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The objective of this study was to examine the concentration variation  
of midblock roadside particulate matter less than 2.5 µm (PM2.5) as  
a function of very high resolution meteorological and traffic data.  
Morning peak period measurements were taken at a midblock roadside 
location on an urban arterial commuter roadway. For the impact of 
dynamic traffic conditions to be captured, data were analyzed at 10-s 
intervals, a substantially higher resolution than that used in typical road-
side air quality study designs. Particular attention was paid to changes 
in traffic conditions, including fleet mix, queuing, and vehicle platoon-
ing over the course of the study period, and the effect of these changes 
on PM2.5. Significant correlations were observed between vehicle pla-
toons and increases in PM2.5 concentrations. Traffic state analysis was 
employed to determine median PM2.5 levels before and after the onset of 
congestion. A multivariate regression model was estimated to determine  
significant PM2.5 predictors while controlling for autocorrelation. Signifi
cance was found not only in the simultaneous traffic variables but also 
in lagged traffic variables; in addition, the effects of vehicle types and 
wind direction were quantified. Modeling results indicated that traffic 
state (e.g., congestion) and vehicle type had a significant impact on road-
side PM2.5 concentrations. This study serves as a demonstration of the 
abilities of very-high-resolution data to identify the effects of relatively 
minute changes in traffic conditions on air pollutant concentrations.

Although the U.S. Environmental Protection Agency regulates con-
centrations of wide-scale maximum particulate matter less than 2.5 µm 
(PM2.5) over 1 day and 1 year, peak exposures of 1 h or less could be  
more relevant from a health impact perspective (1). Commuters may 
receive a large portion of their daily particulate exposure in road-
way microenvironments (small-scale environments comprising the 
roadway and its immediate surroundings), which are prone to high 
PM2.5 concentrations and not regulated by ambient air quality stan-
dards (2–5). Elevated concentrations of air pollution in excess of 
ambient conditions along roadways indicate a direct relationship 
to motor vehicle emissions (6).

A review of existing literature showed that PM2.5 exposure along 
roadway microenvironments has been thoroughly studied from the 

point of view of the traveler. This type of empirical study often focuses 
on in-vehicle exposure (3, 7, 8). Other studies have considered 
exposure for pedestrians, transit users, and bicyclists (9–11). These 
studies typically examine factors affecting exposure as the user moves 
throughout the network, facilitating an analysis of hot spots and 
in-vehicle exposure (as appropriate), while sacrificing certainty about 
the sources of PM2.5 as the sampling location changes. Stationary 
roadside measurements allow for control over variables such as built 
environment and roadway type that are difficult or impossible to 
control in mobile studies. Several studies have used a stationary 
sampling approach to assess PM2.5 exposure for pedestrians at inter-
sections and transit users waiting at bus stops (12–14). Intersections 
have been widely shown to be hot spots of air pollution (15), though 
little or no stationary sampling has been conducted at midblock 
locations.

Most exposure studies use analyses of traffic data sources that 
are less than ideal. Often, high-resolution air pollutant samples are 
coupled with aggregate or modeled vehicle data; this approach limits 
the ability of the study to accurately determine sensitivity of a 
pollutant to changes in roadway conditions (9, 16). Similarly, because 
other studies that use high-resolution traffic data are often limited to 
air pollutant samples taken from a fixed monitoring site many miles 
away, conclusions about roadway pollutant sources are weakened (5).

This paper presents the results of an innovative midblock PM2.5 
sampling and modeling study in Portland, Oregon. The objective of  
this study was to determine the influence of arterial traffic conditions 
on concentrations of midblock roadside PM2.5 by using a fine-grain 
statistical modeling approach. Particular attention was paid to changes 
in traffic conditions over the course of the study period, including fleet 
mix and bottleneck activation and vehicle platooning, and their effects 
on PM2.5 concentrations. The data sampling and modeling approach 
also controlled for meteorological conditions with data of similar 
high resolution.

Study Area

The study site is located on Southeast Powell Boulevard, at the 
intersection of Southeast 24th Avenue, roughly 3 mi east of the 
central business district. Powell Boulevard is a four-lane east-west 
urban arterial roadway that serves as one of the primary routes 
between the downtown district and the outlying suburbs. Annual 
average daily traffic is 31,500 vehicles at the study site. The corridor 
is typified by a variety of land uses, ranging from parkland and park-
ing lots (as seen in Figure 1) to multistory businesses and schools. 
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Southeast 24th Avenue is a small neighborhood street with negligible 
traffic. As such, the study site was considered an appropriate sub-
stitute for a midblock location. Signalized intersections are located 
two and three blocks away in the eastbound and westbound directions, 
respectively.

