,ଶߚ …  ሽ isߚ

assigned the following data at each time partition ܶ א  :ܘ܂

 ܖ۽
ܘ ൌ ሾܱሿൈ: The table of occupancy values for each time period ܶ א ߚ and bottleneck ܘ܂ א

ܖ 

 ܖ܃ା
ܘ ൌ ሾܷሿൈାଵ: Table of vehicle flow inflow and outflow rates for each time period and 

bottleneck locations. The inflow and outflow rates at time period ܶ for bottleneck ߚ are ܷ and 

ܷ,ାଵ, respectively 

 ܖܞ
ܘ ൌ ሾݒሿൈ: Table of congested travel speeds obtained from PORTAL 
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All data are collected from PORTAL and the point source location of each traffic bottleneck is 

assumed to be midway between detector loops. The algorithms also include the following adjustable 

parameters for each bottleneck location: 

 തܴ א ഥ܀ ܖ ൌ ሼ തܴଵ, തܴଶ, … , തܴ, … , തܴሽ: A set of initial radius values at time ݐ ൌ 0 

 ܮത א ҧۺ ܖ ൌ ሼܮതଵ, ,തଶܮ … , ,തܮ … ,  തሽ: A set of average vehicle spacing valuesܮ

 തܱ א ܖഥ۽ ൌ ሼ തܱଵ, തܱଶ, … , തܱ, … , തܱሽ: A set of threshold occupancy percentages that determine the 

expected onset of traffic queuing 

 ݒҧ א ܖതܞ ൌ ሼݒҧଵ, ,ҧଶݒ … , ,ҧݒ … ,  ҧሽ: A set of free-flow speedsݒ

 

For the sake of readability, the Appendix contains a complete listing of variable and function definitions 

as well as notational conventions. 

 

<< INSERT FIGURE 3>> 

 

 

Traffic Queuing Algorithm 

The following is a summary of the ࢉ࢟ࡴ algorithm that assembles a table of bottleneck radii ܴ 

for each bottleneck ߚ and time period ܶ. The algorithm requires the input data arrays ܖ۽
ାܖ܃ and ܘ

ܘ  as 

well as the adjustable parameters ܀ഥ ҧۺ ,ܖ ܖ܀ The output table .ܖഥ۽ and ܖ
ܘ  contains the radius value for each 

time period ܶ at each bottleneck ߚ in a  ൈ ݊ array. The complete pseudo-code is provided in the 

Appendix; beginning with the conditional statement within the nested for-loop for a particular ߚ and 

starting at ݐ ൌ 0, the algorithm can be described as follows: 

1. First assign the variable ܴ the base parameter value തܴ at ݐ ൌ 0 

2. Begin the ݇ iteration; if the occupancy ܱ at a given ݇ iteration is greater than the threshold 

value തܱ, add the differences in the outflow and inflow traffic volumes multiplied by the duration 

of the time partition ݐത െ  ܴ ത to the variableܮ  by the average vehicle spacingݐ

3. If the occupancy ܱ is less than തܱ and the radius variable ܴ is greater than the base parameter 

തܴ, then subtract the quantity from step 2 from ܴ.  

4. Take the maximum of the set ሾܴ, തܴሿ; this and the second condition of step 3 prevent ܴ from 

being assigned a negative value and ensures that തܴ is a lower bound for the variable ܴ when the 

predicted traffic queue is dispersing 

5. Otherwise, retain ܴ ൌ തܴ  
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6. Construct a column vector ܘ܀ of ܴ values obtained from each ݇ iteration 

7. Repeat steps 1 through 6 ݊ times and construct the output matrix ܖ܀
ܘ  from the column vectors ܘ܀ 

obtained from each iteration. 

In summary, the ࢘࢟ࡴ algorithm adds or subtracts expected lengths of traffic queues to the radius 

of the effective area of each bottleneck which is dependent on whether the measured occupancy is above 

or below each threshold value contained in ۽ഥܖ. The table of values in ܖ܀
ܘ  is referenced by the ࢌ࢟ࡴ and 

 algorithms described in detail in the following section. The objective is to extrapolate travel time ࢈࢟ࡴ

trends from the data that are available and apply them to the surrounding road network. 

