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Abstract
Road autonomous mobile robots have attracted the attention of delivery companies and policy makers owing to their poten-
tial to reduce costs and increase urban freight efficiency. Established delivery companies and new startups are investing in
technologies that reduce delivery times, increase delivery drivers’ productivity, or both. In this context, the adoption of road
automatic (or autonomous) delivery robots (RADRs) has a growing appeal. Several RADRs are currently being tested in the
United States. The key novel contributions of this research are: (a) an analysis of the characteristics and regulation of RADRs
in the U.S. and (b) a study of the relative travel, time, and cost efficiencies that RADRs can bring about when compared to
traditional van deliveries. The results show that RADRs can provide substantial cost savings in many scenarios, but in all cases
at the expense of substantially higher vehicle miles per customer served. Unlike sidewalk autonomous delivery robots
(SADRs), it is possible the RADRs will contribute significantly to additional vehicle miles per customer served.

Robots may soon deliver groceries and parcels to com-
mercial and residential customers. Although most
deployments are at the pilot level, on-road autonomous
delivery robots (RADRs) might be able to meet the
growing delivery demands generated by E-commerce,
which is growing at a double-digit annual rate (1).
Autonomous delivery robots (ADRs) are equipped with
sensors and navigation technology which allows them to
travel on roads and sidewalks without a driver or on-site
delivery staff.

Some researchers such as Fagnant and Kockelman
have extensively studied the potential of autonomous
vehicles for passenger transportation (2). In comparison,
significantly less studies have focused on the potential of
autonomous vehicles in the freight sector. Some research-
ers have studied the implications of autonomous vehicles
for long-haul freight. Short and Murray discussed the
effect of long-haul autonomous trucks on hours-of-ser-
vice, safety, driver shortage and driver retention, truck
parking, driver health and wellness, and the economy (3).
Aboulkacem and Combes studied the effect of long-haul
autonomous trucks utilizing an economic model and sce-
narios with and without full automation, and found that
full automation is likely to produce more truck volumes
and a decrease in shipment sizes (4).

Flämig presented a history of automation in the
freight sector by analyzing four cases of automation in

the freight industry and the potential applications (5).
With regards to urban deliveries, Flämig indicates that
small ADRs may better navigate/access narrow urban
centers, but that delivering parcels may still require
human involvement, even if the vehicle is automated, at
the receiver side (5). Kristoffersson et al. discussed sce-
narios for the development of ADRs based on the results
of a workshop that included elicit insights from a group
of vehicle manufacturers, transport agencies, carriers,
and academics (6). For urban areas, Kristoffersson et al.
adds that ADRs can facilitate flexible last mile deliveries
but also recognizes that urban areas are complex envir-
onments with many deliveries/stops and interactions
with pedestrians and cyclists (6). Slowik and Sharpe
studied the potential of autonomous technology to
reduce fuel use and emissions for heavy-duty freight
vehicles (7). The work of Viscelli analyzed the effect of
ADRs on the U.S. labor market (8).

There are significantly less studies focusing on urban
deliveries or short-haul freight trips. Jennings and
Figliozzi recently studied the potential of sidewalk
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autonomous delivery robots (SADRs) (9). Given the rel-
atively short range of SADRs, these small robots are
usually complemented by a ‘‘mothership’’ van that can
transport SADRs close to the delivery zone or service
area. Vleeshouwer et al. utilized simulations to study a
small bakery robot delivery service in the Netherlands
(10). Other researches have analyzed the shortcomings of
current regulations for delivery robots (11). Another line
of research has focused on the optimal wayfinding of
ADRs or optimizing the joint scheduling of both trucks
and ADRs; some of the research in this field has been
conducted by Boysen et al., Baldi et al., Sonneberg et al.,
Deng et al., and Moeini et al. (12–16).

The key contributions of this research are: (a) an anal-
ysis of the characteristics and regulation of RADRs in
the U.S.; and (b) a study of the relative travel, time, and
cost efficiencies that RADRs can bring about when com-
pared to conventional vans. The analysis of on-road
autonomous delivery robot (RADR) regulations and
characteristics is limited to the U.S. A global review,
though important, is outside the scope of this paper and
left as a research task for future research efforts that
focus mainly on the regulatory aspects of this new
technology.

