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Abstract
This study applies high-resolution archived transit data to study the effect of roadway changes using data collected before and
after the completion of a project affecting transit. Methodologies are presented to compare percentile and time-of-day per-
formance measures before and after the project. In addition, differences in travel time and travel-time variability are examined
over the altered route. The case study examines one heavily used route in Portland that was recently diverted onto a newly
built transit-only bridge to examine the claims that travel times would decrease and reliability would increase. The results of
this study indicate that travel times increased for the majority of trips but travel-time variability during the peak period was
sharply reduced.

Methodologies to quantify transit performance influence
transportation planning and subsequent decisions; those
decisions may affect operating speeds, travel times, rider-
ship, costs, and efficiency (1). Transit operations research
is continually evolving with the introduction of new or
improved data-collection systems. Onboard global posi-
tion systems (GPS) are opening up new research oppor-
tunities to visualize and quantify transit behaviors hidden
by legacy data-collection systems. High-resolution (HR)
GPS data-collection is expanding analysis options when
implemented. However, these data-collection systems are
new, not widespread, and as a result, understudied.

This study applies HR data to quantify the impact of
changes to roadways as a before-and-after study. This
study expands on existing systems to show applicable
methodologies that quantify transit performance changes
following a roadway modification in locations where
transit has been traditionally excluded.

The case study for this paper examines the effect of
the Tilikum Crossing. This new bridge in Portland, OR
is the largest vehicle-free bridge in the United States (2).
Although it is designed for light rail, streetcar, bikes,
buses, and pedestrians, personal vehicles are not permit-
ted. TriMet, Portland’s public transportation provider,
claimed the new bridge would reduce travel times and
improve efficiency on routes 9 and 17 (3). This paper
examines those claims for Route 9. The bridge cost was
estimated at US$134million paid for by federal grants,
OR state lottery, and TriMet revenue.

Background and Literature Review

Before-and-after studies are not new, and frequently seek
to quantify effects of roadway modifications. These stud-
ies exist across transportation modes and roadway appli-
cations. Their widespread implementation is one of the
main ways new systems are adopted.

These studies typically use Bayesian statistics or are
descriptive in nature. Studies that use Bayesian meth-
odologies for before-and-after analysis reach back more
than 30 years. The literature on Bayesian methodologies
up to 2006 is well summarized in a paper that claims that
a lack of sufficient data, such as traffic or crash counts,
leads to high levels of uncertainty (4). Due to the natural
variation in count data, crash rates fluctuate wildly
month-to-month and year-to-year. Improvements for
count usage have been proposed by newer papers that
have added observations to reduce uncertainty by includ-
ing additional counts estimated from models, which are
based on locations with physical similarities to a given
study area. These counts are then modified using a
known prior distribution (5, 6).
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Traffic assessment often uses descriptive before-and-
after approaches. For example, a study looking at the
change in fatal crashes following the introduction of
anti-lock brakes compared results using the difference in
an estimated risk ratio and its associated 95% confidence
interval (CI) calculated from the collected data (7).
Researchers have also examined the effect of traffic-
calming systems across the United States for pedestrian
wait times, using t-tests to measure differences in mean
values (8). Descriptive analyses are appropriate for large
sample sizes and appear across many fields.

This study did not use counts, which therefore limited
the application of Bayesian methodologies. Variance of
speed data was calculated using asymptotic variance and
a probability mass function (9) described in the metho-
dology section of this paper. Additionally, this research
employed recently published performance metrics meth-
odologies that use percentile travel-time, travel speed,
and CI estimates to identify and rank low-performance
hotspots (10). Percentiles are more general and suited for
both symmetric and skewed distributions; for example,
off-peak travel follows lognormal distributions, which
are asymmetric.