Arrival and Departure Time Algorithms 

The following is a summary of the arrival time and departure time algorithms ࢌ࢟ࡴ and ࢈࢟ࡴ 

adapted from Figliozzi [15] that estimate travel times between pairs of customers ߚ and ߚ using the 

travel time data. The ࢌ࢟ࡴ algorithm calculates the expected arrival time at a customer ߚ when departing 

from a previous customer ߚ using a forward-iterative process. Similarly, the ࢈࢟ࡴ algorithm utilizes a 

backward iterative process and simultaneously calculates the required departure time from customer ߚ to 

reach customer ߚ.  

The impact of bottlenecks as vehicles are moving through different periods of time is a function 

of the estimated distance between the vehicle and the bottleneck at the beginning of each time period. A 

linear approximation of the vehicle location is used to reduce computational complexity because shortest 

path and Euclidean distances are highly correlated. High levels of correlation between Euclidian and 

shortest path distances are usually found in urban areas [21]. The distance traveled along the Euclidean 

connecting line is calculated as a percentage of the actual route traversed such that 

 

݀′ ൌ ௗ

ௗೕ
 . (1)ܦ

 

Using the law of cosines (see FIGURE 4) the distance from a point on the Euclidian connecting 

line to each bottleneck at a given time iteration in the forward iterative calculation can be shown to be  

 

ݎ ൌ ඨ൬
ௗ

ௗೕ
൰ܦ

ଶ

 ܦ
ଶ െ

ௗቀೕ
మ ାೕ

మ ି
మ ቁ

ௗೕ
. 

 

(2) 
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Similarly for the backwards iterative process of the departure time algorithm the distance from 

the nearest bottleneck is 

ݎ ൌ ඨ൬
ௗ

ௗೕ
൰ܦ

ଶ

 ܦ
ଶ െ

ௗቀೕ
మ ା

మ ିೕ
మ ቁ

ௗೕ
. (3) 

 

In equations (2) and (3)  ܦ, ܦ, and ܦ are the Euclidean distances between customers ݅ and 

݆; customer ݅ and bottleneck ߚ; and customer ݆ and bottleneck ߚ, respectively; ݀ is the shortest-path 

driving distance from customer ݅ to customer ݆ calculated by the API; and ݀ is the iterated distance from ݅ 

to ݆ along the actual driving route. A derivation of this function can be found in the Appendix. 

 

 

 

<< INSERT FIGURE 4>> 

 

 

The travel speed function ݏ is applied at each time iteration ܶ and calculates a speed value for 

each bottleneck. This function calculates congested travel speeds ݏ as reductions in the API-derived 

speed ݑ proportional to the speed reduction measured at the traffic bottlenecks such that 
௦

௨ೕ
ൌ

௩ೖ

௩ത
 if the 

virtual location on the Euclidean connecting line is within the radius ܴ. Here ݒ is the time-varying 

speed obtained from PORTAL and ݒҧ is an adjustable parameter that may represent the freeway free-

flow speed. In other words, the reduction in travel speed due to congestion in the surrounding network is 

assumed to be proportional to the reduction observed from the PORTAL freeway data at the bottleneck 

(detector station) with the slowest travel speed. This function can be expressed as 

 

ݏ ൌ ቐ

ݒݑ
ҧݒ

ݎ     ܴ

ݎ          ݑ  ܴ
 

 

(4) 

where ݎ is the distance from a point along the Euclidean connecting line to a bottleneck ߚ. 

 

 

The following is a summary of the ࢌ࢟ࡴ algorithm; the pseudo-code can be found in the 

Appendix: 
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1. First determine if the arrival time ܽ is less than the lower time window ݁ at customer ݅  

a. If so, then the vehicle waits and the expected departure time is ݁ plus the service time ݃ 

b. If not, then the departure time is simply the arrival time plus the service time 

2. Determine ݇ for the discrete time period ܶ with bounds ൣݐ, തݐ ൧ that the expected departure time 

ܾ lies in. This is the initial value for the iterator in the while loop 

3. Determine the Euclidean distance of each traffic bottleneck to the location ߚ ൌ ሺݔ,  ሻ ofݕ

customer ݅; the speed function is calculated for each value ݉ and a row vector ܖ܁ of speeds is 

assembled. The initial travel speed of the vehicle in the subsequent forward-iterative process is 

calculated as the minimum value of ܖ܁, i.e. the travel speed is only as fast as that imposed by the 

bottleneck with the worst travel speed (only among the subset of bottlenecks whose area of 

influence affects the path between customers at a given time). 