Regulatory Framework

As RADR vehicles utilize state-of-the-art technology to
navigate streets without human intervention, regulators
have mainly focused on their safety implications.
Regulation of autonomous vehicles and their testing and
use is not yet fully agreed on. The U.S. federal govern-
ment has only outlined suggested legislation for autono-
mous vehicles and has left it up to individual states to
determine laws (17).

As of January 2014, early crafters of self-driving vehi-
cle regulation in the U.S. were Nevada, California,
Florida, and Washington D.C. (18). All of the regula-
tions for these states’ required—the vehicle to be autono-
mous; the operator to have a driver’s license (except
Washington D.C.; not specified); manual override fea-
tures; and insurance in the millions of dollars for testing
purposes (except Washington D.C.; not specified). Some
regulatory frameworks also included additional
requirements—removal of liability from the original
vehicle manufacturer when modified to be autonomous;
a visual indicator to the operator when the vehicle is in
autonomous mode; a system to alert the operator of mal-
functions; a human operator present to monitor the vehi-
cle’s performance; and directions for the Department of
Motor Vehicles of the state to create rules for testing.

The National Conference of State Legislatures’
(NCSL) Autonomous Vehicles State Bill Tracking
Database has the most up-to-date information on

legislation for each state (19). According to the NCSL,
as of March 2019, ten additional states had pending leg-
islation in 2014 and have already enacted legislation with
regards to autonomous vehicles; these states include
Arizona, Colorado, Hawaii, Massachusetts, Michigan,
New York, South Carolina, Texas, Washington, and
Wisconsin. Additionally, 19 states which did not have
pending legislation in 2014, have enacted legislation:
Alabama, Arkansas, Connecticut, Georgia, Illinois,
Indiana, Louisiana, North Carolina, North Dakota,
Pennsylvania, Tennessee, Utah, Virginia, Arizona,
Delaware, Idaho, Maine, Minnesota, and Ohio.

Vehicle Characteristics

In the U.S. market, there are three prominent companies
currently developing RADRs. These companies are:
Nuro, based in Mountain View, California; Udelv, based
in Burlingame, California; and Ford’s AutoX, based in
San Jose, California. The vehicles each of these compa-
nies are prototyping are very different and are shown in
Figure 1.

Nuro’s vehicle is a driverless car-like vehicle, with two
large main compartments with doors that swing upwards
to release delivery items. Nuro advertises that its vehicles
will soon be able to travel at up to 35mph, it cannot use
freeways, but can use city streets, and will be able to
carry up to 20 grocery bags (23). Nuro claims that the
robot weighs 680 kg and can carry 110kg of products.
The robot is about the same size as a small conventional
American car, except for the width; it is about half of the
width of a standard car, at about 3 ft wide (24). As of
December 2018, Nuro’s vehicle was being tested by a
Kroger grocery store in Phoenix, Arizona, where the
vehicle traveled up to 1mi from the store (25). Using the
same assumptions made in Jennings and Figliozzi, we
assume that 20 grocery bags equates to 40 parcels, and in
turn, the Nuro vehicle could deliver to 40 customers (9,
20).

The Udelv vehicle is a modified Ford Transit
Connect, which has 32 individual compartments to store
delivery items. The Ford Transit Connect can travel at
up to 60mph (21), with a range of 60mi before rechar-
ging, and a carrying capacity of 1,300 lb (26). The Udelv
team has modified this van to allow individual compart-
ments to be opened one at a time, which would prevent
theft of other delivery parcels.

Finally, Ford’s AutoX RADR is based on a Lincoln
MKZ hybrid vehicle, which can travel at up to 80mph,
weighs slightly less than the Udelv vehicle, and has a
large range when using gasoline and electric lithium-ion
batteries (27). Ford has outfitted these vehicles to use the
trunk for carrying parcels, and the passenger side rear
window has been modified to be a beverage dispensary,
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where customers can select from a choice of items to
take, in addition to their order (22). These three vehicles’
specifications are provided in Table 1.

It is assumed that in all cases deliveries can be per-
formed without a driver, for example, the RADR is only
dispatched if the customers confirm, by utilizing a smart-
phone, that they can meet the vehicle at a specific loca-
tion in a similar way to how customers currently meet
ridesharing services.

