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ABSTRACT 

Bicyclist intake of air pollutants is linked to physical exertion levels, ventilation rates, and 

exposure concentrations. Whereas exposure concentrations have been widely studied in 

transportation environments, there is relatively scant research linking on-road ventilation with 

travel conditions and exertion levels. This paper investigates relationships among power output, 

heart rate, and ventilation rate for urban bicyclists. Heart rate and ventilation rate were measured 

on-road and combined with power output estimates from a bicycle power model. Dynamic 

ventilation rates increased by 0.4-0.8% per watt of power output, with a mean lag of 0.8 minutes. 

The use of physiology (ventilation) monitoring straps and heart rate proxies for dynamic on-road 

ventilation measurements are discussed. This paper provides for a clearer and more quantitative 

understanding of bicyclists’ ventilation and power output, which is useful for studies of pollutant 

inhalation risks, energy expenditure, and physical activity. 

 

  



Bigazzi and Figliozzi  3 

INTRODUCTION 

Active travelers experience conflicting health effects from physical activity on urban 

streets. Increased regular physical activity leads to well-established health benefits. At the same 

time, greater physical exertion leads to increased ventilation1 and in turn greater inhalation of 

traffic-related air pollution (1). Although high ventilation rates for bicyclists are documented in 

the literature, existing studies of pollutant inhalation analyzed and reported ventilation rates by 

mode or trip (2). Little is known about how bicyclists’ ventilation varies with travel conditions 

and over the course of a trip.  

The pollutant inhalation rate 𝐼 is the product of the exposure concentration (𝐶) and 

ventilation rate (�̇�𝐸). Ventilation rate �̇�𝐸 (also called “minute ventilation”) is the product of the 

breathing frequency 𝑓𝑏 and tidal volume 𝑉𝑇. Hence, inhalation rate (in mass per unit time) is 

calculated 

𝐼 = 𝐶 ∙ �̇�𝐸 = 𝐶 ∙ 𝑓𝑏 ∙ 𝑉𝑇  

 

where 𝐶 is in mass per volume of air, 𝑉𝐸 is in volume of air per unit time, 𝑓𝑏 is in breaths per unit 

time, and 𝑉𝑇 is in volume of air per breath. Beyond inhalation rate, particle deposition and 

location of gas absorption in the respiratory tract are affected by the relative values of 𝑓𝑏 and 𝑉𝑇, 

in addition to other factors such as fraction oral breathing (2).  

Energy expenditure or power output is a key factor determining respiration and 

ventilation. Low to moderate levels of energy expenditure utilize aerobic respiration which 

requires inhalation of oxygen. Up to the anaerobic threshold, ventilation rate �̇�𝐸 is closely related 

to the volume rate of oxygen inhalation (�̇�𝑂2
). �̇�𝐸 increases primarily by an increase in 𝑉𝑇 at 

lower levels of exertion, then increasingly by 𝑓𝑏. At 70-80% of peak exercise level 𝑓𝑏 becomes 

the dominant factor, although professional bicyclists can achieve a greater effect through 𝑉𝑇 (3, 

4).  

One previous study directly measured dynamic on-road ventilation rates while bicycling 

for the purpose of pollutant dose estimation, although analysis of ventilation was not provided 

(5). That study used a facemask system to measure ventilation – a method also used in other on-

road (6) and laboratory (1) study settings. Another approach has been to estimate dynamic on-

road ventilation rate (�̇�𝐸) from measured heart rate (𝐻𝑅), based on laboratory-derived �̇�𝐸~𝐻𝑅 

relationships for individual subjects (7, 8). Laboratory �̇�𝐸 measurements typically use a bicycle 

ergometer (stationary bicycle) and a facemask.  

Figure 1 illustrates the connection between bicyclist ventilation and travel conditions. A 

rider’s energy expenditure affects heart and ventilation rates, mediated by individual subject 

physiology (and to a lesser degree other variables such as air density). At the same time, the 

energy expenditure above baseline or resting metabolic rate leads to a commensurate energy 

transfer to the bicycle, mediated by bicycle attributes and the style of riding (pedaling cadence, 

upper body control, etc.). The energy transferred to the bicycle produces a certain travel speed, 

depending on bicycle, roadway, and travel attributes that determine energy state changes and 

losses.  

The focus of this study is variation in bicyclist ventilation during riding. Hence, subject-

specific variables are assumed constant over the course of a trip and grouped into a “Subject” 

                                                 
1 This paper uses physiological definitions whereby “ventilation” is the process of moving air into and out of the 

lungs while “respiration” is the exchange of gases which takes place in the lungs. 
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factor. Then the connection between ventilation and travel conditions can be made in two steps: 

1) estimate energy transferred to the bicycle, based on travel and roadway conditions, and 2) 

model ventilation as a function of energy transferred to the bicycle, mediated by the subject. The 

objectives of this paper are to: 

1. Describe and validate a new approach to measure on-road ventilation rate using an 

unobtrusive and economical chest strap, and 

2. Analyze the dynamic ventilatory response to power output while bicycling, as 

determined by roadway and travel conditions.  