Westbound Powell Boulevard is often congested during morning 
peak hours. There are high volumes of private vehicles on this route, 
which also serves as a primary transit and freight route. Peak morning 
transit bus headways are 8 min in the downtown direction. The posted 
speed limit is 35 mph; however, during congested periods actual 
speeds can be substantially lower.

Data Collection

Field measurements were made on Wednesday, May 1, 2013, from 
7:10 until 8:55 a.m. at the shaded corner site labeled “monitoring 
location” in Figure 1. There was no precipitation at the time of data 
collection. Data were gathered from a variety of sources. Portland 
State University supplied deployable instruments for particulate 
matter, temperature, relative humidity, and wind. The City of Portland 
Bureau of Transportation supplied traffic measurements.

PM2.5 concentrations were measured with a DustTrak DRX Aerosol 
Monitor (TSI Model 8533), with a concentration range between 1 and 
150,000 µg/m3 and a resolution of 1% of the reading. The DustTrak 
monitor uses 90° light scattering at a sampling flow rate of 1.7 L/min.  
Although the monitor was factory-calibrated and working properly, it 
was calibrated to standard Arizona road dust; this calibration method 
has been shown to be inaccurate for measuring freshly emitted exhaust 
(17–19). Roadside particles have different sizes, shapes, compositions, 
and refractive index properties from those used for the Arizona Road 
Dust calibration standard; therefore, the DustTrak overestimates par-
ticulate matter mass concentrations in roadside environments (20). 
To compensate for the differences between roadside aerosols and the 

reference Arizona road dust aerosols (smaller and darker roadside 
particles), PM2.5 readings were reduced by a factor of 2.3, on the basis 
of previous research (17–19).

Additionally, Huang and Tai (21) have shown that the light scat-
tering used by the DustTrak is sensitive to high relative humidity 
because of an increase in light scattering efficiency as particles absorb 
ambient water. With the method outlined by Huang and Tai (21), the 
reduced PM2.5 data were adjusted according to Equation 1:

i

i

( )= × − × +

≥

PM PM .0092 RH 1.563

RH 71.5% (1)

2.5corrected 2.5reduced

where

	PM2.5corrected	=	finalized data,
	PM2.5reduced	=	 raw data reduced by a factor of 2.3, and
	 RHi	=	 instantaneous relative humidity (%).

Wind speed and direction were measured with an RM Young 
ultrasonic anemometer (Young Model 81000). The wind speed sensor 
has a range of 0 to 40 m/s and a resolution of 1% of the reading for 
wind speeds less than 30 m/s. The wind direction sensor has a reso-
lution of ±2 degrees for wind speeds up to 30 m/s. Temperature and 
relative humidity were measured with an Onset HOBO U12-013 
data logger. The temperature sensor has a resolution of ±0.35°C and 
the relative humidity sensor has a resolution of ±2.5%.

Data were collected at 1-Hz resolution. All devices were placed 
on a portable table approximately 2.5 m from the roadway; the 
aerosol monitor intake was mounted 1.5 m from the ground, following 
standard practice (4, 8, 22).

Traffic data were gathered from a permanently mounted Wavetronix 
SmartSensor HD radar detection device located at the same road-
way cross section as the monitoring equipment. The radar device 
records vehicle counts, speed, occupancy (percentage of the time 
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FIGURE 1    Built environment surrounding the study site on Powell Boulevard (SE 5 southeast; 
AADT 5 annual average daily traffic).
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interval that the radar detection zone is occupied), and classification 
by vehicle length. Because heavy vehicles included any vehicle longer 
than 6 m, the results may have been biased (e.g., a pickup truck haul-
ing a trailer would be classified as a heavy vehicle). The researchers 
used video data to validate the data, which were available at 10-sec 
intervals.

Results

All data were aggregated to 10-sec intervals and combined into a 
single database. All analyses used this level of resolution unless 
otherwise noted. Data were cleaned and checked for outliers; one 
outlier data point was removed from the PM2.5 data at the 7:13 a.m. 
mark, 3 min after the start of the data collection. The sample size 
was 631. Summary statistics are presented in Table 1. The aver-
age PM2.5 concentration taken over the duration of the study period 
was 7.7 µg/m3, lower than the typical near-road concentration range 
of ∼15 to 160 µg/m3 cited by Kaur et al. (3). A time series plot 
showing variation in PM2.5 concentrations is presented in Figure 2. 
Spikes were observed throughout the study period, notably at  
7:47 a.m., 8:10 a.m., and 8:48 a.m.; each of these spikes corre-
sponded to westbound congestion and the passage of a westbound 
heavy vehicle.