Methodology

In this section, the methodology used for comparing con-
ventional (or standard) vans with Udelv’s RADR is pre-
sented. The methodology is based on continuous
approximations. As indicated by Daganzo et al., these
types of analytical approximations are ‘‘particularly well
suited to address big picture questions’’ because they are
parsimonious and tractable, yet realistic if the main tra-
deoffs are included (28). This type of modeling approach
has been successfully used in the past by many authors
to model urban deliveries and the key tradeoffs of new
technologies (29).

The following notation is used throughout the paper.
Sub-indexes C and R are used for representing conven-
tional and RADR vans respectively.

n= Total number of customers served
kl = Routing constraint (constant value), representing

non-Euclidean travel on sidewalks and roads
a= Area (units length squared) of the service area, in

which n customers reside
d= n=a, customer density
d = Distance between the depot and the geometric

center of the service area
T = Maximum duration of shift or tour (same for all

vehicle types)
li nð Þ= Average distance a vehicle travels to serve n

customers for vehicle type i

mi = Minimum number of vans for vehicle type i

Ri = Range of a vehicle for vehicle type i

Qi = Capacity of a vehicle (number of parcels) for
vehicle type i

ti = Total van time necessary to make n deliveries for
vehicle type i

f= Stop percentage (percent of the time a vehicle is
stopped owing to traffic control)

s0= Average speed of the vehicle while delivering in
the service area, not including f

s
0
h = Average speed of the vehicle while traveling to

and from the service area, not including f

s= s0 1� fð Þ= Average speed of the vehicle while
delivering in the service area

sh = s
0
h 1� fð Þ= Average speed of the vehicle while

traveling to and from the service area
t0 = Time it takes to wait for the customer to pick up

their order from the vehicle or delivery person
tu = Time it takes the vehicle, driver, or both to

unload the delivery
t= t0 + tu = Total time vehicle is idle (i.e., not travel-

ing) during a delivery
ch, i = Cost per hour of operating vehicle type i,

including cost of a driver if applicable
cd, i = Cost per delivery for vehicle type i

To compare RADRs and conventional vans, we must
be able to calculate the time, distance, and cost for each

Figure 1. Road autonomous delivery robots: (from top to bottom)
Nuro (20), Udelv (21), and AutoX (22).
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vehicle, given the same delivery problem and the con-
straints inherent to each delivery technology. The aver-
age distance l nð Þ to serve n customers can be estimated
as a function of customer density, number of vehicles,
network characteristics and route constraint coefficients,
and the distance between the depot and the delivery area
(30). In this paper, the equation used to calculate the dis-
tance traveled to visit n customers by a conventional van
is:

li nð Þ= 2d + kl

ffiffiffiffiffi
an
p

ð1Þ

In Equation 1, d represents the average distance from
the depot or distribution center (DC) to the customer(s).
The parameter d is multiplied by two, the number of
times the vehicle goes to and from the service or delivery
area (SA). The parameter kl is a constant value repre-
senting network characteristics and routing constraints
in the SA (30). The average area (mi2) of the SA in which

customers are located is represented by a. The number of
parcels or stops is represented by n. The average area
(mi2) of the SA in which customers are located is repre-
sented by a. The number of parcels or stops is repre-
sented by n. Therefore, the first term of Equation 1
represents the average distance traveled to and from the
SA and the second term represents the distance traveled
within the service area between customers. This equation
based on continuous approximations has been validated
empirically and continuous approximations have been
used in numerous freight and logistics research efforts
and publications (29, 30).

Another important number to consider if dealing with
last mile deliveries is the time it takes to make n deliv-
eries. A formula that can be used to calculate the route

duration time accounting not only for driving time, but
also waiting for the customer and unloading the parcels
is (31):

ti =
2d

sh

+
kl

ffiffiffiffiffi
an
p

s
+ t0 + tuð Þn ð2Þ

Conventional Vans

In Equation 2, the first term represents the driving time
and the second term represents the time it takes to park,
wait for or go to the customer, and unload the parcels.
To determine the maximum number of deliveries that
can be made by the conventional van within a shift of
duration T , Equation 1 is plugged into Equation 2 and
solved for n if the available time is T . The resulting equa-
tion for the maximum number of customers that a con-
ventional van can deliver is:

n=
k2

l a+ 2s2Tt � 4ds2t
sh
� k2

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ds2t
k2

l
sh
� 2s2Tt

k2
l

� a
� �2

� 4t2s2

k2
l

s2T2

k2
l

+ 4d2s2

k2
l
s2

h

� 4s2Td
k2

l
sh

� �r

2s2t2

666664
777775 ð3Þ

Equation 3 provides the maximum number of custom-
ers n that can be served with one conventional van if any
parameter changes (for example when t, d, and a change).
Therefore, each value of n provided in the tables repre-
sent the maximum number of customers that can be
served by one conventional van given a set of parameter
values. The floor function is used in Equation 3 to avoid
a fractional number of customers. In turn, the customer
density, d, may also change. The conventional van’s
capacity, range, and constraints (Equation 4) are as
follows:

mC ø
n

QC

� �

2d + kl

ffiffiffiffiffi
an
p

ł RC

ð4Þ

Table 1. RADRs in the U.S. Market as of June 2019

RADR and
company

Capacity,
parcels/volume

Capacity,
lb (kg)

Max. speed,
mph (kph) Dimensions L 3W 3 H, in (m)

Vehicle weight,
lb (kg)

Range,
mi (km)

Nuro 40 243 (110) 35 (56) 120 3 36 3 84 (3.05 3 0.91 3 2.13) 1,499 (680) 2 (3.2)
Udelv 32 1,300 (590) 60 (97) 174–190 3 72 3 72

(4.42–4.83 3 1.83 3 1.83)
4,167 (1890) 60 (97)

AutoX 11.1 ft3 (0.31 m3) Unknown 80 (129) 194 3 73 3 58 (4.93 3 1.85 3 1.47) 3,900 (1769) 560 (901)

Note: RADR = on-road autonomous delivery robots; Max. = maximum; mi = miles.
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These constraints are always satisfied in the scenarios
analyzed, given the high value of R (range) and the large
capacity of conventional vans.

RADRs

To compare the performance of a RADR against a con-
ventional van, it is necessary to estimate the minimum
number of RADRs necessary to deliver to n customers
while satisfying the delivery constraints. Range con-
straints are important for RADRs because the range of
the Udelv is considerably smaller than the range of a
conventional van. Therefore, mR, the optimum number
of RADRs is given by the following optimization prob-
lem (Equation 5):

Minimum mR subject to these constraints

kl

ffiffiffiffiffi
an
p
ffiffiffiffiffiffi
mR

p + 2d.RR

2d

sh

+
kl

ffiffiffiffiffi
an
p

s
ffiffiffiffiffiffi
mR

p + t0 + tuð Þ n

mR

.TR ; and

mR ø
n

QR

� �
and mR 2 N

ð5Þ

Delivery Costs

The cost per delivery for any delivery method is calcu-
lated by taking two aspects into account—the cost of
time for each vehicle (including driver if appropriate)
and the number of vehicles that are required. The trans-
portation cost per delivery is estimated by finding the
total cost for all deliveries and dividing by the number of
deliveries, as follows:

cd;i =
ch;itimi

n
ð6Þ

Note that ti ( ti ł T ) is the tour time and n is the total
number of parcels delivered, as defined in Equation 3.

Data and Scenario Design

For our research, we made several assumptions to
compare the RADRs with conventional vans. The total
time the vehicle is idle (or not traveling) owing to a deliv-
ery, t, is the same for all vehicles. The service area a is
the same for all vehicles; however, if the tour-time con-
straint is not met and additional vehicles are required,
the service area is split into equal sub-areas. It is also
assumed that both vehicles deliver to the same number
of customers n.

Vehicle Characteristics

A conventional van is defined as a delivery van in the tra-
ditional sense, with rear storage for parcels and a human
driver and a delivery person. A RADR is defined as a
vehicle which operates fully autonomously to deliver par-
cels. These methods of transporting parcels in the last
mile of deliveries are compared with regards to distance,
time and cost efficiency.

This research utilizes Udelv vehicles in the numerical
case studies because the Udelv vehicle is designed with
the idea of delivering to multiple customers in one tour;
as parcels are compartmentalized, people can only take
parcels intended to be delivered to them. The Udelv vehi-
cle has the capability to travel on highways, but the Nuro
van is restricted to local streets with a maximum speed of
35mph. The AutoX can also travel on highways; how-
ever, its single storage compartment is not ideal and the
carrying capacity was not specified in any publication.
Thus, Udelv was chosen as the RADR test vehicle in this
research as it can travel on any road with minimum risk
of theft when delivering multiple parcels and as the carry-
ing capacity is known.

