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ABSTRACT  

This paper investigates the effects of congested freeway traffic conditions on motorists’ exposure to traffic-

related air pollution using real-world traffic data and a framework of established emissions and dispersion 

models. The intent is to isolate and compare the influences of congested traffic characteristics on exposure 

duration and exposure intensity. Mass inhalation of carbon monoxide (CO) and nitrogen oxides (NOx) is 

estimated for 45,226 simulated trips through a 14-mile congested freeway corridor. Results show that congestion 

increases total trip pollutant inhalation primarily through motorist delay (exposure duration), and to a lesser 

extent through increased concentrations (exposure intensity). The effects of varying wind and background 

concentration can be sufficient to obscure the influence of congestion on exposure intensity. The variability of 

exposure intensity due to traffic is mitigated by offsetting impacts among traffic flow, emissions rates, and 

pollutant dispersion. Exposure intensity increases with higher traffic flow and with lower traffic speed, but the 

impact of lower traffic speeds (through increased emissions rates and decreased dispersion) is smaller. The 

importance of exposure “hot spots” at traffic bottlenecks also increases in congestion. These findings suggest 

that traffic-based motorist exposure mitigation should focus on reducing travel duration on high-volume 

corridors through reduced vehicle flows (i.e. demand-side congestion mitigation). This analysis does not include 

non-congestion-based mitigation strategies such as cleaner vehicle engine technology or improvements in 

vehicle cabins, which can also reduce exposure intensity. On an individual scale, motorists can greatly reduce 

their own exposure during travel by, among other strategies, adjusting their departure time to less congested, 

lower volume periods.  

 

Keywords: traffic congestion, motor vehicle emissions, pollution exposure  

Page 4 of 37

URL: http://mc.manuscriptcentral.com/ujst  Email: hhecwsc@hkucc.hku.hk

International Journal of Sustainable Transporation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

2 

1 INTRODUCTION 

Roadway traffic congestion is increasing around the world with various direct and indirect negative 

impacts. Heavy congestion can increase the emissions rates of air pollutants from motor vehicles, degrading 

urban air quality. Congestion also increases motorist delay, which extends the amount of time motorists spend in 

the polluted roadway environment. Exposure to traffic-related air pollution is associated with many negative 

health outcomes (Health Effects Institute 2010), but the effects of traffic congestion on travelers’ exposure to air 

pollution are still not well documented. 

Reviews by Kaur et al. (2007) and Han & Naeher (2006) show broad variations in measured pollutant 

concentrations in different transportation environments. Most empirical research on road-user exposure is 

broadly aggregated, and isolating the contributions of individual factors (such as congested traffic 

characteristics) is difficult. Modeling of exposure in transportation environments requires integration of traffic, 

emissions, air quality, and traveler activity models with numerous and diverse input data. Large-scale exposure 

models usually treat trips as single events in static exposure environments. Some recent work has attempted to 

model exposure during travel in more detail by using air quality estimates that vary over the journey space and 

time (Gulliver and Briggs 2005, de Nazelle et al. 2009). However, these studies do not account for the emissions 

and air quality impacts of congested traffic. Other research has built traffic simulation models to predict 

roadside air quality (Kim et al. 2006), but traveler exposure is not explicitly considered.  

This research asks the question of how freeway traffic characteristics affect motorists’ exposure to 

pollution. Primarily, are motorists in congestion more impacted by higher exposure intensity associated with 

emissions from congested traffic or by longer exposure duration associated with longer travel times? Better 

understanding of how traffic congestion influences traveler exposure can assist in identification of traffic-based 

approaches for exposure mitigation. Toward that goal this paper applies existing vehicle emissions and pollutant 

dispersion models to simulated motorists based on real-world traffic and weather data from a 14-mile congested 

freeway corridor in Portland, Oregon. The value of the modeling approach is the ability to separately examine 

the dynamics of pollution generation, exposure concentration, and exposure duration in varying traffic states. 

The precise estimation of exposure concentrations or mass inhalation rates is outside the scope of the study. 