4. Terminate the while loop when the vehicle has reached its destination. In each period speeds are 

recalculated and distances accumulated until the vehicle has reached its destination.  

Output: the expected arrival time ܽ at customer ݆ when departing from customer ݅ at time ܾ. 

  

The ࢈࢟ࡴ algorithm works in a similar fashion; given a customer ݆ at location ߥ with an expected 

arrival time ܽ obtained from the ࢌ࢟ࡴ algorithm, determine the required departure time ܾ from customer 

݅ at location ߚ to make the trip between ߚ and ߚ without allowing for late time window violations.  

Calibration  

Travel times can be calibrated by adjusting  ܀ഥ ,ܖ ഥۺ ,ܖ ,ܖഥ۽ ഥܞ  parameters as well as the time dependent travel ܖ

speeds provided by PORTAL (ܖܞ
 Directional and time of day effects can be incorporated. Memory .(ܘ

requirements are reduced because the algorithms work with one travel time and distance matrix. Simple 

linear functions and intuitive parameters are used to adapt free-flow travel times to congested conditions.  

 

6. Experimental Setting 

Sensitivity Analysis and Constraint Modeling   

To test the model using real-world constraints, two delivery periods are modeled and analyzed: (1) An 

early morning delivery period that avoids most of the morning peak-hour traffic congestion but with 

tighter time windows; and (2) an extended morning delivery time that increases the feasible working time 
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but with increased travel during morning peak-hour. Figure 6 provides a qualitative comparison of the 

simulated delivery times.  

A total of 50 customer locations are utilized (FIGURE 5), with constraints assigned according to 

the zoning criteria. All customers normally served after 9AM are assumed to be able to shift delivery 

times prior to this time. Time windows of 15 minutes are randomly assigned to all customer types. 

Additionally, deliveries to all customers in mixed-use and residential areas are prohibited before 7AM to 

model required compliance with local noise ordinances. In the early morning delivery option, this reduces 

the effective depot working time to just two hours for these customers. The extended morning delivery 

option provides a 4-hour working time for these customers but includes the effects of the morning peak-

hour congestion to a greater degree. The calibration of the model was tested by varying the travel speed 

parameters ܞതܖ to alter the simulated travel speed derived from the PORTAL travel time data and 

contained in the travel speed table ܖܞ
 .ܘ

 

<< INSERT FIGURE 5>> 

 

 

 

 

 

<< INSERT FIGURE 6>> 

 

 

 

7. Experimental Results 

Results comparing the number of vehicles and total distance traveled during the morning and extended 

morning delivery periods are presented in this section. In addition, to incorporate the impact of travel time 

reliability, time-varying travel speed from PORTAL are decreased by a coefficient ߜ. This adjustment 

maintains the overall trend in travel speed variation throughout the delivery period, but allows for 

adjustments to the travel time to more accurately reflect real-world differences between average travel 

speeds and the actual distribution of travel speeds.  A value ߜ ൌ 1 utilizes average time-varying travel 

speed PORTAL data and assumes that no hard time window violations take place if realized travel times 
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are at least the average travel speed. However, if the carriers would like to account for travel time 

unreliability a value of ߜ ൏ 1 can be used in the calculations as follows: 

 

ݏ ൌ ቐ
ߜ

ݒݑ
ҧݒ

ݎ      ܴ

ݎ           ݑ  ܴ
 

(5) 

 

A value of ߜ ൏ 1 guarantees a higher value of customer service [14].  The sensitivity to travel time 

unreliability and buffer times was tested by setting the parameter ߜ ൌ ሼ0.4, 0.6, 0.8, 1ሽ.  

Impact of congestion on the number of vehicles 

For the number of required vehicles (FIGURE 7), the central depot showed less sensitivity to 

changes in travel time reliability than the suburban depot.  As expected [14], reduced travel speed appears 

to have a greater impact on fleet size when the depot has a suburban location.  The number of vehicles 

required is consistently less for the extended early morning delivery period and larger fleet is still required 

when the depot has a suburban location.    