Travel times play a key role in the overall ridership of a
city. Travel-time elasticity is not readily available for all cit-
ies, as noted by Ayvalik et al. for Chicago (11); however,
Portland, OR is a city with a full travel-forecasting model
(12). This model indicates that decreased transit travel-
times will increase overall ridership. When estimating travel
times and trajectories, researchers have used proxies. Early
research using buses as probes showed that buses experi-
ence the same types of delays as automobiles but that the
reverse relationship is not always true. For example, buses
will dwell at designated locations (bus stops) that regular
vehicles do not (13, 14). TriMet buses have been used
widely to quantify arterial performance for both automo-
biles and transit (15, 16).

Stop event (SE) data collects information at each bus
stop including, but not limited to, actual and scheduled
times of arrival and departure, dwell times, door usage,
and passenger movements. When combined with data
from loop detectors, signal cycle lengths, and other pro-
prietary data-collection systems, SE data has been used
to estimate travel times of other factors that may influ-
ence service reliability at the point, stop-to-stop, and
route levels (13, 17–19). Each new study adds useful
information, but the representation remains an average
between stops due to the nature of SE data. Stop distur-
bance (SD) data, which includes information about any
location where the wheels of the bus have stopped, such
as the type (i.e., scheduled or unscheduled), location, and
time of stop, may be combined with SE data to provide
insights into stopping behavior associated with intersec-
tions or locations with heavy congestion. The integration

of HR data with SE data may be used to mitigate some
of the shortcomings of SE or SD data. For example, one
study using GPS data found that for narrow ranges of
departure times, travel-time distributions are best charac-
terized by normal distributions. The same is true for
peak-hour travel windows, but off-peak travel-times fol-
low lognormal distributions (20).

Data Sources

This study relied on data provided by the Tri-County
Metropolitan Transportation District of Oregon
(TriMet), which has archived automatic vehicle location
(AVL) data for all trips since 1997. TriMet updated their
bus dispatch system with HR data collection in 2013.
SE, SD, and HR data are the foundation of TriMet’s
collection systems. TriMet also creates onboard video
recordings of all trips; however, TriMet, as with many
agencies, erases video on a weekly cycle unless an inci-
dent occurs or if requested for a specific date (21).

At the authors’ request, TriMet provided three sets of
AVL data: SE, SD, and HR. Each of the AVL data sets
represent the same buses, routes, and times; this allows
for comparisons and integration of the data sets. The
visuals and comparisons obtained using a combined data
set provide additional details, hidden or not included in
each of the sets individually.

For the before case, there were 1,227 and 1,158 buses
in the eastbound and westbound directions, respectively.
The after case had 1,453 and 1,691 buses in the east-
bound and westbound cases, respectively.

Study Areas

The changes to bus operations on Southeast Powell
Boulevard (Powell) resulted from the completion of the
Tilikum Crossing, a new bridge over the Willamette
River. This bridge was built to carry light rail, streetcars,
and buses. Route 9, which historically crossed the Ross
Island Bridge, was diverted to the new crossing. The
changes examined are for the section where the two dif-
ferent routes converge on the east side of the river. In
addition to the travel speed percentile comparisons,
Powell was also examined statistically for changes by
time of day to isolate when the roadway saw increases in
speed.

Typically, this area of Powell is highly congested and
carries upwards of 40,000 vehicles daily. However, no
traffic counts are available for this stretch of Powell from
2016. Data collected at the macroscopic level (i.e.,
Portland region), mostly on freeways, indicate the peak
periods are lasting longer across the metro area and that
daily vehicle miles traveled, daily congestion hours,
and daily vehicle hours of delay increased by
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approximately 1%, 11%, and 17%, respectively from
2014 to 2016 (22).

Figure 1 shows the study area leading up to the chan-
ged route on the east side of the river. This segment saw
no physical changes but is examined for performance
changes that may be the result of the new route.

Figure 2 shows the change in route. The distance tra-
veled by eastbound buses was unchanged. Westbound
buses now travel an additional 0.2miles (;322meters).