The goal of this research is to provide a clearer and more quantitative understanding of on-road 

ventilation and power output for urban bicyclists. Quantifying the relationship between on-road 

ventilation and travel conditions (road grade, speed, acceleration, etc.) will be useful for future 

studies of pollutant inhalation by bicyclists as well as studies of energy expenditure and physical 

activity.  

METHOD 

Data collection 

On-road data were collected in Portland, Oregon on nine days between October 2012 and 

September 2013. Approximately 55 person-hours of data were collected, with each subject riding 

2-4 hours per day participated. All data were collected near the morning peak period (7-10am). A 

variety of roadway facilities were included in prescribed routes, including off-street 

bicycle/pedestrian paths and mixed-use roadways ranging from local roads to major arterials. 

The study subjects were volunteers instructed to adhere to safe riding practices, follow traffic 

laws, and ride at a pace and exertion level typical for utilitarian travel (i.e. commuting). 

Three subjects participated in the data collection; this was considered adequate because 

the primary focus of the study involved travel covariates rather than inter-subject covariates. The 

subjects were recruited from the university student body2. All subjects were nonsmokers who 

reported moderate regular physical activity and good respiratory health based on the American 

Thoracic Society respiratory disease questionnaire3. The characteristics of subjects A, B, and C 

were (respectively):   male, male, and female;  age, 34, 28, and 45; average bicycle weight 

(including all gear), 25, 22, and 23 kg; and average post-ride body weight, 80, 70, and 75 kg.  

GPS receivers recorded 1 Hz location data with time stamps. Redundant GPS devices and 

simultaneous on-bicycle video were used to cross-check the location data for reliability. 

Meteorological variables were also measured for context. Temperature and humidity were 

measured on-road with a HOBO U12 data logger attached to the bicycle. Wind data were 

retrieved from an Oregon Department of Environmental Quality monitoring station in the data 

collection area (Station SEL 10139).  

In order to calculate grade, elevation was extracted from archived data (1 m digital 

elevation maps based on LIDAR) and differentiated in two dimensions. Grade of travel (𝐺) was 

calculated as 𝐺 =
∆elevation

distance
100% using 1 Hz elevation and location data. Grades over 25% or 

under -25% were removed (0.3% of grade data), and a smoothing algorithm was applied (five-

second moving average).  

                                                 
2 Approval for the research was obtained from Portland State University’s Human Subjects Research Review 

Committee (HSRRC). 
3 American Thoracic Society, 1979. “Recommended Respiratory Disease Questionnaires for Use with Adults and 

Children in Epidemiological Research.” 
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Physiology monitoring 

Heart rate and breathing rate were measured by a physiology (ventilation and heart rate) 

monitoring strap worn around the bicyclist’s chest (BioHarness 3, Zephyr, Annapolis, MD). The 

BioHarness 3 is a relatively new commercial device for mobile physiological monitoring. Data 

are logged at 1 Hz and a custom Android application was written to log the BioHarness data 

stream with simultaneous GPS data on a smartphone4.  

The BioHarness band stretches around the chest and contains a conductive elastic fabric. 

Expansion of the chest is monitored by measuring the resistance in the conductive fabric. The 

breathing rate (𝑓𝑏) is assessed by detecting inflections in the resistance waveform. The 

BioHarness also reports a raw breath amplitude (𝐵𝐴) value in volts which is “indicative”. 

Because the measured resistance changes with the expansion of the chest, there should be a 

relationship between breath amplitude 𝐵𝐴 and the tidal volume 𝑉𝑇. However, the relationship 

between 𝐵𝐴 and 𝑉𝑇 will likely depend on the location and tightness of the strap. By calibrating 

𝐵𝐴 to 𝑉𝑇 each time the BioHarness was used, session-specific 𝐵𝐴~𝑉𝑇 relationships were 

estimated and used to calculate dynamic 𝑉𝐸 from on-road measured 𝑓𝑏 and 𝐵𝐴 (see next 

subsection). The BioHarness data fields used in this research were: 

1. Heart rate, 𝐻𝑅 (from ECG sensors) 

2. Heart rate confidence (in %) 

3. Breathing rate, 𝑓𝑏  

4. Breathing amplitude, 𝐵𝐴   

Tidal volume calibration 

A tidal volume calibration was conducted by each subject at the beginning and end of 

each data collection period. The tidal volume calibration consisted of 30-60 seconds of steady 

ventilation at prescribed tidal volumes of 500, 1000, 1500, and 2000 mL.  An incentive 

spirometer was provided to the subjects to monitor tidal volume (DHD222500, Medline, 

Mundelein, Illinois). The first ten seconds of 𝐵𝐴 readings at each tidal volume were discarded, 

and the remaining 𝐵𝐴 values averaged for each tidal volume. A curve was fit to each set of 

calibration data using the equation 𝑉𝑇 = 𝑎 + 𝑏 ∙ 𝐵𝐴. Calibration periods with missing data or a 

statistical fit of 𝑅2 < 0.75 were discarded (4 calibration periods with poorly fitted straps or 

inconsistent tidal volumes). Median coefficients for the calibration curves were 𝑎 = −0.5702 

and 𝑏 = 16.454 (𝑉𝑇 in L and 𝐵𝐴 in mV).  