Table 2 below provides the assumptions for variables
used in this case study analysis for both the Udelv and
conventional vans. This table contains several assump-
tions about the vehicle characteristics and several sources
for other characteristics. The following variables have
assumed values for both vehicles: T , s0, s

0
h, kl, and f.

Additionally, the conventional van is assumed to have no
significant range limitations, and a capacity limit of 200.

The range and capacity of the Udelv van were taken
from an article discussing the latest revision of the Udelv
vehicle (21), which claims that the vehicle has a range of
60mi and has capacity to make 32 deliveries.

Vehicle Costs

Although autonomous vehicles are beginning to be tested
across the United States, the costs associated with manu-
facturing autonomous vehicles are still significantly
higher than those of conventional vehicles.

Based on a 2015 estimate, the additional cost of
including the light detection and ranging (LIDAR) sen-
sors required to allow a vehicle to be fully autonomous
(level 4+ ) is $30,000 to $85,000 per vehicle, and over
$100,000 per vehicle for LIDAR and other sensors and
software. The cost of automation equipment for mass-
produced autonomous vehicles could eventually fall to
between $25,000 and $50,000 per vehicle. Once the mar-
ket share of autonomous vehicles becomes at least 10%,
the cost of automation equipment could reduce to
$10,000 per vehicle. The price of implementing
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automation about 20–22 years after introduction is
expected to be $3,000 per vehicle, eventually reaching a
low of $1,000 to $1,500 per vehicle (2).

Short and Murray estimate that Level 3 of automa-
tion for long-haul trucks may cost around $30,000 (3).
In this research, it is assumed that RADRs are operating
at Level 5. According to the National Highway Traffic
Safety Administration (NHTS), Level 3 is also called
‘‘condition automation’’ when all tasks can be controlled
by the autonomous system in some specific (easier) situa-
tions, but the human driver must be ready to take back
control at any time (17). Level 5 is called ‘‘Full
Automation’’ and in this case, the autonomous system
can handle all roadway conditions and environments,
that is, drivers are not needed.

Outwater and Kitchen indicate that trucking values of
time may range from $25 to $73/hour and they utilize a
value of $40/hour for small trucks (32). We assumed a
cost of $40/hour as the base cost for conventional vans
because these require a human driver. It was not possible
to find the cost of production of the Udelv vehicles. The
$30/hr operating cost of a RADR was obtained from the
cost given by Outwater and Kitchen, but without labor
costs and then adding a 15% increase for the more
expensive autonomous vehicle technology (32). This per-
centage is approximately the additional cost of autono-
mous vehicles given by Fagnant and Kockelman (2).

Results

Multiple scenarios were created by varying three key
variables—time per delivery, service area, and distance
between the depot and the service areas. These para-
meters are denoted by t, a, and d respectively, and only
one parameter is varied at a time. The results are

reported in Tables 3–5. The default values for these para-
meters are 3min, 100mi2 (259 km2), and 10mi (16.1 km)
respectively.

The results of varying the total delivery time t are
shown in Table 3. As time t changes, there is a change in
the number of customers served (utilizing Equation 3), as
well as the delivery density and in some cases, a change
in the mR—the RADR fleet size. There are some note-
worthy trends: (i) more RADRs than conventional vans
are required in most scenarios; (ii) conventional vans
generate less vehicle miles per delivery; (iii) conventional
vans spend less time per delivery; and (iv) the cost per
delivery is lower in all cases if RADRs are utilized close
to the depot (i.e., if the range constraint is not binding)
or when conventional delivery times are relatively long.

The results of varying the area of service a are shown
in Table 4. As a decreases, there is a rapid increase in the
number of customers served (utilizing Equation 3) as well
as the delivery density. The RADR fleet size is higher
than in Table 4, as a higher number of customers can be
served with a conventional van if the density is high. The
trends (i) to (iv) observed in Table 3 are maintained, but
the differences between RADRs and conventional vans
have increased. For example, with the highest density of
16.3 customers per mile2 (6.9 customers per km2) the
number of miles driven by RADRs have increased three-
fold. However, the cost per delivery is lower in all cases if
RADRs are utilized.