Rather, the intent is to better understand the relative magnitude of exposure intensity and duration for motorists 

in congested freeway traffic. This modeling is one step in a larger study effort to quantify the impacts of traffic 

congestion on emissions, air quality, and human exposure.  
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2 MODELING ROADWAY EXPOSURE 

The modeling framework represents a motorized trip on a roadway corridor (which is itself part of a 

longer journey) as traversing a series of roadway segments (unique exposure environments). Aggregate traffic-

generated pollution exposure concentrations on each roadway segment are first estimated using vehicle pollution 

emissions and dispersion models. Then the mass inhaled by an individual road user traveling in that 

environment is estimated, based on the travel speed and assumed traveler characteristics (to determine breathing 

rate – which is fixed in this study). This approach makes use of existing, validated models in an integrated 

framework.  

The major components included in the modeling framework are illustrated in Figure 1. Each 

microenvironment (roadway segment) is represented by a homogenous set of characteristics, neglecting 

transitions between segments. The “Environment” inputs and models (upper box) generate estimates of 

Exposure Concentration, and then the “Road User” inputs and models (lower box) generate estimates of 

temporal and spatial mass inhalation rates for simulated travelers.  

Figure 1. The travel exposure modeling framework 

In the Environment modeling stage (upper box in Figure 1) the traffic state is represented by vehicle 

flow �� (in vehicles per hour) and traffic speed �� (in miles per hour, mph) for road segment �. Vehicle fleet, 

vehicle fuel, meteorology, and traffic inputs are used to estimate a pollution emissions rate �� (in grams per 

vehicle-mile) with the MOVES motor vehicle emissions model from the U.S. Environmental Protection Agency 

(U.S. Environmental Protection Agency 2009). Meteorology and traffic inputs are also used with the equations 

of the CALINE and ROADWAY pollution dispersion models to estimate a dispersion parameter	�� (in m
2
/s). 

The emissions and dispersion estimates are combined with background concentration �� (in g/m
3
) and a vehicle 

penetration parameter 	� to estimate the exposure concentration on each roadway segment, 
� (in g/m
3
). The 

penetration of air pollutant concentrations into the vehicle cabin is represented by a unit-less scaling factor 	�, 

which is the ratio of in-vehicle concentration to the surrounding concentration. 

In the Road User modeling stage (lower box in Figure 1), assumed traveler characteristics are used to 

estimate a breathing rate � in m
3
/hr. The breathing rate is combined with the exposure concentration estimate 

(
�) to calculate the temporal inhalation rate ��
 (in mass per unit time) over each roadway segment �. The 

temporal inhalation rate is combined with the travel speed �� (in mph) to calculate the spatial inhalation rate ��� 
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(in mass per unit travel distance). The breathing rate � is assumed to be constant for motorists (travelers in motor 

vehicles – the scope of this paper). The travel speed �� would be distinct from �� for travelers outside of the 

traffic stream (bicyclists, vehicles in express lanes, etc.), but is equal to �� for this analysis of motorists. The 

notation used in this paper is summarized in the Appendix. 

Combining the model variables (with the appropriate unit conversions), the exposure concentration 
� 

for a motorist on roadway segment � is the combined roadway and ambient pollution, 


� � ���∙���� � ��� 	� .  (1) 

The temporal mass inhalation rate is ��
 � 
� ∙ � and the spatial mass inhalation rate is ��� � �����. The total mass 

inhalation � over a series of roadway segments � each of length �� is: 

� � ∑ ���� ∙ ���� � ∑  ���∙���� � ��� !�∙"∙#��� $�  .  (2) 

The travel time on each segment is %� � ��/��	, and the total travel time is ' � ∑ (��/��)�  . Finally, the trip-

average temporal inhalation rate (in g/hr) is:  

�
 � � '* � ∑  ���∙���� � ��� 	� ∙ � ∙ 
�+$�  , (3) 

where 

�+  is the fractional time of travel occurring on segment �. The following subsections describe the 

individual model components in more detail.  