Methodology

The three data sets provided by TriMet cover the same
time period, routes, and buses, with some exceptions
caused by different data-collection parameters. These
data sets must be filtered and cleaned to provide a uni-
form set of trips, which requires a unique identification
number across the sets. All data sets include a bus num-
ber, trip number, and date; these serve as a starting
point. Individual trips are separated based on route and
direction included in the SE and SD data sets. The HR

data, which does not include these identifiers, must be
compared with the other sets to separate out individual
trips based on time. This process culminates in a unique
identification number for each bus and trip across all
the data.

Using the unique identification number, all three data
sets are integrated starting with the SE and SD data sets.
When a bus dwells at a bus stop, these locations are con-
sidered SDs, so these events are duplicated, whereas pass-
by stops would not be recorded. The integration of the
data sets ensures that pass-by stops, dwell events, and
other places where the wheels of the bus stop moving are
all included with as much detail as can be provided by
the combination of both sets.

Following this step, the HR data is interwoven by
timestamps with the SE and SD data to provide a com-
plete picture of the bus’s trajectory, an example of this is
shown in Figure 3. The merged data sets provide a means
to quantify roadway behaviors that account for and can
exclude bus-stopping behavior, which allows for esti-
mates of general traffic behavior.

Figure 2. Map of route before and after change. Red shows the previous configuration. Green shows the new configuration.

Figure 1. Map of study area for Southeast Powell Boulevard. Measurements correspond to x-axis of results.
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Each study area is divided into a system of equal
length and non-overlapping segments, si. Each unique
segment shall be given an index of i. The total number of
segments shall be denoted as nI .

i 2 I = 1, 2, 3, . . . , nIf g

The combined data will have a set of j bus trip that
pass through each segment, si. The consecutive GPS
coordinates that surround each centerpoint of a given
segment, si, are extracted to make up a pair of GPS coor-
dinates (or vehicle trips) for each si. The total number of
vehicle trips in each segment is denoted as nJi

.

j 2 Ji = 1, 2, 3, . . . , nJi
f g

The data used in the analysis deviates from normal
distributions. As such, this study relies heavily on percen-
tiles and their associated percentile variances. The meth-
odology for calculating speeds stems from a previously
published paper using HR data (10), but with a proce-
dure that allows the estimation of CIs when distributions
are not necessarily normal. Any si has a set of percentile
travel speeds found by ordering the data and extracting a
number that correspond to a percentile, p. The value of
the speed percentile in segmenti is denoted vi, p. The stan-
dard deviation of the estimated vi, p is denoted si, p.

The process to estimate each si, p is described in
Figure 4. For example, Figure 4 upper left shows the
speed histogram for any segment i. A cumulative distri-
bution function (CDF) is estimated from the data (upper
right) and later spline smoothing is applied to the CDF
to create a continuous function that approximates the
CDF (lower left). From this generated spline-smoothed
function, the probability of a given point can be calcu-
lated by taking the derivative of the CDF to produce an
estimate of the probability density function (PDF) – see
lower right. This process can be applied to any probabil-
ity distribution.

The estimate of the variance for any percentiles of uni-
variate data is estimated through a CDF and its deriva-
tive, the PDF. To estimate ŝvi, p

2, the variance of a speed
percentile, the following equation is utilized (23):

ŝ2
vi, p

=
p 1� pð Þ

f v̂i, p

� �2 � nJi

where f v̂i, p

� �
is the probability of the PDF given the input

velocity, v̂i, p, and nJi
is the number of observations in each

segment i. Assuming the number of observations is large
(.160) (23), this estimate of variance may be used to esti-
mate the CIs for each v̂i, p. For a confidence level a and its
associated z-score, z að Þ, the range of percentile values that
may represent an estimated percentile is found.

CIv̂i, p
= v̂i, p � ŝvi, p

� z að Þ, v̂i, p + ŝvi, p
� z að Þ

� �
This interval provides the indices for the extremes of the
CI around vi, p:

A speed variability Dv̂i, is used to identify segments
that are more heavily congested during the peak hour
(21). It is calculated by subtracting the 15th percentile
travel speed from the 85th percentile travel speed. When
divided by the median travel-time, a speed variability
index m̂ið Þ is obtained for each segment (21).