For roughly two-thirds of the study period, the westbound direc-
tion of travel was heavily congested, characterized by a constant 
queuing of vehicles at the monitoring location. Westbound speeds 
deteriorated substantially at approximately 7:40 a.m. and had not 
recovered by the time the data collection ended at 8:55 a.m. In this 
paper, congestion refers to the general, long-term breakdown in 
traffic flow, and queuing refers to the dynamic, transient fluctuations 
in traffic flow. For visualization of the congestion and its context 
within the entire day’s activity, a time series plot was constructed for 
both directions of travel with 1-min aggregations of the traffic data. 
Figure 3 shows total vehicle volumes, speeds, and occupancy rates. 
The dashed boxes indicate the study period, between 7:10 and 
8:55 a.m.

Westbound volumes peaked just before the collapse in speeds; this 
peak suggests a maximum volume-to-capacity ratio had been reached. 
Eastbound travel experienced travel delays during the evening peak 
period, but not during the data collection period.

Average westbound speeds were approximately 30 mph at the start 
of the study period, but quickly dropped to below 10 mph. Westbound 
occupancy rates reflected the reduction in speed and are in line with 
field notes taken during the data collection: as volumes increased 
and speeds dropped, spacing between vehicles decreased, and thus 
the radar monitor detection zone was occupied for greater percentages 

of the time interval. Occupancy reached 100% twice in the study 
period

Congestion Identification

The availability of very-high-resolution traffic data opens up the 
possibility of analysis of pollutant concentration by traffic state. 
Traffic volume data provide an indication of the number of vehicles 
present near the monitoring site, but these numbers do not neces-
sarily indicate the state of the traffic, that is, whether a roadway is 
congested or uncongested. For identifying traffic states empirically, 
a method derived from Bertini (23) was employed with two traffic 
states specified (congested and uncongested). Figure 4 illustrates the 
process. Cumulative speeds, N(t), were plotted against time for the 
duration of the study period (top row in Figure 4). The curve’s slope 
at time t is the speed at that time. A rescaled cumulative (oblique) 
speed curve was then created to amplify changes in speed (bottom 
row in Figure 4). The oblique speed curve was created by reducing 
N(t) from v0t, shown in Equations 2 and 3:

v
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where v0 is an oblique scaling rate and t is the elapsed time from the 
beginning of the study period.

TABLE 1    Descriptive Statistics for PM2.5 and Meteorological  
and Traffic Conditions

Variable Mean Median Min. Max. SD

PM2.5 (µg/m3)   7.715   7.734   6.043 11.970   0.821

Temperature (°C)   8.333   5.493   4.558 16.060   4.219

Relative humidity (%) 63.970 74.560 37.550 78.940 15.341

Wind speed (m/s)   1.920   1.750   0.190   6.282   0.878

Passenger vehicles  
    (per 10 s)
    Westbound   2.914   2.000   0.000 12.000   2.557
    Eastbound   2.029   1.000   0.000 10.000   2.331

Heavy vehicles  
    (per 10 s)
    Westbound   0.921   1.000   0.000   6.000   1.016
    Eastbound   0.298   0.000   0.000   3.000   0.583

Note: Min. = minimum; max. = maximum; SD = standard deviation.
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FIGURE 2    Time series for PM2.5 concentration for the duration of the study period.
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A local maximum on an oblique speed curve indicates a time at 
which a speed reduction occurred, and a local minimum indicates a 
time at which a speed increase occurred. These two conditions are 
referred to as queuing activation and deactivation points, respectively. 
The shaded portion of the oblique speed curve in Figure 4 indicates 
an active queue.

The onset of consistently congested conditions is clearly displayed 
in the westbound direction, beginning at 7:38 a.m. From that point, 
the queue was primarily active. No congested conditions occurred 
in the eastbound direction.