 

 

<< INSERT FIGURE 7>> 

 

 

Impact of congestion on the total distance traveled 

Comparisons of total vehicle miles traveled (VMT) are provided in FIGURE 8. Similar to the 

required number of vehicles, total VMT is significantly higher for tours originating at the suburban depot 

location. Constrained service times for customers in the early morning delivery period also appear to 

impact total VMT to a slightly greater extent than travel speed.  

 

 

 

<< INSERT FIGURE 8>> 
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8. Conclusions 

This research proposes a new methodology for integrating real-world road networks and travel data to 

time-dependent vehicle routing solution methods. The use of traffic sensor data and Google Maps API 

provides a unique approach to interface routing algorithms, travel time and congestion data. Intuitive 

algorithms and parameters are used to incorporate the impacts of congestion on time-dependent travel 

time matrices. The proposed methodology is a significant improvement in terms of representing the 

impacts of congestion in congested urban areas leveraging on existing open source data and applications.   

The results show the dramatic impacts of congestion on carriers’ fleet sizes and distance traveled. 

The results also suggest that congestion has a significant impact on fleet size, particularly for depots 

located in suburban areas outside of the customer service area.  
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Appendix A 

Notational Conventions 

ܖۯ
ܘ ൌ

ۉ

ۈ
ۈ
ۇ

ଵଵܣ ଵଶܣ ڮ ଵܣ ڮ ଵܣ
ଶଵܣ ଶଶܣ ڮ ଶܣ ڮ ڭ

ڭ ڭ ڰ ڭ ڮ ڭ
ଵܣ ଶܣ ڮ ܣ ڮ ܣ

ڭ ڭ ڭ ڮ ڰ ڭ
ଵܣ ଶܣ ڮ ܣ ڮ یܣ

ۋ
ۋ
ۊ

: A matrix with  rows and ݊ columns 

ܖۯ ൌ ሼܣଵ, ,ଶܣ … , ,ܣ … ,  ሽ: Row vector with ݊ elementsܣ

ܘۯ ൌ

ە
ۖ
۔

ۖ
ۓ

ଵܣ
ଶܣ
ڭ

ܣ
ڭ

ۙܣ
ۖ
ۘ

ۖ
ۗ

: Column vector with  elements 

ܕۯ  ାଵܣ ؠ ሼܣଵ, ,ଶܣ … , ሽܣ ՚ ାଵܣ ൌ ሼܣଵ, ,ଶܣ … , ,ܣ  ାଵሽܣ

ܕۯ
ܘ  ܘۯ ؠ ൮

ଵଵܣ ଵଶܣ ڮ ଵܣ
ଶଵܣ ଶଶܣ ڮ ڭ

ڭ ڭ ڰ ڭ
ଵܣ ڮ ڮ ܣ

൲ ՚ ൮

ଵܣ
ଶܣ
ڭ

ܣ

൲ ൌ ൮

ଵଵܣ ଵଶܣ ڮ ଵܣ ଵ,ାଵܣ

ଶଵܣ ଶଶܣ ڮ ଶܣ ଶ,ାଵܣ
ڭ ڭ ڰ ڭ ڭ

ଵܣ ڮ ڮ ܣ ,ାଵܣ

൲ 

ܣ א  ௧ element of a row vector with ݊ elements݉ :ܖۯ

ܣ א  elements  ௧ element of a column vector with݇ :ܘۯ

ܣ א ܖۯ
ܘ : element in the ݇௧ row and ݉௧ column of a  ൈ ݊ matrix ( rows and ݊ columns) 
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Variables Definition 

݅, ݆, ݉ Indices for set of consecutive customers (݅, ݆) and bottlenecks (݉) 

ߚ ൌ ሺݔ, ;ሻݕ ߚ  ൌ  ൫ݔ, ߚ ;൯ݕ ൌ  ሺݔ,  ሻݕ
Geographic coordinates of customer ݅, customer ݆ and bottleneck 