The results of varying the depot–service area distance
d are shown in Table 5. As d increases, there is also a
rapid decrease in the number of customers served (utiliz-
ing Equation 3) as well as the delivery density. The
RADR fleet size is also larger in Table 5 than in Table 3.
The differences with regards to vehicle-miles are larger,
for example with the highest distance of 24mi (38.8 km)
the number of miles driven by RADRs increases more

Table 2. Default Values for Variables Used in Calculations

Variable Description of variable Units Udelv van Conventional van

T shift time (max.) hours 10a 10a

Ri range of vehicle (max.) miles (km) 60 (96.6)c 695 (1118)a

Qi capacity (max.) unitless 32c 200a

ch, i cost per hour of operation USD 30d 40d

s0 full unlimited vehicle speed in service area mph (km/h) 30 (48.3)a 30 (48.3)a

s
0

h full unlimited vehicle speed between DC and SA mph (km/h) 60 (96.6)a 60 (96.6)a

s vehicle speed in service area mph (km/h) 21 (33.8)b 21 (33.8)b

sh vehicle speed on between DC and SA mph (km/h) 42 (67.6)b 42 (67.6)b

kl routing constraints unitless 0.7e 0.7e

f stopping because of traffic/signals unitless 0.3a 0.3a

Note: DC = distribution center; SA = service or delivery area; Max. = maximum.
aValue approximated by authors utilizing average consumption and fuel tank size.
bCalculated value.
cFrom ref. (21).
dFrom ref. (32).
eFrom ref. (9).
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han threefold. Unlike previous tables, the cost per deliv-
ery is not always lower if RADRs are utilized. There is a
breakeven point when the distance d is around 12–15mi.
For RADRs the distance driven and fleet size increases
rapidly for large values of d and this is caused by the rel-
atively low RADR range.

Up to this point, it has been assumed that RADRs
and conventional vans can travel at the same speed and
with the same delivery time t per customer. However, the
literature review indicates that picking up and delivering
parcels may still involve a person even if the vehicle is
automated and that urban areas are complex environ-
ments with many deliveries/stops and interactions with
pedestrians and cyclists (5,6). Therefore, it is likely that
RADRs will be designed with high safety standards and

would require extra time to park, unload/load, and avoid
conflicts with pedestrians, cyclists, or both.

Figure 2 plots Tables 3–5 utilizing the varying variable
on the x-axis of each graph and the vehicle miles traveled
(VMT), time, or cost per delivery on the y-axis. In all of
these graphs, lower numbers on the y-axis can be inter-
preted as the better vehicle option for that combination
of varying variables and the resulting metric.

To illustrate the importance of an additional time pen-
alty for delivery, Table 6 shows the results if the conven-
tional van delivers in t minutes, but the RADR delivers
in t + 3 (min). Vehicle-miles are significantly lowered if a
conventional van is utilized. Unlike Table 3, the RADR
does not dominate with regards to cost per delivery. In
Table 6, the conventional van is more economical up to

Figure 2. Graphical representation of the results from Tables 3 to 5.
Note: VMT = vehicle miles traveled; mi = miles; min = minutes; hr = hours; $ = United States Dollars.
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the point when t = 9 minutes for the conventional van
and t= 12 minutes for the Udelv.

Discussion

RADRs are more competitive than conventional vans, but
are mostly limited by their short range and limited storage
capacity. The short range can be addressed by more and
better batteries. Although this would be at the expense of
additional vehicle weight and cost, batteries are one of the
major barriers to the electrification of freight (33).

The largest uncertainties related to RADRs are per-
haps the cost and regulatory barriers. The rate and speed
of adoption of RADRs will greatly depend on the costs
and ease of entry into the delivery market, as discussed by
previous studies focusing on the adoption of autonomous
trucks by freight organizations (34, 35). It is assumed that
packages transported are small, as Amazon reported
most packages delivered are less than 5 lb in weight (36).
If larger packages are considered, then RADR vans
may not be a feasible option as a driver or other type of
equipment would be necessary for the delivery. This is
an important limitation and indicates that full automa-
tion would not be easily achieved for special or more
cumbersome deliveries and the efficiency of autono-
mous vehicles can be reduced if delivery time windows
are narrow (37).

The large-scale introduction of RADRs can also bring
about new business and service models that are made
possible by 24-h operations as autonomous delivery
robots are not subject to limitations such as driver fati-
gue, as well as lunch and rest breaks. On the other hand,
RADRs can bring about more congestion unless they
become more efficient than conventional vans with
regards to vehicle-miles per customer visited.