On-road 𝑉𝑇 was estimated from 𝐵𝐴 measurements by applying the calibration curve 𝑉𝑇 =
𝑎 + 𝑏 ∙ 𝐵𝐴 with calibration parameters 𝑎 and 𝑏 interpolated between the before and after 

calibration periods for each data collection. Data collections without calibration data at one end 

(before or after) used a single set of calibration parameters.  Minute ventilation was then 

calculated �̇�𝐸 = 𝑉𝑇𝑓𝑏. Observations were filtered with the following constraints: 

 BioHarness reported 𝐻𝑅 confidence value of ≥ 80% 

 𝐵𝐴 values within the range of calibration data 

 1 < 𝑓𝐵 < 100 

 20 < 𝐻𝑅 < 200 
50,241 observations (23%) did not meet these constraints or were missing data. The processed 

physiological data set included 165,473 one-second data points (46 hours).  

                                                 
4 See http://alexbigazzi.com/PortlandAce 
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Ergometer testing  

Physiological attributes of the subjects were assessed with a standard bicycle ergometer 

exercise test (4). Tests were conducted on bicycle ergometers (New Bike Exc 700, Technogym, 

Gambettola, Italy) on September 12, 2013. The protocol was 3-minute incremental power output 

of 50 W from 0 W to volitional exhaustion – which was 350, 250, and 200 W for subjects A, B, 

and C, respectively. Self-selected cadences were around 70 rpm.  

Physical model of bicyclist power output 

A first-principles physical model was used to estimate bicyclist power output from 

measured roadway and travel characteristics. Olds (9) provides a review of bicycle energy and 

power models. Beyond accounting for changes in energy state due to speed and elevation, almost 

all power demand models include aerodynamic drag and rolling resistance terms. Some models 

include other factors in varying level of detail, such as angular momentum of the wheels and the 

rider’s limbs, spoke drag, turbulence around the pedals, rolling resistance sensitivity to grade, 

and varying air density (10–15).  

The energy state of a bicycle/rider system is the sum of its potential energy (𝑃𝐸) and 

kinetic energy (𝐾𝐸). The energy flux balance for the bicycle + rider system is  

 

𝑊𝑀 − 𝑊𝐿 − 𝑊𝐵 = ∆𝐾𝐸 + ∆𝑃𝐸  1 

 

where 𝑊𝑀 is the mechanical work input from the bicyclist5, 𝑊𝐵 is energy dissipated through 

braking (as heat), 𝑊𝐿 is other energy lost through drag, rolling resistance, friction, etc., and ∆𝐾𝐸 

and ∆𝑃𝐸 are the changes in kinetic and potential energy. 𝑊𝑀 and 𝑊𝐵 are difficult to measure 

directly and unavailable in the study data set; 𝐾𝐸 and 𝑃𝐸 can be estimated from speed, weight, 

and elevation data, and 𝑊𝐿 can be estimated from the literature with the assumption of certain 

parameters.  

We define the net work on the bicycle + rider system as 𝑊𝑁 = 𝑊𝑀 − 𝑊𝐵. The 

assumptions 

1. 𝑊𝐵 ≥ 0  (i.e. brakes only remove energy from the system),  

2. 𝑊𝑀 ≥ 0 (i.e. the bicyclist can only input energy to the system6), and 

3. 𝑊𝑀 = 0 | 𝑊𝐵 = 0 (i.e. the bicyclist is never pedaling and braking at the same time) 

then lead to  

𝑊𝑀 = {
𝑊𝑁

0
 
     𝑊𝑁 > 0
     𝑊𝑁 ≤ 0

 } 2 

 

Additionally, 𝑊𝐵 = 𝑊𝑁 when 𝑊𝑁 ≤ 0 and 𝑊𝐵 = 0 otherwise. With work in units of energy, the 

time rates of work and energy transfer are in units of power (e.g. watts). From the bicycle energy 

literature (12), neglecting spoke drag, rotational inertia of the wheels, and bearing losses, and 

assuming relatively low wind speeds and grades, energy transfer rates are: 

                                                 
5 𝑊𝑀is not the same as the total external work generated by the bicyclist 𝑊ℎ, which can be related to 𝑊𝑀 by 𝑊ℎ =
𝑊𝑀

𝜂
, where 𝜂 is the efficiency of power transfer to the bicycle powertrain (including losses in the drivetrain and 

energy used for upper body control). In the ventilation ~ power modelling below, the efficiency factor 𝜂 would be 

included in the subject-specific model coefficients. 
6 This might not be true for fixed-gear bicycles.  
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∆𝐾𝐸