Dv̂i = v̂i, 85 � v̂i, 15

m̂i =
Dv̂i

v̂i, 50

=
v̂i, 85 � v̂i, 15

v̂i, 50

The standard deviation of the estimated Dvi can be esti-
mated as follows:

ŝDvi
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

vi, 85
+ ŝ2

vi, 15
� 2 � cov v̂i, 85, v̂i, 15ð Þ

q
Note that this formula for ŝDvi

does not require that
the distributions be normal for large enough sample sizes.

Figure 3. Bus trajectory using the combined data set.
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As the speed percentiles are not independent, the covar-
iance increases the estimation CI:

CIDvi
= Dv̂i � sDv̂i

� z að Þ,Dv̂i +sDv̂i
� z að Þ½ �

If 0 falls within the estimated interval, the null hypothesis
Dv̂i = 0 cannot be rejected using a confidence level based
on a.

The standard deviation of the estimated mi can be
approximated as follows utilizing a well-known formula
for propagation of uncertainties (24) assuming uncorre-
lated speed percentiles:

ŝmi

m̂ij j
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝDvi

Dv̂i

� �2

+
ŝvi, 50bvi, 50

� �2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝvi, 85

2 + ŝvi, 15

2 � 2 � cov v̂i, 85, v̂i, 15ð Þ
v̂i, 85 � v̂i, 15

2
+

ŝvi, 50bvi, 50

� �2

+
ŝvi, 50bvi, 50

� �2
s

As the speed percentiles are not independent, the esti-
mated smi

using the previous equation is a lower bound.
The value ŝmi

can be used to estimate a lower bound CI
for m̂i:

CImi
= m̂i � sm̂i

� z að Þ, m̂i +sm̂i
� z að Þ

� �

If 0 falls within the estimated interval, the null hypothesis
m̂i = 0 cannot be rejected using a confidence level based
on a.

The methodologies described provide the foundation
to compare the initial and changed conditions of the
study area. For all the data, before-and-after data will be
designated by sub-indexes 0 and 1, respectively. A d

added before a variable will denote the difference
between after and initial conditions. The differences in
the means and percentile speeds and travel times and
peak-hour performance metrics are denoted as follows:

dv̂i, p = v̂i, p, 1 � v̂i, p, 0

dDv̂i =Dv̂i, 1 � Dv̂i, 0

dm̂i = m̂i, 1 � m̂i, 0

The previously estimated standard deviations can be
used to estimate standard deviations and CIs for any of the
difference statistics denoted by d. For example, the esti-
mated standard deviation for dv̂i, 85 is calculated as follows:

dŝvi, 85
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

vi, 85, 1
+ ŝ2

vi, 85, 0
+Cov v̂i, 85ð Þ1, v̂i, 85ð Þ0

� �q
Travel times, denoted as tj, between two points are
extracted from the data where j is a single bus.

Figure 4. Upper left: histogram of randomly generated data in 5-mph (~8-kph) bins. Upper right: actual cumulative distribution of
points. Lower left: cumulative distribution function creating through spline smoothing. Lower right: probability mass function for data.
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Percentiles and CIs are calculated using the same metho-
dology as above.

t̂p = percentile travel-time, and
ŝtp = standard deviation of percentile travel-time.

Average travel-time, �t, can be found by summing each
percentile travel-time as if it were an individual bus then
correcting for the number of buses nJi

. On average each per-
centile travel-time should be seen an equal number of times.

Figure 6. Top: Eastbound travel-times. Bottom: travel-time difference (after minus before).

Figure 5. Top: Westbound travel-times. Bottom: travel-time difference (after minus before).