The cyclic nature of vehicle presence in the study area is evident 
when viewed in an autocorrelation function (ACF) plot and a partial  

autocorrelation function (PACF) plot of traffic volumes. ACF and 
PACF plots illustrate the similarities between observations as a func-
tion of the time lags between the observations. Given lag h, the ACF 
does not account for linear dependence between time t and time t + h; 
the PACF, which removes the linear dependence for observations at 
time t + 1 through time t + h − 1, indicates the unique autocorrelation 
for lag h. Both of these functions are commonly used to determine 
patterns. Cyclical arrival times were facilitated by upstream signals 
in either direction. The westbound upstream signal had a median 
cycle length of 123 s during the morning period, and the eastbound 
upstream signal had a median cycle length of 125 s. These cycles are 
evident in the vehicle volume ACFs and PACFs in Figure 5, a and b,  
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FIGURE 5    Autocorrelation of vehicle volumes showing platooning with upstream signal cycles  
(a) westbound and (b) eastbound and (c) cross-correlation of vehicle volumes with PM2.5 
concentrations (1 lag 5 10 s; CCF 5 cross-correlation function).
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in which one lag equals 10 s. Directional differences in the ACFs 
and PACFs are evident. The eastbound response has a clear spike 
at 13 lags, or 130 s, because of traffic platooning. The westbound 
direction had a slightly more dampened response, likely because of 
congestion, which mitigated any upstream cycle effect attributable 
to the constant vehicle presence at the sensor location.

The cyclical arrival times are referred to as vehicle platooning, 
or the grouping of vehicles after departing from an upstream sig-
nal. For the investigation of the effect of vehicle platoons on PM2.5 
concentrations, a cross-correlation function was made for each 
direction.

The cross-correlation function in Figure 5c illustrates sample 
correlations between PM2.5 concentrations at time t and traffic volumes 
at time t + h for h = 0, ±1, ±2, ±3, and so forth. Negative values for h 
indicate a correlation between volumes at a time h units before t and 
PM2.5 concentrations at time t. The dashed lines in Figure 5c indicate 
the statistical significance level, calculated with

z

N
1 2−α

where z is the z-value at a given level of significance α and N is the 
sample size. At 95% confidence, the significance threshold is 0.078. 
No westbound correlations were significant; this result indicates 
that westbound vehicle platooning did not have a significant effect 
on PM2.5 concentrations. In the eastbound direction of travel, PM2.5 
concentrations were significantly positively correlated (+10.4%) with 
vehicles passing at 12 lags, or 120 s. This lag time roughly matched 
the upstream cycle length as well as the eastbound vehicle ACF and 
PACF. Eastbound vehicle platooning, then, significantly positively 
correlated with PM2.5 concentrations. Platooning correlations were 
likely easier to identify in the eastbound direction because of the 
uncongested conditions and clear vehicle arrival times for the duration 
of the study period.

Statistical Modeling

Assessment of the joint traffic and meteorological effects on PM2.5 
concentrations required an advanced statistical approach. Ordinary 
least squares regression is typically the starting point, but consider-
ation had to be made for the highly autocorrelated nature of the PM2.5 
measurements. Ordinary least squares requires independence of the 
residuals to ensure efficient estimates. To address the autocorrelation, 

a lagged dependent variable was added to the regressors. To mitigate 
positive skew, a natural logarithmic transformation was applied to both 
the dependent variable (PM2.5) and lagged dependent variable.

Independent variables considered for the model are listed in 
Table 2. Traffic variables included total volume (passenger and 
heavy vehicles), occupancy rate (as an indicator of congestion), and 
queuing status (on the basis of the analysis in Figure 4). Wind speed, 
wind direction, and relative humidity were included as indicators 
of meteorological conditions. Wind direction was simplified into 
directions toward and away from the monitoring location, as illus-
trated in Figure 1. This simplification was performed by taking the 
sine of the angle of wind direction with respect to the roadway. 
Wind perfectly perpendicular to the roadway, blowing toward the 
monitoring location, was coded as a 1. Wind perfectly parallel to the 
roadway was coded as a 0. Wind directions between perpendicular 
and parallel were interpolated between 1 and 0 with the sine function. 
This same technique was applied for wind blowing away from the 
monitoring station.

For the possible role of wind direction in the dispersion of vehicle 
emissions to be emphasized, the wind direction variable was inter-
acted with traffic volumes in the model. That is, a vehicle passing 
while the wind was blowing across the roadway, toward the monitor-
ing station, received a nonzero value (the product of traffic volume 
and the sine of the wind direction). A vehicle passing while the wind 
was blowing parallel to the roadway received a zero value. This 
method approximates vehicle plume characteristics without the effects 
of vehicle-induced turbulence.