2.1 Traffic Flow and Speed 

The traffic state variables on each segment (�� and ��) are drawn from archived inductive dual-loop 

detector data, mined from the PORTAL (Portland Oregon Regional Transportation Archive Listing) 

transportation data archive at Portland State University (http://www.portal.its.pdx.edu). The traffic data are 

aggregated to 5-minute intervals, which have been shown to best approximate average freeway travel speeds 

(Wang and Liu 2005, Bigazzi et al. 2010).  

2.2 Motor Vehicle Emissions Rates 

Vehicle emissions rates are modeled using the MOVES 2010 average-speed emissions model (U.S. 

Environmental Protection Agency 2009), where �� � ,(��). The average-speed approach to emissions 

estimation accounts for unsteady driving (accelerations) of individual vehicles by applying archetypal transient 
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speed profiles that match a given average travel speed on a facility type. Emissions rates for CO (carbon 

monoxide) and NOx (nitrogen oxides) are estimated for the year 2010 in Portland, Oregon. Where available, 

county-specific inputs are used (meteorology, vehicle inspection and maintenance program, fuel formulation), 

and national average defaults used for other model inputs (vehicle age distributions). The vehicle fleet 

composition is estimated from length-based freeway vehicle classification data, with 8.7% heavy-duty vehicles 

(Oregon Department of Transportation 2010). The emissions estimates are for running exhaust and evaporative 

emissions on freeways only.  

2.3 Pollutant Dispersion 

Research has shown that in addition to local winds, vehicle-induced mechanical turbulence has a 

significant effect on turbulent dispersion around a roadway (Rao et al. 2002, Kalthoff et al. 2005). The effect of 

the traffic stream on dispersion varies with the traffic speed, traffic density, and size of vehicles. Unfortunately, 

most roadway dispersion models are intended for use well downwind of a roadway, and do not model vehicle-

induced turbulence in detail (or at all). When vehicle-induced turbulence is included, it is usually insensitive to 

traffic characteristics – though efforts have been made to incorporate vehicle-induced turbulence into air 

dispersion models with more sophistication (Kanda et al. 2006). 

The dispersion parameter �� relates pollutant source strength to the concentration at a location of 

interest, 
�. In this study the locations of interest for motorist exposure are assumed to be at a height of 1 meter, 

within the travel lanes. The primary dispersion model applied here is a semi-infinite, continuous line-source 

Gaussian plume approximation – the basis of the CALINE roadway dispersion models (Benson 1992). 

Assuming steady-state dispersion conditions dominated by cross-road advection, the concentration 
� at height - 

due to an emissions source at height . can be calculated from the line source strength �� ∙ �� in mass/length/time, 

the wind speed /, the wind angle with respect to the roadway 0, and a statistical approximation of the plume 

height 12 (the standard deviation of the plume density in the vertical direction), 


� � ��∙��√45678|:;<=| >exp BCD2CEFG467G H � exp BCD2IEFG467G HJ . (4) 

Combining factors to a single variable ��, where 
� � �� ∙ ��/��, from a rearrangement of Equation 4,  

  �� � √2L12/|sin0| >exp BCD2CEFG467G H � exp BCD2IEFG467G HJ* 	 . (5) 

The receptor height -, source height ., and wind speed and direction / and 0 are input parameters. The 

remaining step for calculating �� is estimation of the plume height 12, which is affected by both atmospheric and 
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vehicle-induced turbulence. Roadway-scale atmospheric turbulence is approximated as D0.1/F4 from Kastner-

Klein et al. (2000). Hence, the atmospheric turbulent kinetic energy (TKE) contributing to vertical dispersion is 

ϵ2TUV � 0.01/4 in m
2
/s

2
. Estimation of the vehicle-induced TKE contributing to vertical dispersion (ϵ2WXY) is 

described in the next sub-section.  