∆𝑡
=

𝑚𝑇

2

𝛥𝑣𝑏
2

𝛥𝑡
 

∆𝑃𝐸

∆𝑡
= 𝑣𝑏𝑚𝑇𝑔𝐺 

𝑊𝐿

∆𝑡
=

1

2
𝜌𝐶𝐷𝐴𝐹𝑣𝑏

3 + 𝑣𝑏𝐶𝑅𝑚𝑇𝑔 

where the variables are defined:  

 𝑚𝑇 , the total mass of the bicycle + rider system 

 𝑣𝑏 , the ground speed of the bicyclist 

  𝑔, the acceleration due to gravity 

  𝐺, the grade of travel 

  𝜌, the air density 

 𝐶𝐷 , the drag coefficient 

 𝐴𝐹 , the frontal area of the bicyclist (assuming 0 yaw angle) 

 𝐶𝑅, the coefficient of rolling resistance 

A modified drag coefficient is defined: 𝐶𝐷
′ =

1

2
𝜌𝐶𝐷𝐴𝐹, leading to a rate of net work of 

 

�̇�𝑁 =
𝑊𝑁

𝛥𝑡
=

∆𝐾𝐸 + ∆𝑃𝐸 + 𝑊𝐿

𝛥𝑡
 

�̇�𝑁 =
𝑚𝑇

2

𝛥𝑣𝑏
2

𝛥𝑡
+ 𝑣𝑏𝑚𝑇𝑔𝐺 + 𝐶𝐷

′ 𝑣𝑏
3 + 𝑣𝑏𝐶𝑅𝑚𝑇𝑔  3 

 

All of the parameters needed to calculate �̇�𝑁 are measured in the study data set except 𝐶𝐷
′  and 

𝐶𝑅, for which there is information in the literature.  

Table 1 shows power output parameters applied for the three study subjects, including 

measured values and estimates informed by the literature. All three subjects had 700c 

“commuter” style (semi-slick) tires, 25-28mm. Subjects A and B rode touring bicycles, while 

subject C rode a more upright city bicycle. All three subjects rode with rear panniers, though 

subject A also had a large trunk box holding sample bags and air sampling equipment mounted 

in a front basket. These additions would increase both the frontal area and drag coefficient for 

subject A. All three subjects rode in “touring” or “upright” positions. The values in the following 

table for the unmeasured parameters are estimates from several sources in the literature, 

especially Olds et al. (13) and Wilson (15).  

Power output or rate of work estimates (�̇�𝑀 =
𝑊𝑀

∆𝑡
 ) were made for each subject using 

Equations 2 and 3 with on-road speed and grade data and the parameters in Table 1. �̇�𝑀 was 

constrained to the maximum power output from ergometer testing in Table 1. Power output was 

also calculated in units of MET. A MET is a standardized unit of metabolic energy expenditure 

that is normalized to body mass and resting metabolic rate. Resting activities are at a MET of 1. 

“Standard MET” values are calculated with respect to a resting metabolic rate of 3.5 mL O2 per 
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minute, per kg body mass. The American College of Sports Medicine (ACSM) equation7 for 

oxygen consumption during bicycling (in mL O2 per kg per min) is: 

�̇�𝑂2
= 10.8

�̇�𝑀

𝑚𝑟
+  7  

with �̇�𝑀 in W and 𝑚𝑟 (body mass) in kg (16). Standard MET can then be calculated as   

𝑀𝐸𝑇 =
�̇�𝑂2

3.5
= 3.09

�̇�𝑀

𝑚𝑟
+  2 .  

RESULTS 

Summary statistics for physiology and power output data are shown in Table 2 using 

five-second aggregated data. Ventilation volumes are presented at ambient temperature and 

pressure, which allows direct application for inhalation rate estimates. Mean ventilation rate of 

22.4 lpm (liters per minute) is in good agreement with past studies of bicyclist inhalation (2). The 

average sampling conditions were 17 kph travel speed (without stops), 19 °C (range: 11-25 °C), 

75% relative humidity (range: 57-91%), and 1.8 mps wind speed (range: 0.6-3.6 mps).  

The calculated MET values agree well with published research. The Compendium of 

Physical Activity lists 16 different types of bicycling as activities with assumed static energy 

expenditures ranging from 3.5 MET for “leisure” bicycling at 5.5 mph to 16 MET for 

competitive mountain bicycle racing (17). “General” bicycling is at a MET of 7.5 and bicycling 

“to/from work, self selected pace” is at a MET of 6.8 in the Compendium. Other research has 

reported typical non-racing bicyclist MET of 5-7 (14, 18, 19). 

Ventilation and heart rate 

The lagged covariance between ventilation and heart rate was calculated using 1-second 

data. The covariance peaks at 20 seconds, indicating that heart rate changes lead ventilation 

changes by around 20 seconds. This lag is relevant to consider for research designs that use on-

road measured 𝐻𝑅 to predict dynamic ventilation rates.  