As RADRs deliver freight, they can prioritize the
safety of pedestrians and other road users over the safety
of the freight being carried by the RADR. Therefore,
RADRs are not faced with the potential ethical issues
that passenger autonomous vehicles are likely to face
with regards to tradeoffs between the safety of passen-
gers and other vulnerable road users, such as pedestrians,
cyclists, or both. Owing to this advantage, it is likely that
RADRs may be widely used before autonomously driven
passenger vehicles. On the other hand, urban freight is
complex and the tasks associated with parking, unload-
ing, and delivering may be more difficult to automate
than is currently expected. High safety standards for
RADRs may result in high delivery times per customer,
which in turn decreases the economic appeal of RADRs
as shown in the previous section.

Conclusion

Assuming current RADR characteristics, this research
has shown that road automated delivery robots have the
potential to reduce delivery costs in many scenarios.
Therefore, it is likely that delivery companies will try to
implement this cost-saving technology to meet growing
E-commerce demands. Given the relatively limited range
of RADRs and the limited number of individual storage
compartments, these automated vehicles are less compet-
itive if the route distances are long or there are many cus-
tomers. A potentially noteworthy drawback for the cost
competitiveness of RADRs is longer delivery times per
customer owing to safety concerns and numerous inter-
actions with traffic, pedestrians, and cyclists.

From a public policy perspective, the utilization of
RADRs may significantly increase the number of
vehicle-miles related to package delivery. The scenarios

Table 6. Results of Varying t with + 3 (min) Penalty for Udelv

t (min) Covent. 3 4.5 6 7.5 9 10.5 12
t (min) Udelv. 6 7.5 9 10.5 12 13.5 15
n 67 56 48 42 37 33 30
d cust/mi2

(cust/km2)
0.67 (0.26) 0.56 (0.22) 0.48 (0.19) 0.42 (0.16) 0.37 (0.14) 0.33 (0.13) 0.3 (0.12)

mR 3 2 2 2 2 2 1
Delivery distance per customer, mi (km)

Udelv 1.75 (2.82) 1.65 (2.65) 1.84 (2.97) 2.03 (3.27) 2.23 (3.59) 2.43 (3.91) 1.94 (3.13)
Convent. 0.81 (1.31) 0.99 (1.6) 1.15 (1.86) 1.29 (2.08) 1.43 (2.3) 1.56 (2.5) 1.69 (2.72)

Time spent delivering (van/human hours) per customer (min)
Udelv 9.7 11.2 13.1 14.9 16.8 18.7 19.6
Convent. 5.1 7 8.9 10.7 12.5 14.3 16.1

Cost per delivery ($)
Udelv 4.86 5.60 6.54 7.47 8.42 9.36 9.80
Convent. 3.39 4.67 5.91 7.12 8.32 9.51 10.71

Note: cust = customer; Convent. = conventional van; mi = miles; n= total number of customers served; d= n=a customer density; t= t0 + tu = total

time vehicle is idle (i.e., not traveling) during a delivery.
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analyzed indicate that RADRs generate more vehicle-
miles per delivery than conventional vans (substantially
more in many scenarios). As a secondary effect, new
delivery/service models (anytime/anywhere) plus a reduc-
tion in delivery costs brought about by the large-scale
introduction of RADRs may further increase the already
high growth of E-commerce. The combination of higher
vehicle-miles per delivery plus the growth of E-commerce
can compound congestion and high curb utilization
problems in many urban areas.

This research is the first step to understanding the key
tradeoffs between road automated delivery robots and
conventional vans. Although many scenarios have been
studied there is still a lot of uncertainty with regards to
future RADR costs and regulations. As many companies
are moving toward same day and even shorter delivery
windows, future researchers should consider the perfor-
mance of RADRs in scenarios with narrower delivery
windows (1 or 2 h). Additionally, more extensive sensi-
tivity analyses including other parameters such as costs,
speed, range, and capacity would be necessary as this
data becomes available. Second order effects such as
additional or induced demand owing to reductions in
delivery costs is another area that should be considered
in future research efforts. In particular with regards to
the potential externalities of automated deliveries, but
also the potential benefits, such as the reduction of VMT
figures associated with grocery/shopping trips.
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