2.3.1 Vehicle-Induced Turbulence 

Vehicle-induced turbulence is estimated as the variance in vertical wind speed from the vehicle wake 

theory of the ROADWAY dispersion model (Eskridge and Rao 1986, Rao 2002). Vehicle wake theory was also 

recently used for dispersion modeling in an integrated traffic and air quality simulation (Kim et al. 2006). The 

vehicle wake theory in ROADWAY estimates the vehicle-induced TKE at any location in the wake of a moving 

vehicle; TKE from multiple vehicles is combined additively by assuming independence of turbulent energy 

plumes. The full equations of ROADWAY are too extensive to include here, but are summarized in the 

appendix of Eskridge and Rao (1986). In order to apply the ROADWAY equations for aggregate traffic states 

(represented by �� and ��) an equal distribution of light-duty and heavy-duty vehicles along and among the 

travel lanes is assumed. Cumulative TKE from all vehicles is averaged over the roadway to generate a single 

estimate of the vehicle-induced vertical TKE as a function of traffic flow, traffic speed, and wind condition. A 

more detailed description of the calculation process follows.  

In ROADWAY the TKE from a single vehicle of class Z in the set of vehicle classes Λ at location D\, ^F 

is represented as the variance in vertical wind speed, _`a,bcG  in m
2
/s

2
. The location D\, ^F is based on an origin at 

the vehicle centroid with \ perpendicular to the direction of travel and ^ as the distance behind the vehicle, 

parallel to the direction of travel (and perpendicular to \). TKE in ROADWAY is a function of wind speed /, 

wind angle with respect to the roadway 0, vehicle class-average speed ��b (for road segment �), and the vector of 

vehicle characteristics for vehicle class Z (height, width, length, and drag coefficient) de:  

_`a,bcG � ,D/, 0, ��b, de, \, ^F.  

The total TKE on the roadway contributed by a single vehicle of class Z in lane f is 

_bcG � g g _`a,bcG 	�\�^hBiCjIk4H
hBCjIk4H

l
Cl  

in m
2
/s

2
, where m is the total number of lanes and n is the width of a single lane. The total TKE from all 

vehicles of class Z, averaged over the roadway, is  
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��b��bm4n o _bc4
i

jpk 	
where ��b and ��b are the Z class-specific traffic flow and speed on segment �, respectively. Combining these, the 

total TKE from all vehicle classes Z in the set of vehicle classes Λ, averaged over the roadway, is 

qrstu � ∑ v wxdyxdz{|∑ }~ ~ ���,dc{ 	����|BzC�I�{H|BC�I�{H
lCl �z�p� �d∈�    (6) 

in m
2
/s

2
.  The value of ϵ2WXY with the inputs /, 0, ��b, ��b and m is calculated numerically using a 0.2-meter grid, a 

^ range of 0–500 m, n � 4 m, and Z� from Table 1. Assumed vehicle size and shape parameters (de) from 

Baumer et al. (2005) and Wang et al. (2006) are shown in Table 1 for light-duty (LD) and heavy-duty (HD) 

vehicle classes DΛ � �LD,HD�F. Equal speeds across vehicle classes is also assumed: ��b � �� ∀Z in Λ. Using a 

vehicle-class flow fraction of ,b, ��b � ,b ∙ ��. Again based on freeway vehicle classification data (Oregon 

Department of Transportation 2010), ,�� � 0.087 and ,�� � 1 � ,��. 

Table 1. Assumed vehicle parameters for estimation of traffic-induced turbulence on the roadway 

2.3.2 Plume height 

Combining the vehicle-induced and atmospheric turbulence, the total TKE contributing to vertical 

dispersion is �2 � ϵ2WXY � ϵ2TUV in m
2
/s

2
. In order to calculate 12 from �2, a constant vertical diffusion coefficient 

is assumed that is the product of the characteristic length and velocity scales of the turbulent eddies. A constant 

vertical diffusion coefficient implies short-term steady-state traffic and meteorology. The characteristic length 

and velocity scales of roadway turbulence are taken as the composite vehicle height � (calculated using 8.7% 

heavy-duty vehicles and Table 1 as � � 1.583 m) and the square root of the vertical TKE (�2), respectively 

(Kono and Ito 1990, Baumer et al. 2005). From Pasquill (1983) the statistical plume height can then be 

estimated  

�r � �{��√�r,   (7) 

where   is the pollutant residence time on the roadway in seconds,  

� � z|I¡{¢|£¤¥D¦F| ,  (8) 
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with / in m/s and n in m (Benson 1992). The assumption stated above that crosswind advection dominates 

dispersion ensures that /|sinD0F| § 0.  