The relationship between ventilation and heart rate was modeled as  

𝑙𝑛(�̇�𝐸)
𝑖

= 𝛼 + 𝛽 ∙ 𝐻𝑅𝑖−4 

using five-second data, where 𝐻𝑅𝑖−4 is heart rate lagged by four periods (4 lags = 20 seconds) 

and 𝛼 and  𝛽 are fit parameters. Pooled and subject-segmented OLS models were estimated with 

Newey-West HAC (heteroscedasticity and autocorrelation consistent) robust standard error 

estimates. The estimated model results by subject and pooled are shown in Table 3. All 

coefficients are significant at p<0.01. Due to serial correlation, using un-lagged heart rate (𝐻𝑅𝑖) 

as the independent variable generates similar models but with higher standard errors.  

The estimated 𝛽 coefficients in Table 3 are in line with the literature, which suggests 

central values of 0.016-0.023 for bicyclist ln �̇�𝐸 ~𝐻𝑅 slope coefficients , heterogeneous to 

individuals (1, 18, 20, 21). Mermier et al. (8) report slopes ranging from 0.016 to 0.029 for 15 

healthy men who performed maximum exercise tests on ergometers. The ventilation-heart rate 

models provide validation support for the BioHarness-based estimation of on-road ventilation. 

The model fits (𝑅2) in Table 3 are lower than past reported values from lab ergometer studies (1, 

8), which is attributable to greater measurement error in the indirect field measurements of 

                                                 
7 http://certification.acsm.org/metabolic-calcs 
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ventilation rate (using the BioHarness chest strap with spirometer calibrations) than the direct 

laboratory measurements of ventilation rate (using facemasks and pneumotachometers). 

Power Analysis 

The application of the power equations allows the power demands on the bicyclists to be 

broken down by terms. The net energy attributable to each power term was: 

 Kinetic energy flux (∆𝐾𝐸): 0 kW, 

 Potential energy flux (∆𝑃𝐸): -155 kW (net elevation loss), 

 Aerodynamic drag loss: 1,792 kW, and  

 Rolling resistance loss: 403 kW.  

Cumulative wattage by power equation term was also calculated for observations with complete 

power data (some observations were missing grade data, so the ∆𝑃𝐸 term was 𝑁𝐴). Of the 

39,508 five-second periods in the data set, 21,963 had complete power data, with total energy 

expenditure of the riders of 3,908 kW. This energy (plus the input of 155 kW of 𝑃𝐸) was 

dissipated as 43.5% aerodynamic drag, 9.7% rolling resistance, and 46.8% braking.  

The bicyclists were performing pedaling work (𝑊𝑁 > 0) for 14,978 (68%) of the 

complete observations (20.8 hours). Isolating those periods when the riders were pedaling, the 

individual sums of energy for the other terms of the power equation were 54.5% kinetic energy, 

2.2% potential energy, 35.7% aerodynamic drag, and 7.7% rolling resistance. In other words, 

when pedaling, 43% of the energy input was immediately dissipated as drag and rolling losses 

(maintaining speed) and the other 57% went to useable, recoverable energy (primarily as speed, 

but also as elevation).  

Ventilation and power output 

Lagged covariance between �̇�𝑀 and 𝐻𝑅 and between �̇�𝑀 and �̇�𝐸 was calculated using 

five-second aggregated data (a five-second moving average was used to estimate grades). 

Covariance between �̇�𝑀 and 𝐻𝑅 peaks at one lag (5 seconds), and covariance between �̇�𝑀 and 

�̇�𝐸 peaks at six lags (30 seconds). Thus, the physiological response to increased power output is 

fast in heart rate and slower in ventilation. Again, this is relevant for study designs where 

ventilation is not measured directly but estimated from heart rate or power output.  

An unconstrained distributed lag model of ventilation on power output was specified out 

to 30 lags (2.5 min): 

𝑙𝑛(�̇�𝐸)
𝑡

= 𝛼 + ∑ 𝛽𝑖�̇�𝑀,𝑡−𝑖

30

𝑖=0

+ 𝜀𝑡 

with �̇�𝐸 in lpm, �̇�𝑀 in W, and 𝜀𝑡 an i.i.d. error term. Longer lags were explored but found to be 

not significant. The model was estimated separately for each subject, with Newey-West HAC 

robust standard error estimates. The cumulative effect of �̇�𝑀 on �̇�𝐸 is represented by 𝛽𝑇 =
∑ 𝛽𝑖

30
𝑖=0 .  