Lagged terms were considered for traffic and wind speed variables 
after the cross-correlation function in Figure 5b indicated lagged 
volume variables were useful predictors of PM2.5 concentrations.

The final log-linear model, with p = .05 as the significance thresh-
old, exhibited negligible correlation between the residuals and was 
determined to satisfy the OLS requirement for independent error 
terms. The final model is presented in Table 3.

Model results indicated higher traffic volumes were associated with 
increased PM2.5 concentrations when the wind was blowing toward 
the monitoring station. Lower traffic-related concentrations when 
the wind was blowing away from the station were likely the result 
of lower background PM2.5 levels in the neighborhoods north of 
Powell Boulevard. PM2.5 concentrations were affected by traffic 
volumes several periods in the past, up to 20 lags, or 200 s. Several 
eastbound traffic variables were significant, but only one westbound 
traffic variable was significant; this finding was probably the result 
of the relatively low variation in westbound traffic conditions after 

TABLE 2    Definitions of Regression Variables

Variable Description Type Unit

Dependent: ln (PM2.5) Natural log of concentration at time t Continuous µg/m3

Independent
    Lagged dependent variable: ln (PM2.5) Natural log of concentration at time (t − 1) Continuous µg/m3

    Traffic conditions
        Passenger volume Number of passenger vehicles passing (vehicle length < 6 m) Continuous Vehicles per 10 s
        Heavy-vehicle volume Number of heavy vehicles passing (vehicle length > 6 m) Continuous Vehicles per 10 s
        Occupancy Percentage of time interval that vehicle detection zone was occupied Continuous %
        Queuing Queuing status Dichotomous 0 = inactive, 1 = active
    Meteorological conditions
        Wind speed Wind speed Continuous m/s
        Wind direction Sine of the angle of wind direction perpendicular to traffic direction Continuous Unitless
        Relative humidity Relative humidity Continuous %
    Lagged terms: traffic and wind speed Traffic volumes and wind variables lagged up to time (t − 24) Continuous Various
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the onset of congestion. The lack of variability in westbound traffic 
conditions limited the ability of the model to separate westbound 
vehicle effects (occupancy from traffic volume). The continually con-
gested westbound conditions might have contributed to the serial cor-
relation in PM2.5 concentrations and were captured by the correlation 
coefficient.

The occupancy variable served as an indicator of congestion condi-
tions; in Figure 3 higher occupancy rates were shown to correspond 
with congestion. The model confirmed that westbound congestion 
was significantly associated with increases in PM2.5 concentrations.

Semielasticities ((eβ − 1) × 100) were calculated from the log-
linear model coefficients. Eastbound heavy vehicles had a larger 
semielasticity (2.45% per additional vehicle) than any eastbound 
passenger vehicle (maximum .49% per vehicle) when the wind was  
blowing toward the monitoring station. This finding was to be 
expected as diesel engines emit more particulate matter than gasoline 
engines (24, 25).

Effects of Traffic State

As a further investigation of effects of traffic state on PM2.5 concentra-
tions, median concentrations during queuing states were compared 
before and after the onset of congestion at 7:38 a.m. (see Figure 4  
for westbound queuing conditions). Box plots of the concentrations are 
presented in Figure 6. Lower median concentrations were observed for 
active queuing periods before congestion than for inactive periods. 
In contrast, higher median concentrations were observed for active 
queuing periods after the onset of congestion at 7:38 a.m. than for 
inactive periods.

After the onset of congestion, active queuing periods were char-
acterized by vehicles queuing closely and accelerating from low 
speeds. These two factors may account for the increase in PM2.5 
concentrations (active versus inactive). Before the onset of conges-
tion, active queuing periods were characterized by brief decreases in 
speed, though for time durations that were too short to bring traffic 
to congested conditions (thus avoiding extended queues or accelera-
tion from low speeds). Short queuing periods outside of congestion, 
then, likely lead to traffic conditions with lower accelerations, which 

may have resulted in lower emissions rates and lower PM2.5 con-
centrations. The active and inactive PM2.5 concentrations shown in 
Figure 6 were statistically significantly different at p = .05, for both 
precongested and congested periods.