݉, respectively 

ܽ Arrival time at customer ݆ 

ܾ Departure time from customer ݅ 

݁ Lower time window for customer ݅ 

݃ Service time at customer ݅ 

݀ Iterated driving distance variable 

݀ 
Driving distance between customers ݅ and ݆ calculated by the 

Google Maps API 

 ݐ
Free-flow travel time between customers ݅ and ݆ calculated by the 

Google Maps API 

ݑ ൌ
݀

ݐ
 “Free-flow” speed used in TDVRP algorithm 

Array/Vector quantities Definition 

ܶ ؠ തݐൣ , ൧ݐ א ܘ܂ ൌ ൛ ଵܶ, ଶܶ, … ܶൟ, Set of time periods as fraction of depot working time 

തܴ א ഥ܀ ܖ ൌ ሼ തܴଵ, തܴଶ, … , തܴሽ 
A set of initial radius values at each bottleneck location at time 

ݐ ൌ 0 

തܮ א ҧۺ ܖ ൌ ሼܮതଵ, ,തଶܮ … ,  തሽܮ
A set of average vehicle spacing values for each bottleneck 

location 

തܱ א ܖഥ۽ ൌ ሼ തܱଵ, തܱଶ, … , തܱሽ 
A set of threshold occupancy percentages that determine the 

expected onset of traffic queuing 

ҧݒ א ܖതܞ ൌ ሼݒҧଵ, ,ҧଶݒ … ,  ҧሽ Bottleneck speed parametersݒ

ܷ, ܷ,ାଵ א ାܖ܃
ܘ ൌ ሾܷሿൈାଵ 

Table of vehicle flow inflow and outflow rates for each time 

period and bottleneck  

ܖ۽
ܘ ൌ ሾܱሿൈ Table of occupancy values for each time period and bottleneck 

ܖܞ
ܘ ൌ ሾݒሿൈ 

Speed at bottleneck ܤ for the ݇௧ time period entered as a  ൈ ݊ 

array 

Functions Definition 

݂൫ݔఓ, ,ఔݔ ,ఓݕ  ఔ൯ Euclidean distance between two sets of x-y coordinatesݕ
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Bottleneck Radius Algorithm ࢘࢟ࡴ 

Input 

ܖ۽
ାܖ܃ ,ܖ܀ ,ܘ

ܘ  ܖഥ۽ ,ܖۺ ,

 

START ࢉ࢟ࡴ 

ܖ܀
ܘ ՚   

For ݉ א Գ ൌ 1 to ݊ 

ܘ܀ ՚  

ܴ ՚ ܴ 

For ݇ א Գ ൌ 1 To  

If ܱ  തܱ Then 

ܴ ՚ ܴ  หܷ,ାଵ െ ܷห൫ݐത െ  ܮ൯ݐ

Else 

If ܱ ൏ തܱ And ܴ  തܴ Then 

ܴ ՚ ܴ െ หܷ,ାଵ െ ܷห൫ݐത െ  ܮ൯ݐ

Else 

ܴ ՚ ܴ 

End If 

End If 

ܘ܀  ܴ 

Next ݇ 

ܖ܀
ܘ   ܘ܀

Next ݉ 

Output: ܖ܀
ܘ ൌ ሾܴሿൈ 
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Arrival time algorithm ࢌ࢟ࡴ 