Estimated subject-specific and pooled model results are shown in Table 4. As in Table 3, 

low 𝑅2 values are attributable to measurement error in the indirect field measurements of 

ventilation rate, in addition to estimated energy transfer rates. The left plot in Figure 2 shows the 

marginal impact of �̇�𝑀 on �̇�𝐸 as 𝛽𝑖 ∙ 100% (versus lag in seconds, 5𝑖). The right plot in Figure 2 

shows the cumulative lagged impact of �̇�𝑀 on �̇�𝐸, calculated at lag 𝐿 as  
∑ 𝛽𝑖

𝐿
𝑖=0

𝛽𝑇
∙ 100% .  
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The plots in Figure 2 show that the majority of the effect of power output on ventilation 

is realized within the first minute. The mean lag (the time period at which half of the effect of 

�̇�𝑀 on �̇�𝐸 is achieved, computed  
∑ 𝑖∗𝛽𝑖

30
𝑖=0

𝛽𝑇
) was 0.56-0.85 min for individual subjects and 0.78 

min in the pooled model. The median lag (the lag at which 
∑ 𝛽𝑖

𝐿
𝑖=0

𝛽𝑇
≈ 0.5) was 0.58-0.83 min for 

individual subjects and 0.75 min in the pooled model. The lag values compare well with previous 

studies that found around 50% adaptation of ventilation to exercise after the first minute, with 

some inter-subject variability (22, 23).  

Figure 3 illustrates the sensitivity of the �̇�𝐸~�̇�𝑀 relationship to the energy equation 

parameters 𝐶𝐷
′  and 𝐶𝑅. The 3 plots in Figure 3 show modeled 𝛽𝑇 as shadings over a wide range 

of values for  𝐶𝐷
′  and 𝐶𝑅, for each subject. Note the different color scales in each figure, centered 

near the 𝛽𝑇 estimate in Table 4. The selected ranges for 𝐶𝐷
′  and 𝐶𝑅 are based on the literature 

used in Table 1 (12, 15). The �̇�𝐸~�̇�𝑀 relationship is more sensitive to 𝐶𝐷
′  than 𝐶𝑅. Higher values 

of these power equation parameters increase estimates of on-road �̇�𝑀 and so reduce the size of 

𝛽𝑇. The modeled 𝛽𝑇 is within 0.001 of the initial estimate over a wide range of parameter values. 

Comparison with theory 

The 𝛽𝑇 values in Table 4 are consistent with expectations from physiology. Oxygen 

demand (�̇�𝑂2
) increases with power output at around 10-12 mL O2/min per W (4, 9, 24–26)8. 

This slope reflects a unit conversion of 1W = 2.86 ml O2/min and a human mechanical cycling 

efficiency9 of ~25% (3, 15, 27).  

The relationship between 𝑉𝐸 and �̇�𝑂2
 has been modeled as both linear and exponential, 

with better fits over a wide range of �̇�𝑂2
 using exponential forms. The exponential form, 

ln �̇�𝐸 ~�̇�𝑂2
, has been estimated with a slope of around 1.2 (28–30)10. In linear form, the 

ventilatory equivalent for oxygen (�̇�𝐸/�̇�𝑂2
) during moderate exercise is around 20-30 (31–33). 

Assuming a linear ventilatory equivalent of 25 (34), at ventilation rates of 20-50 lpm during 

exercise the semi-elasticity of �̇�𝐸 to �̇�𝑂2
 (i.e. the slope of ln �̇�𝐸 ~�̇�𝑂2

) would be expected to be 

around 0.5-1.3.  

The slope of ln �̇�𝐸 ~�̇�𝑂2
 can be converted to ln �̇�𝐸 ~�̇�𝑀 using the factor 0.01 

(LO2/min/W), resulting in expected ln �̇�𝐸 ~�̇�𝑀 slopes of roughly 0.005-0.013. Thus, the 

modeled values of 𝛽𝑇 in Table 4 and the sensitivity ranges in Figure 3 are in the range of 

expected ventilation response to power output. The theoretical values are based on steady-state 

relationships and ergometer testing protocols used in physiology studies. Low-ranged values of 

the ln �̇�𝐸 ~�̇�𝑀 slope in these data could be attributed to a muted ventilatory response to dynamic 

power output. 

                                                 
8 Zoladz et al. (26) found that �̇�𝑂2

 increases non-linearly at power output over 250W 
9 the amount of energy derived from atmospheric oxygen that is translated to external work, previously defined as 𝜂 
10 A common model uses the oxygen uptake efficiency slope (OUES), which is defined as  

�̇�𝑂2
= 𝑂𝑈𝐸𝑆 ∙ 𝑙𝑜𝑔10 �̇�𝐸 + 𝜇.   

OUES can be converted to a  ln �̇�𝐸 ~�̇�𝑂2
 slope coefficient by calculating 

ln 10

𝑂𝑈𝐸𝑆
. Typical OUES values are around 1.8-

2, increasing with cardiac fitness.  
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For a body mass of 75 kg, standard MET increases at 0.04 per watt �̇�𝑀 (see Section 2.5). 

Thus, the expected ln �̇�𝐸 ~�̇�𝑀 slopes can be converted to expected ln �̇�𝐸 ~𝑀𝐸𝑇 slopes of 0.1-

0.3. In linear form, ventilatory equivalents for oxygen (�̇�𝐸/�̇�𝑂2
) of 20-30 can be converted to 

expected �̇�𝐸~𝑀𝐸𝑇 slopes of 5.7-8.6. Ventilation vs. MET relationships were estimated using 60-

minute aggregated data (𝑁 = 47). A regression of ln �̇�𝐸 on 𝑀𝐸𝑇 generates a slope coefficient of 

0.22 (𝑝 < 0.01, 𝑅2 = 0.16) and a regression of �̇�𝐸 on 𝑀𝐸𝑇 generates a slope coefficient of 6.5 

(𝑝 < 0.01, 𝑅2 = 0.27) – both well in line with expectations.  