Figure 7. Travel-time differences (after minus before) during the PM peak. Top: westbound. Bottom: eastbound.
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�t =
nJi

99

X99

p= 1

t̂p

Results

Travel-Time Changes

Travel times in both directions of travel across the Ross
Island Bridge—the former river crossing for this route—
increased for the vast majority of trips. For westbound

travel (Figure 5), it is likely that only a few percent of
trips saw a decrease in travel times. For eastbound trips
(Figure 6), approximately 20% of trips saw a reduction
in travel times. However, although travel times increased
for most trips, both directions experienced a large
decrease in travel-time variability (i.e., the difference
between the 99th and 1st percentile).

The top panels of figures 5 and 6 show the actual
travel-times by percentiles with the 95th percentile CI
shown. The bottom panel of each figure shows the

Table 1. Mean Hourly Travel-Time, Standard Deviation, Passenger Load, and Scheduled Trips per Day

Time

EB WB EB WB EB WB

EB trips
per day

WB trips
per day

bef. aft. bef. aft. bef. aft. bef. aft. bef. aft. bef. aft.

Mean travel-time (min) Travel-time standard deviation (min) Mean passenger load

6:00 31.4 36.2 34.2 38.9 2.5 1.4 3.3 2.9 4 2 10 9 3 6
7:00 34.1 40.1 47.8 48.5 2.8 2.7 10.2 5.7 4 4 11 12 3 8
8:00 35.1 40.2 50.5 51.2 2.4 2.4 10.7 7.7 4 4 12 14 5 6
9:00 34.9 40.2 40.9 44.0 3.0 2.5 6.7 3.5 5 4 11 11 4 4
10:00 33.0 40.9 36.4 42.8 19.9 1.8 2.8 3.3 5 5 7 11 4 4
11:00 35.6 42.3 38.2 44.4 2.5 2.3 2.9 4.0 5 6 7 11 4 4
12:00 37.8 44.6 38.6 44.1 2.3 3.6 3.2 2.7 6 8 9 8 4 4
13:00 39.3 44.3 39.0 43.8 2.5 2.3 3.7 3.0 9 7 7 11 4 4
14:00 39.1 45.8 41.0 43.9 2.3 2.8 5.5 3.7 8 11 7 9 5 4
15:00 46.4 49.2 41.8 45.1 7.0 4.4 4.6 4.2 12 12 8 10 6 5
16:00 50.4 51.4 42.0 44.8 5.7 4.5 6.6 2.2 13 12 8 10 8 5
17:00 52.9 50.4 47.4 44.8 6.0 4.2 11.8 3.4 10 14 7 8 9 4
18:00 45.4 45.5 38.3 42.2 7.7 3.9 9.0 3.1 12 12 9 7 5 5
19:00 34.3 41.9 33.4 40.9 14.5 2.9 2.4 2.6 10 10 5 6 4 3
20:00 33.3 40.8 30.8 38.2 2.2 3.8 2.3 2.4 8 8 7 7 4 3

Note: EB = eastbound; WB = westbound; aft. = after; bef. = before.

Travel times are for the same distance covered in Figure 8.

Figure 8. Travel times over 7.2 miles (11.6 km) of Powell for all trips. Top: westbound. Bottom: eastbound.
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estimated difference with positive values indicating lon-
ger travel-times between the 1st and 99th percentile. In
Figure 5, the travel-time change does not consider the
0.2-mile increase in travel distance for westbound trips.
Assuming slow transit speeds of just 15mph (;24 kph),
that distance increase accounts for less than a minute of
the total change.

The same type of analysis was conducted for the AM
and PM peak periods in both directions. Although, the
AM peak showed nearly identical results as the all-day
case in both directions, the PM peak saw significant
changes in travel times. Figure 7 shows the PM peak

travel-time changes (after minus before) for westbound
trips (top) and eastbound trips (bottom).