Input 

ܖ܀
ܘ  ݑ ,ߥ, ߥ ,, ܾ, ݁,  ݃ܽ  ,ܘ܂ ,

START ࢌ࢟ࡴ 

If ܽ ൏ ݁Then 

 ܾ ՚ ݁  ݃ 

Else 

 ܾ ՚ ܽ  ݃ 

End If  

ܦ ՚ ݂൫ݔ, ,ݔ ,ݕ   ൯ݕ

Find ݇, ݐ  ܾ  തݐ  

݇ ՚ ݇ 

ܖ܁ ՚  

For ݉ ൌ 1 א Գ To ݊ 

ܦ ՚ ݂൫ݔ, ,ݔ ,ݕ  ൯ݕ

ܦ  ՚ ݂ሺݔ, ,ݔ ,ݕ  ሻݕ

ݎ  ՚ ඨ൬ ௗ

ௗೕ
൰ܦ

ଶ
 ܦ

ଶ െ
ௗ

ௗೕ
൫ܦ

ଶ  ܦ
ଶ െ ܦ

ଶ ൯ 

If ݎ  ܴ Then 

ݏ ՚ ݑ
ݒ

ݓ
 

Else 

ݏ ՚  ݑ

End If 

ܖ܁ ՚ ܖ܁  ሼݏሽ 

Next ݉ 

ݏ ՚ minሾܖ܁ሿ 

݀ ՚ ݀ 

 ܽ ՚ ܾ 
ௗ

௦
 

ݐ  ՚ ܾ 

While ܽ  തݐ  Do  
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݀ ՚ ݀ െ ሺݐത െ  ݏሻݐ

ݐ ՚ തݐ  

݇ ՚ ݇  1  

ܖ܁ ՚  

For ݉ א Գ ൌ  To ݊ 

ܦ ՚ ݂൫ݔ, ,ݔ ,ݕ  ൯ݕ

ܦ ՚ ݂ሺݔ, ,ݔ ,ݕ  ሻݕ

ݎ  ՚ ඨ൬ ௗ

ௗೕ
൰ܦ

ଶ
 ܦ

ଶ െ
ௗ

ௗೕ
൫ܦ

ଶ  ܦ
ଶ െ ܦ

ଶ ൯ 

If ݎ  ܴ Then 

ݏ ՚ ݑ
ݒ

ݓ
 

Else 

ݏ ՚  ݑ

End If 

ܖ܁ ՚ ܖ܁  ሼݏሽ 

Next ݉ 

ݏ ՚ minሾܖ܁ሿ 

ܽ ՚ ݐ 
݀
ݏ

 

End While 

Output: ܽ 
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Departure time algorithm ࢈࢟ࡴ 

Input 

ܖ܀
ܘ ܖܞ ,ܘ܂ ,

 ݑ ,ߥ, ߥ ,ܽ, ݁,  ݃  ܘ

 

START 

ܦ ՚ ݂൫ݔ, ,ݔ ,ݕ  ൯ݕ

Find ݇, ݐ  ܽ  തݐ  

݇ ՚ ݇ 

ܖ܁ ՚  

For ݉ ൌ 1 א � To ݊ 

ܦ ՚ ݂൫ݔ, ,ݔ ,ݕ  ൯ݕ

ܦ  ՚ ݂ሺݔ, ,ݔ ,ݕ  ሻݕ

ݎ  ՚ ඨ൬ ௗ

ௗೕ
൰ܦ

ଶ
 ܦ

ଶ െ
ௗ

ௗೕ
൫ܦ

ଶ  ܦ
ଶ െ ܦ

ଶ ൯ 

If ݎ  ܴ Then 

ݏ ՚ ݑ
ݒ

ݓ
 

Else 

ݏ ՚  ݑ

End If 

ܖ܁ ՚ ܖ܁  ሼݏሽ 

Next ݉ 

ݏ ՚ minሾܖ܁ሿ 

݀ ՚ ݀ 

ݐ  ՚ ܽ 

݀ ՚ ൫ݐ െ  ݏ൯ݐ

While ݀ ൏ ݀ And ݇  0 And ݐത  ݁ 
Do  

݀ ՚ ݀ െ ݀  

ܖ܁ ՚  

For ݉ א Գ ൌ 1 To ݊ 

ܦ ՚ ݂൫ݔ, ,ݔ ,ݕ  ൯ݕ

ܦ  ՚ ݂ሺݔ, ,ݔ ,ݕ  ሻݕ
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ݎ  ՚ ඨ൬ ௗ

ௗೕ
൰ܦ

ଶ
 ܦ

ଶ െ
ௗ

ௗೕ
൫ܦ

ଶ  ܦ
ଶ െ ܦ

ଶ ൯ 

If ݎ  ܴ Then 

ݏ ՚ ݑ
ݒ

ݓ
 

Else 

ݏ ՚  ݑ

End If 

ܖ܁ ՚ ܖ܁  ሼݏሽ 

Next ݉ 

ݏ ՚ minሾܖ܁ሿ 

ݐ  ՚  ݐ

 ܾ ՚ ݐ െ
ௗ

௦
 

 ݇ ՚ ݇ െ 1  

 ݀ ՚ ൫ݐ െ  ݏ൯ݐ

End While 

If ݀  ݀ Then  

 ܾ ՚ തݐ െ
ௗ

௦
 

Else 

 ܾ ՚ െ∞ 

Output: ܾ 
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Derivation of bottleneck distance 

The following is the derivation of the bottleneck distance function ݎ for the forward-iterative calculation in the 

AT algorithm. An identical argument with the distance ݀ iterated in the backward direction from a customer ݆ to ݅ 

obtains the bottleneck distance function for the DT algorithm in a trivial manner. 