The ventilation vs. power relationships are expected to vary some with personal 

characteristics. The ventilatory equivalent for oxygen �̇�𝐸/�̇�𝑂2
 (and in turn the slope of �̇�𝐸~�̇�𝑀) 

tends to increase with pulmonary or cardiovascular diseases, be higher in children and 

adolescents than adults, and decrease with aerobic training (4, 34, 35). Hence, a broader 

population of bicyclists including children and adults with respiratory diseases could have higher 

�̇�𝐸~�̇�𝑀 slope coefficients than estimated in this study. But power output would also likely vary, 

and a population-wide analysis of bicyclist ventilation would have to consider both aspects 

jointly.  

Comparison with ergometer testing and direct power measurements 

The ln �̇�𝐸 ~�̇�𝑀 relationship was estimated for the same subjects using ergometer test 

data. A model was specified ln(�̇�𝐸) = 𝛾 + 𝜆�̇�𝑀 for each subject, with �̇�𝐸 in lpm, �̇�𝑀 in W, and 

parameters 𝛾 and 𝜆. Subject-specific and pooled models were estimated using OLS with Newey-

West HAC standard errors for data aggregated at each power output level from the ergometer 

test. Model estimation results are shown in Table 5. All coefficients were significant at 𝑝 < 0.01.  

The parameter estimates in Table 5 are also in range of expectation from theory, and 

compare reasonably well with the slope parameters from on-road data shown Table 4. The 

pooled model is nearly the same. In both the on-road and ergometer models, Subject B has 

higher baseline ventilation, but less ventilatory response to power output than the other subjects. 

Subject C has the highest ventilatory response to power output. Subjects B and C both showed 

stronger ventilatory responses to power output in ergometer testing than on-road, while the 

opposite occurred for subject A. Differences between ergometer and on-road testing could be due 

to static vs. dynamic power output and/or errors in assumed bicycle power equation parameters 

(Figure 3).  

The bicycle for Subject A was equipped with a PowerTap (Madison, Wisconsin) G3 Hub 

capable of measuring power transfer to the rear wheel. The ventilation vs. power relationship 

was estimated using this smaller set of directly-measured power data with the distributed lag 

model specification, yielding coefficient estimates of 𝛼 = 2.564 and 𝛽𝑇 = 0.00662, with a 

mean lag of 0.75 minutes (𝑁 = 7,626, adjusted 𝑅2 of 0.25). The consistency of these parameters 

with the previous results using modeled power output provides additional validation of the study 

findings. 

CONCLUSIONS 

Physiology monitoring straps provide an unobtrusive way to measure ventilation rates for 

bicyclists. Monitoring straps that measure breathing can be purchased for a small fraction of the 

cost of a portable facemask system, are less cumbersome for participants, and enable concurrent 

measurement of ventilation and uptake doses. Indeed, this study is part of a larger research 

project that simultaneously measures ventilation and breath biomarkers of VOC uptake for urban 

bicyclists. Ventilation rate measurements were validated by heart rate vs. ventilation rate 
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relationships in this paper. Future work should further validate this method by direct comparison 

with portable facemask systems.  

Average ventilation rate and power output in this study were 22 lpm and 126 W (MET of 

7.0), in agreement with past studies of commuting bicyclists. The on-road ventilatory response to 

dynamic power output was 0.4-0.8 % per W, slightly lower than from ergometer testing for the 

same subjects and at the low end of expected values from physiology literature. This 

quantification allows ventilation to be estimated directly from travel conditions (road grade, 

speed, etc.) and a few key bicyclist parameters (mass and coefficients of rolling resistance and 

aerodynamic drag), or from power output measurements generated by power meters in the rear 

hub, crank, or pedals.  

On-road ventilation lagged heart rate by 20 seconds and lagged power output by 50 

seconds. The ventilation lag of heart rate is important to consider for study designs using only 

heart rate monitors to estimate dynamic on-road ventilation.  The ventilation lag of power output 

implies that ventilatory responses are not coincident with locations of energy expenditure, but 

spread out over 1-2 minutes. Assuming bicycling speeds around 15 kph, a lag of 50 sec is 

equivalent to a spatial difference of 200 m. This spatial lag in the ventilatory response is a 

potentially important consideration for pollutant inhalation “hot spots”. Exposure concentrations 

are expected to be elevated near intersections; power output, too, is high during an acceleration 

from a stop at an intersection – but the ventilatory response is spread out over several blocks. 

Conversely, when bicyclists are stopped at an intersection with a power output of 0 W, they are 

breathing with the residual influence of the past 2 minutes of exertion.  