Combining Equations 5-8 and assuming a source height of . � 0.3045 m (ground-level emissions for 

LD vehicles and vehicle-height-level emissions for HD vehicles) in addition to the previous assumptions of 

n � 4 m, - � 1 m, and � � 1.583 m,  �� in m
2
/s is 

�� � ¨©.ªª5D4iIªF8|:;<D=F|«¬7­®¯I°.°k8G

X±²³ ´µ.µ¶·¸¹|º»¼D½F|
DG¾¿ÀF«Á7­®¯¿µ.µÂ¹GÃIX±²³ ´µ.ÄÅµÆ¹|º»¼D½F|

DG¾¿ÀF«Á7­®¯¿µ.µÂ¹GÃ
 . (9) 

with / in m/s and ϵ2WXY in m
2
/s

2
. In addition to changing with /, 0, and m, �� is a function of �� and �� through 

ϵ2WXY (Equation 6).  

The approach described here is an approximation of average conditions based on previously established 

methods of estimating roadway dispersion. The intent is to account for the major influences on pollutant 

transport while recognizing that short-term concentrations will vary widely. Of particular note, this approach 

assumes a longitudinally well-mixed roadway air mass, and will likely not accurately represent an idling queue 

(not modeled here) where the proximity of tailpipes and following vehicles’ air intakes can become a dominant 

factor (Clifford et al. 1997, McNabola et al. 2009).  

2.4 Breathing Rate 

Most traffic exposure research accounts for human uptake with a breathing or ventilation rate, though 

McNabola et al. (2008) use a more complex human respiratory tract model for pollutant absorption. Pollutant 

uptake can become more complicated when accounting for factors such as individual physiology, nose versus 

mouth breathing, and pollutant compound solubility. Assuming that motorists’ respiration is exogenous (not 

significantly impacted by traffic conditions), a constant, average breathing rate of � � 0.66 m
3
/hr is used here, 

based on O’Donoghue et al. (2007) (which also agrees well with Wijnen et al. (1995)).  

2.5 Vehicle Penetration 

The penetration of pollutants into the vehicle depends on the cabin air exchange rate and air filtration 

system. Empirical and modeling studies have shown that 	� can vary with vehicle ventilation conditions and 

cabin particle filters (Zhu et al. 2007, Xu and Zhu 2009, Bigazzi and Figliozzi 2012). Others have suggested that 

for fine particulates and CO the vehicle shell has no effect, implying 	� � 1 (Kaur et al. 2007). Because the 
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cabin air exchange rate can be affected by speed (Xu and Zhu 2009), 	� could be a function of the traffic state, 

in which case 	� would be expected to increase with speed. But there is a lack of data on how 	� varies with 

speed for different pollutants, especially gases. Also, the relationship between 	� and �� would depend on the 

vehicle characteristics (age, cabin size, etc.) and ventilation conditions (windows, fan, etc.). 

Given the uncertainty in vehicle penetration of pollutants, the primary analysis in this study neglects 

vehicle shell effects by assuming a constant 	� � 1	∀�. This approach estimates traffic impacts on roadway 

concentrations, while acknowledging that well-sealed cabins could reduce individuals’ concentration levels 

proportionally. The possible influence of traffic effects on 	� is examined below in Section 3.4 by assuming a 

linear relationship between 	� and �� from Xu & Zhu (2009). 