Let ߠ be the angle opposite ܦ, the Euclidean distance from customer ݅ to bottleneck ܤ. Using the 

law of cosines: 

 

ܦ
ଶ ൌ ܦ

ଶ  ܦ
ଶ െ   .ሻߠሺݏܿܦܦ2

 

ሻߠሺݏܿ ൌ
ೕ

మ ାೕ
మ ି

మ  

ଶೕೕ
  . (6) 

 

 :and equation (6) and using the law of cosines again ݎ equating ;ݎ  is also the angle opposite toߠ

 

ݎ
ଶ ൌ ቆ

݀
݀

ቇܦ
ଶ

 ܦ
ଶ െ 2 ቆ

݀
݀

ቇܦ  ሻߠሺݏܿܦ

 

      ൌ ቆ
݀

݀
ቇܦ

ଶ

 ܦ
ଶ െ 2 ቆ

݀
݀

ቇܦ ܦ ቆ
ܦ

ଶ  ܦ
ଶ െ ܦ

ଶ

ܦܦ2
ቇ 

 

      ൌ ቆ
݀

݀
ቇܦ

ଶ

 ܦ
ଶ െ

݀
݀

൫ܦ
ଶ  ܦ

ଶ െ ܦ
ଶ ൯ 

 

֜ ݎ ൌ ඨቆ
݀

݀
ቇܦ

ଶ

 ܦ
ଶ െ

݀
݀

൫ܦ
ଶ  ܦ

ଶ െ ܦ
ଶ ൯ 

 

  



Conrad, Figliozzi     25   

 

  

REFERENCES 

1. Weisbrod, G., V. Donald, and G. Treyz, Economic Implications of Congestion. NCHRP Report #463. 
2001, National Cooperative Highway Research Program, Transportation Research Board: Washington, 
DC. 

2.  Hensher, D. and S. Puckett, Freight Distribution in Urban Areas: The role of supply chain alliances in 
addressing the challenge of traffic congestion for city logistics. Working Paper ITS‐WP‐04‐15, 2004. 

3.  Hensher, D. and S. Puckett, Refocusing the Modelling of Freight Distribution: Development of an 
Economic‐Based Framework to Evaluate Supply Chain Behaviour in Response to Congestion Charging. 
Transportation, 2005. 32(6): p. 573‐602. 

4.  Golob, T.F. and A.C. Regan, Impacts of highway congestion on freight operations: perceptions of 
trucking industry managers. Transportation Research Part A: Policy and Practice, 2001. 35(7): p. 577‐
599. 

5.  ERDG, The Cost of Congestion to the Economy of the Portland Region, Economic Research 
Development Group, December 2005. 2005: Boston, MA, accessed June 2008, 
http://www.portofportland.com/Trade_Trans_Studies.aspx. 

6.  ERDG, The Cost of Highway Limitations and Traffic Delay to Oregon’s Economy, Economic Research 
Development Group, March 2007. 2007: Boston, MA, accessed October 2008, 
http://www.portofportland.com/Trade_Trans_Studies_CostHwy_Lmtns.pdf. 

7.  Golob, T.F. and A.C. Regan, Traffic congestion and trucking managers' use of automated routing and 
scheduling. Transportation Research Part E: Logistics and Transportation Review, 2003. 39(1): p. 61‐
78. 

8.  Golob, T.F. and A.C. Regan, Trucking industry preferences for traveler information for drivers using 
wireless Internet‐enabled devices. Transportation Research Part C: Emerging Technologies, 2005. 
13(3): p. 235‐250. 