In this study 47% of on-road energy loss was due to braking and 44% due to aerodynamic 

drag. A more naturalistic bicycle travel data set would be needed to estimate a more 

representative distribution of power demands for urban bicycling. Future work will explore the 

influence of travel attributes on power output and ventilation in more detail, including the 

relative effects of stops, grades, and travel speeds, and power/speed trade-offs for total 

ventilation per unit distance or per trip. This paper is an important step toward quantifying the 

impact travel characteristics on bicyclists’ pollutant inhalation risks.  
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Table 1. Parameters used in calculating bicyclist power 

 Subject 

A 

Subject 

B 

Subject 

C 

Source 

𝑚𝑟 (kg) 80 70 75 Measured; mass of the rider 

𝑚𝑇 (kg) 105 91 97 Measured; includes rider and bicycle 

Height, 𝐻 (cm) 189 175 163 Measured; standing 

Surface area of rider, 𝐴𝑆 (m2) 2.32 2.07 2.02 Olds et al. (13); 𝐴𝑆 = 𝐻0.725𝑚𝑇
0.4250.007184 

Frontal area of rider, 𝐴𝐹𝑟 (m2) 0.59 0.51 0.49 Olds et al. (13); 𝐴𝐹𝑟 = 0.3176𝐴𝑆 − 0.1478 

Frontal area of bicycle, 𝐴𝐹𝑏 (m2) 0.12 0.12 0.12 Olds et al. (13) 

Frontal area inflation factor, 𝐹 1.2 1.1 1.1 Assumed; loose clothing, upright position, 

panniers, and equipment 

Total frontal area, 𝐴𝐹 (m2) 0.85 0.69 0.67 𝐴𝐹 = 𝐹(𝐴𝐹𝑟 + 𝐴𝐹𝑏)  

𝐶𝐷  1.1 1.0 1.0 Wilson (15) 

𝜌 (kg/m3) 1.23 1.23 1.23 Assumed; sea level, 15°C 

𝐶𝐷
′   0.6 0.4 0.4 𝐶𝐷

′ =
1

2
𝜌𝐶𝐷𝐴𝐹  

𝐶𝑅  0.004 0.004 0.004 Wilson (15) 

Maximum power output (W) 300 250 200 Ergometer testing; < 3 minutes 
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Table 2. Summary statistics for physiology and power output data (five-second 

aggregation) 

 Units Min 1st 

Quartile 

Median Mean 3rd Quartile Max N  

𝐻𝑅  min-1 20 69 81 84 96 200 39,508 

𝑓𝑏  min-1 2 16 22 22 28 51 39,508 

𝐵𝐴  mV 24 61 85 92 116 280 38,675 

𝑉𝑇  mL 0 600 889 1002 1275 7238 32,471 

𝑉𝐸  l min-1 0.0 10.3 18.0 22.4 29.7 165.6 32,471 

�̇�𝑀          

Pooled W 0 0 114 126 235 300 21,963 

Subject A W 0 0 126 135 265 300 16,950 

Subject B W 0 0 73 101 207 250 2,555 

Subject C W 0 0 74 90 200 200 2,458 

𝑀𝐸𝑇          

Pooled MET 2.0 2.0 6.5 7.0 11.2 13.6 21,963 

Subject A MET 2.0 2.0 6.8 7.2 12.2 13.6 16,950 

Subject B MET 2.0 2.0 5.2 6.4 11.1 13.0 2,555 

Subject C MET 2.0 2.0 5.0 5.7 10.2 10.2 2,458 
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Table 3. Model parameters relating ventilation to heart rate 

 Subject A Subject B Subject C Pooled 

𝛼 0.406 0.159 1.487 0.782 

𝛽 0.0298 0.0271 0.0156 0.0244 

𝑁 23,127 5,053 4,291 32,471 

𝑅2 0.371 0.239 0.151 0.290 
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Table 4. Distributed lag models of on-road ventilation as a function of power output 

 Subject A Subject B Subject C Pooled 

𝛼  2.185 2.674 2.318 2.348 

𝛽
𝑇
  0.00744 0.00417 0.00761 0.00645 

Number of significant lags (𝑝 <
0.05) 

28 10 11 26 

𝑁  13,044 2,248 2,156 17,448 

Adjusted R2 0.154 0.024 0.111 0.140 

F-statistic 77.36 2.76 9.72 92.36 
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Table 5. Model parameters relating ventilation to power output from ergometer testing  

 Subject A Subject B Subject C Pooled 

γ 2.512 2.550 1.815 2.328 

λ 0.00628 0.00561 0.01197 0.00728 

R2 0.60 0.72 0.71 0.65 
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Figure 1. Conceptual diagram of the connection between bicyclist ventilation and travel 

conditions 
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Figure 2. Marginal and cumulative impacts of power output on ventilation 
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Subject A)  

Subject B)  

Subject C)  

Figure 3. Sensitivity of modeled 𝜷𝑻 to power equation parameters 𝑪𝑫
′  and 𝑪𝑹 for each 

subject 