2.6 Background Concentration 

In the modeling framework the background concentration �� includes ambient concentrations and the 

emissions of counter-flowing and other nearby traffic. Hourly average concentrations of urban background CO 

and NOx in Portland are obtained from Oregon Department of Environmental Quality (ODEQ) monitoring 

stations for 2010, through the Horizons web data service (George et al. 2005). The ODEQ monitoring stations 

are sited away from major highway facilities. NOx estimates in ppm are converted assuming 1ppm=1.555 mg/m
3 

(NO/NO2 ratio of 1).  

2.7 The Effects of Congestion in the Model 

The average temporal inhalation rate �
 is the exposure intensity measure in this paper, and the exposure 

duration is the travel time '. Exposure duration ' is only affected by speed �� (equal to ��), while exposure 

intensity �
 is a function of ��, ��, ��, �, 	�, ��, and �� (again through ��). In turn, dispersion �� is a function of 

both traffic state variables �� and ��, while emissions rate �� is a function of just traffic speed ��. Other model 

variables are considered exogenous to congestion (�, 	�, and ��).  

2.8 Corridor Study Data  

The modeling framework is applied to estimate exposure for individual motorists over 12 months in 

2010 on a 13.79-mile stretch of the I-5 northbound freeway through Portland, Oregon. Simulated motorists 

depart from milepost 290 on the southern end of the corridor every 5 minutes from 6am until 8pm on each day. 

Their exposure is modeled over 15 freeway segments up to milepost 304, with lane widths of 4 m. The freeway 
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segments are delineated by the midpoints between traffic sensors, which are approximately 1 mile apart on 

average. Although a High Occupancy Vehicle (HOV) lane exists at the end of the corridor, it is not used by the 

simulated motorists. The emissions and dispersion impacts of the HOV lane vehicles are included (with HOV 

lane-specific traffic speeds). Regional wind data (hourly average speed and direction) for dispersion estimates 

are obtained from the same ODEQ monitoring stations as the background concentrations. A minimum wind 

angle to the road of 15° is used (15° É 0 É 345° and 15° É |180° � 0| É 345°) because of the model 

assumption that cross-road advection dominates pollutant dispersion.  

Two different exposure estimates are made: method (1) uses real-world traffic, wind, and background 

concentration data and method (2) uses only varying traffic data (�� and ��) and fixes the exogenous factors 

(wind condition and background concentrations: /, 0, and ��). Thus, method (1) gives more realistic estimates, 

while method (2) enables investigation of traffic effects alone. For method (2), wind is assumed to be 3 m/s at a 

bearing of 135° and background concentrations are assumed to be 457 µg/m
3
 for CO and 25 µg/m

3
 for NOx 

(based on the ODEQ data). The factors that are held invariant in method (2) – background concentrations ��, 

wind / and 0, breathing rate �, vehicle penetration 	� – will certainly contribute to varying individual pollution 

exposures, but they are held constant in order to address the research question more directly: how do changing 

traffic conditions impact exposure duration and intensity for motorists?  

3 RESULTS 

Of the 61,320 potential simulated trips for the year, only 45,226 complete trips (74%) are modeled 

because of incomplete or low-quality traffic data (the un-modeled trips are approximately evenly spread over the 

day and across the week). Table 2 presents a summary of the modeled trips’ travel time ', mass inhalation �, 

exposure intensity �
, background concentration ��, modeled dispersion parameter ��, and modeled total 

emissions �� ∙ �� in kg/hr per mile of roadway. The first three columns in Table 2 show the results using 

exposure estimation method (1), varying wind and background conditions, and the second three columns show 

the results using method (2), with fixed wind and background conditions. For values affected by the calculation 

method (mass inhaled �, exposure intensity �
, and dispersion ��), the central values agree well between the two 

methods but the variance is notably higher by method (1) than method (2). The relative standard deviation of all 

the variables in Table 2 is high (around 35% of the mean or greater) except for exposure intensity and dispersion 
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under method (2). The travel time, mass inhalation estimates, and background concentrations exhibit positive 

(right) skew, with larger mean than median values.  