9.  Figliozzi, M.A., L. Kingdon, and A. Wilkitzki, Analysis of Freight Tours in a Congested Urban Area Using 
Disaggregated Data: Characteristics and Data Collection Challenges. Proceedings 2nd Annual 
National Urban Freight Conference, Long Beach, CA. December, 2007. 

10. Holguin‐Veras, J., et al., The impacts of time of day pricing on the behavior of freight carriers in a 
congested urban area: Implications to road pricing. Transportation Research Part A‐Policy And 
Practice, 2006. 40(9): p. 744‐766. 

11. Quak, H. and M. de Koster, Delivering Goods in Urban Areas: How to Deal with Urban Policy 
Restrictions and the Environment. Transportation Science, 2009. 43(2): p. 211‐227. 

12. Figliozzi, M.A., Analysis of the efficiency of urban commercial vehicle tours: Data collection, 
methodology, and policy implications. Transportation Research Part B, 2007. 41(9): p. 1014‐1032. 

13. Daganzo, C.F., Logistics Systems‐Analysis, in Lecture Notes In Economics And Mathematical Systems. 
1991. 

14. Figliozzi, M.A., The impacts of congestion on commercial vehicle tour characteristics and costs. 
Transportation Research Part E, 2009. 

15. Figliozzi, M.A. A Route Improvement Algorithm for the Vehicle Routing Problem with Time Dependent 
Travel Times. in Proceeding of the 88th Transportation Research Board Annual Meeting CD rom. 2009. 
Washington, DC, January 2009,  also available at http://web.cecs.pdx.edu/~maf/publications.html. 

16. Fleischmann, B., M. Gietz, and S. Gnutzmann, Time‐varying travel times in vehicle routing. 
Transportation Science, 2004. 38(2): p. 160‐173. 



Conrad, Figliozzi     26   

 

17. Eglese, R., W. Maden, and A. Slater, Road Timetable (TM) to aid vehicle routing and scheduling. 
Computers & Operations Research, 2006. 33(12): p. 3508‐3519. 

18. Google Maps API.  2009  [cited 2009 July 30]; Available from: http://code.google.com/apis/maps/. 
19. Bertini, R.L., et al., PORTAL: Experience Implementing the ITS Archived Data User Service in Portland, 

Oregon. Transportation Research Record 1917, 2005: p. 90‐99. 
20. Cassidy, M.J., C.F. Daganzo, and K. Jang, Spatiotemporal Effects of Segregating Different Vehicle 

Classes on Separate Lanes. UC Berkeley Center for Future Urban Transport: A Volvo Center of 
Excellence, 2008. 

21. Figliozzi, M.A., Planning Approximations to the Average Length of Vehicle Routing Problems with 
Varying Customer Demands and Routing Constraints. Transportation Research Record 2089, 2008: p. 
1‐8. 

 

  



Conrad, Figliozzi     27   

 

 

LIST OF FIGURES 

FIGURE 1: Overview of the TDVRP solution methodology and integration of the Google Maps API .... 28 

FIGURE 2: Example with bottleneck locations and areas of effective travel speed reduction ................... 29 

FIGURE 3: TDVRP Solution method ......................................................................................................... 30 

FIGURE 4: Illustration of the method to approximate bottleneck influence .............................................. 31 

FIGURE 5:  Customer service area and depot locations ............................................................................. 32 

FIGURE 6:  Modeled delivery periods, constrained customers, and time window constraints .................. 33 

FIGURE 7:  Effects of congestion on fleet size .......................................................................................... 34 

FIGURE 8:  Effects of congestion on total VMT ....................................................................................... 35 

 

  



Conrad, Figliozzi     28   

 

FIGURE 1: Overview of the TDVRP solution methodology and integration of the Google Maps API 
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FIGURE 2: Example with bottleneck locations and areas of effective travel speed reduction 



Conrad, Figliozzi     30   

 

 

FIGURE 3: TDVRP Solution method  
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FIGURE 4: Illustration of the method to approximate bottleneck influence  
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FIGURE 5:  Customer service area and depot locations
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FIGURE 6:  Modeled delivery periods, constrained customers, and time window constraints 
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FIGURE 7:  Effects of congestion on fleet size 
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FIGURE 8:  Effects of congestion on total VMT
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