Finally, a method was devised for estimating the amount of 
PM2.5 per vehicle. Figure 7 shows the amount of PM2.5 measured per 
number of vehicles detected (in both directions) over the duration of 
the study period, in micrograms per cubic meter per vehicle. After 
the onset of congestion, the two cumulative curves began to diverge, 
and the ratio of PM2.5 per vehicle began to increase slightly. At the 
congestion mark at 7:38 a.m., the ratio was 1.07. At the end of the 
study period at 8:55 a.m., the ratio was 1.25. Thus, as the congestion 

TABLE 3    Multivariate Ordinary Least Squares with Lagged Dependent Variable Model

Variable Lag Coefficient SE p Unit Increase Effects on Dependent Variable (semielasticity)

Intercept   0 .63261 .05693 <.001 na

ln (PM2.5)   1 .63829 .03013 <.001 na

Traffic conditions: westbound occupancy   0 .00046 .00013 <.001 Increase by .05% per percentage point occupancy increase

Meteorological conditions
    Relative humidity   0 .00138 .00020 <.001 Increase by .14% per percentage point relative humidity 

increase
    Wind speed   1 −.01274 .00368 .001 Decrease by 1.27% per 1 m/s increase

  2 .00917 .00368 .013 Increase by .92% per 1 m/s increase

Vehicle volume × wind
    Wind toward monitoring station:   8 .00488 .00214 .023 Increase by .49% per additional vehicle
        eastbound passenger vehicle 11 .00455 .00215 .035 Increase by .46% per additional vehicle

20 .00448 .00214 .037 Increase by .45% per additional vehicle
        Eastbound heavy vehicle   0 .02418 .01075 .025 Increase by 2.45% per additional vehicle
  �  Wind away from monitoring station:  

    westbound passenger vehicle
  0 −.00400 .00144 .006 Decrease by .40% per additional vehicle 

Note: Dependent variable = ln (PM2.5); R2 (R2
adjusted) = .6589 (.6533); residual standard error (SE) = .06138 on 600 degrees of freedom; Akaike information criterion = −1,663.29;  

na = not applicable.
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FIGURE 6    PM2.5 concentrations during inactive and active queuing 
conditions in (a) precongestion and (b) congestion conditions.
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continued, the PM2.5 per vehicle increased; this finding indicates a 
possible air quality effect of long periods of congestion.

Conclusion

This paper demonstrates the ability of high-resolution traffic data to 
aid in understanding variation in PM2.5 concentrations in an urban 
roadway microenvironment. To the best of the authors’ knowledge, 
this is the first study to combine very-high-resolution PM2.5 meteo-
rological and traffic data in a roadside midblock stationary sampling 
study design.

Although mobile measurements are able to provide useful infor-
mation relating to hot spots and traveler exposure, they are unable to 
reliably describe sources and behavior of PM2.5 on roadsides, which 
are complicated environments and require controlling for many 
different factors simultaneously to understand pollutant variations. 
It was demonstrated that 10-sec traffic data can be used to show pla-
tooning and that the platooning is significantly correlated with PM2.5 
concentrations. Because this type of analysis would be impossible 
with data resolutions greater than the upstream signal cycle length 
(approximately 2 min in this case), the need for high-resolution data 
analysis to detect platooning is demonstrated. Similarly, congested 
periods and dynamic traffic states were identified to examine related 
changes in PM2.5 concentrations and the ratio of PM2.5 per vehicle. 
These results indicate possible connections between queuing in and 
out of congested periods and roadside air quality.

A multivariate regression model was used to determine signifi-
cant predictors of PM2.5 concentrations while controlling for auto-
correlation. Significance was found not only in main effect traffic 
variables but also in past readings of traffic variables, and it was 
possible to single out effects of vehicle classification type and wind 
direction. Heavy vehicles were shown to have five times the impact on 
PM2.5 concentrations as passenger vehicles. Although more research is 
needed in this area, it is likely these results are generally representative 
of conditions in other midblock arterial locations, although some 
local calibration will always be required.

Accurate representation of roadside environments is crucial to 
understanding exposure to PM2.5 for all roadway users. Data avail-
ability plays an important role in this representation, as do appropriate 
statistical models to uncover PM2.5 predictors in complicated micro-
environments. This study makes use of a small sampling period (2 h)  
to demonstrate both the potential of rich data sources and the need 
for further long-term study in stationary sampling roadside expo-
sure research. Future work will analyze high-resolution traffic and 
air quality data over longer time periods and examine the expected 
benefits of collecting high-resolution air quality data (such as those 
used in this paper) for project-specific analysis. Another area for 
examination is the potential application of high-resolution traffic 
and roadside air quality data for calibrating and validating high-
resolution simulation models of traffic air quality, such as in the model 
developed by Kim et al. (26).
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