Table 2. Summary of Modeled Trip Exposures 

Examining exposure duration, travel times for the simulated trips average 17 min and range from 13 to 

74 minutes, the longer being equivalent to an average speed of just 11 mph. The relative standard deviation of 

exposure duration (') is 35% of the mean, as compared with a relative standard deviation of 46% of the mean 

for CO exposure intensity B�
H by method (1) and just 8% of the mean for CO exposure intensity by method (2) 

(Table 2). At a breathing rate of � � 0.66 m
3
/hr, the mean values of  �
 in Table 2 correspond to exposure 

concentrations of 608 µg/m
3
 and 90 µg/ m

3 
for CO and NOx, respectively. The range of trip-average exposure 

concentrations by method (1) for CO is 24 – 2,999 µg/m
3
 (0.02 to 2.6 ppm), which is toward the lower end of 

the ranges reported by Kaur et al. (2007), Zagury et al. (2000), and Fruin et al. (2008) for drivers in higher-

density urban environments than Portland (London, Paris, Los Angeles, etc.). Method (1) trip-average NOx 

exposure concentrations range from 13 to 468 µg/m
3
 – also toward the lower end of the range reported by 

Zagury et al. (2000).  

Comparing the traffic-generated pollution ���∙���� � to the background concentrations (��), a much greater 

share of mass inhalation is generated by the modeled traffic stream for NOx than for CO. On average the 

estimated trip inhalation of CO is only 41% greater than it would be from the background concentrations alone, 

while the trip inhalation of NOx is almost 5 times greater than background levels. This observation is likely due 

to the longer lifetime of CO, which is more inert than NOx and so more persistent as it disperses from roadways 

(Gordon et al. 2012). Atmospheric chemical transformations are not being modeled in this analysis, but will 

have a greater impact on NOx than CO because of the higher reactivity of NOx (especially important on the time 

scale required to reach background concentrations). With an average crosswind speed of 2.2 m/s, the average 

residence time in a 3-lane roadway from this analysis (Equation 8, which is not pollutant-dependent) is only 6.5 

seconds, so neglecting chemical reactions is unlikely to have a large effect on the results. Trip inhalation ranges 

up to 36 times greater than background levels for CO and up to 31 times greater for NOx by the method (1) 

estimates. 

A high correlation is observed between the two pollutants: total trip inhalations of CO and NOx have 

correlation coefficients of 0.85 by method (1) and 0.99 by method (2). This is not surprising: without modeling 
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atmospheric chemistry, only different shapes of the emission-speed relationships �� � ,(��) differentiate the 

gases by method (2). Differing background concentrations are also relevant for method (1). The correlation of 

total trip inhalation for each gas between estimation methods is lower: 0.64 for CO and 0.73 for NOx. Given the 

strong correlation between the pollutants, the following results focus on CO because the findings related to 

traffic effects are essentially the same and the un-modeled chemical transformation of CO will be lesser. 

3.1 Exposure and Congestion 

Addressing the first objective of this research, total trip mass inhalation of both CO and NOx increases 

with travel time – indicating that trips made in congestion subject motorists to greater pollution uptake. Linear 

regression of CO and NOx mass inhalation � (µg) on travel time ' (min) produces the coefficients, standard 

errors, and R
2
 values shown in the first two rows of Table 3 (not constrained to pass through the origin). All four 

are significant at p<0.01. Mass inhalation increases with travel time similarly by both methods, but the statistical 

fit (R
2
) is much poorer by method (1) because of greater variability. The third and fourth rows of Table 3 show 

the same regression but for only the traffic-generated pollution inhalation (subtracting the background 

concentrations, i.e. � with �� � 0). Here, again, total mass inhalation increases in congested conditions with 

higher ', and all four are significant at p<0.01. 