Estimates of travel times were expanded to include an
additional 5 mi of Route 9; the resulting 7-mi segment is
the most heavily congested part of Powell. As shown in
Figure 8, travel times increased for approximately 85% of
all trips; however, the range of possible travel times (99th
minus 1st percentile) decreased by 23 and 17min in the
westbound and eastbound directions, respectively, despite
increases in peak-hour congestion in the Portland metro.

Additionally, as indicated by Table 1, average travel-
time became much more consistent by time of day after

Figure 9. Top: difference in the 5th through 95th percentile travel speeds between before-and-after cases along Powell in the eastbound
direction. Bottom: difference in the travel speeds between before-and-after cases along Powell in the eastbound direction by time of day.
Each value is created using a 30-min moving average.
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the change. For example, the sharp increase in travel
times in eastbound travel at 17:00 is notably reduced after
the route change. Passenger loading remains similar.

Eastbound Travel Speeds

The travel speed differences following the changes to
Powell indicate substantial changes to bus performance.
However, the study area (excluding where route changed)
was not significantly altered. The road was repainted
without altering the location of lines. The decrease in
speed in Figure 9 at x= 250 ft (;76.2m) is accounted for

by the addition of a new bus stop. Prior to the change in
the route, that bus stop was a nearside stop approxi-
mately 50 ft (;15m) before the start of the analysis area.
The before and after routes do not overlap. As such, the
previous bus stop and the new left turn on the route were
excluded. By percentile, much of eastbound travel appears
to have decreased in speed. By time of day, the majority
of the decreased speed is seen to be in the peak period.

Westbound Travel Speeds

For westbound travel, travel speeds increased signifi-
cantly for the 10th through 25th percentiles. This

Figure 10. Top: Difference in the 5th through 95th percentile travel speeds between before-and-after cases along Powell in the
westbound direction. Bottom: Difference in the travel speeds between before-and-after cases along Powell in the westbound direction by
time of day. Each value is created using a 30-minute moving average.
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decreased travel-time is concentrated during the evening
commute. Traffic patterns suggest that, typically, vehi-
cles are attempting to leave the city center. The time-of-
day plot in Figure 10 shows that there is less congestion
heading into the city after the route change than there
was before.

This major change in traffic patterns is supported by
the plots of speed percentile difference and the speed
variability index in Figure 11, which shows different traf-
fic patterns before and after the change, as well as a large
non-zero difference between them. In the eastbound
direction, the differences in speed variability and the
speed variability index show near zero and statistically
insignificant changes.

Conclusion

The methodologies outlined in this paper provide a
means to quantify differences in transit performance on
roadway segments from before and after a change to that
roadway. HR GPS data can provide detailed informa-
tion between stops and highlight areas and times-of-day

in which speeds or travel times differ and can be applied
to different types of roadway reconfigurations.
Furthermore, the use of percentile CIs can provide
insights into how travel-time variability changes at differ-
ent locations and travel speeds.

TriMet’s claim that travel times would decrease is not
clear from the results of this data. For the majority of
trips, travel times actually increased for Route 9. One
contributing factor to the increased travel-times may be
the 25-mph (;40-kph) speed limit for buses and trains
(3). This limit is a product of line-of-sight requirements
that are limited by the grade of the bridge, which, to pro-
vide enough clearance for ships, is just under 5% for the
majority of its length (25). Another factor may be the
wait time at traffic signals around the new bridge. These
signals give priority to light rail and force buses to wait
to keep space between the two travel modes. In terms of
efficiency, travel appears significantly more predictable
due to the dramatic difference in travel-time variability
during the peak period. This predictability may reduce
the need for added and unscheduled buses during peak
congestion, which may reduce long-term costs.

Figure 11. All graphs: westbound direction on Powell. Thickness of line is the 95th percentile confidence interval. Top: speed variability
(85th minus 15th percentile travel speed) in miles per hour. Upper middle: speed variability index (ratio between the speed variability and
50th percentile travel speeds). Lower middle: difference between speed variability. Bottom: difference between speed variability index.
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