Table 3. Mass Inhalation and Congestion: Regressions of Trip CO and NOx Total Inhalation and 

Inhalation Rates on Minutes of Travel Time 

The bottom two rows in Table 3 show the results of similar regressions of CO and NOx exposure 

intensity (�
 in µg/hr) on travel time (' in min). These estimated coefficients indicate that exposure intensity 

also increases in congestion for both CO and NOx. The coefficient estimates are again significant at p<0.01, but 

the explained variance in the models (indicated by R
2
) is very low for exposure intensity by method (1). This 

poor fit illustrates the degree to which traffic effects can be obscured by wind and background concentration 

variability and motivates the inhalation modeling in this study using fixed meteorology and background 

concentrations to eliminate those exogenous sources of variance. 

The spatial distribution of mass inhalation is of interest for exposure “hot spots”. For many high-

exposure motorists the mass inhalation is concentrated in several locations along the corridor, coinciding with 

traffic bottlenecks. On the average simulated trip, one roadway segment generates 3 times greater inhalation 

than the average of the rest of the trip. The uneven spatial distribution of exposure is intensified in congestion, 
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as the single highest-exposure segment on each trip increases its share of the total trip inhalation by 0.7% for 

each additional minute of trip travel time (that single segment represents, on average, 17% of the total 

exposure). Because total trip inhalation is greater in congestion (Table 3), the importance of these exposure “hot 

spots” on the corridor is intensified.  

3.2 Comparing Exposure Duration and Intensity 

The total mass inhalation is the product of the exposure intensity and exposure duration, � � �
 ∙ '.  In 

order to address which one is the primary influence on total inhalation, single-factor analysis of variance is 

performed to calculate the explained sum of squares associated with each of exposure intensity and exposure 

duration. The results are that 39% of the variance in � of CO by method (1) is explained by duration D'F alone, 

while 64% is explained by intensity B�
H alone. In contrast, 99% of the variance in � of CO by method (2) is 

explained by duration alone, while 74% is explained by intensity alone. The percentages do not sum to 100% 

because of a correlation between exposure intensity and travel time (Table 3).  

Similar analysis of variance for NOx inhalation results in 50% of the variance in � by method (1) 

explained by duration alone, and 68% explained by intensity alone. In contrast, 96% of the variance in � by 

method (2) is explained by duration alone, and 76% is explained by intensity alone. Thus, in terms of traffic 

effects as modeled by method (2), exposure duration (') is the primary factor determining pollutant inhalation 

over a trip D�F. Although exposure duration is the primary path of traffic congestion’s influence on total 

exposure, variability in exposure intensity (�
) due to exogenous factors (wind and background concentrations) 

is the larger determinant of inhalation (�) as modeled by method (1). Exposure intensity will also vary with other 

exogenous factors not included in the model (e.g. the vehicle fleet composition), though this analysis focuses on 

the effects of congestion (Section 2.7). 

As an illustration of the importance of exposure duration in congestion, consider an alternative 

hypothetical motorist who traverses the same road segments at the same times as the motorists in congestion, but 

at a constant free-flow speed of �� � 60 mph, for 14 minutes total travel time (a free-flowing HOV lane, for 

example, where travel speed �� is independent of traffic speed ��). These motorists have the same exposure 

concentrations and temporal inhalation rates ��
 as the motorists experiencing delay, but shorter (or similar) 

exposure durations.  
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Figure 2 shows total trip CO inhalation for both the hypothetical constant-speed motorists and the 

simulated motorists experiencing delay, plotted against the average corridor traffic speed (as experienced by the 

delayed motorist). The plot on the left of Figure 2 uses the method (1) inhalation rate estimates with varying 

wind and background concentrations and the plot on the right uses the method (2) estimates. The extremely high 

trip inhalations at low traffic speeds (i.e. during congestion) for the delayed motorist almost disappear for the 

constant-speed motorist. Although CO exposure intensity does tend to be higher when traffic speeds are lower, 

without delay the inhalation increase in congestion is only slight. This result appears in both plots, but is most 

clear on the right in Figure 2 where traffic effects are isolated using method (2).  

Figure 2. Comparison of total trip CO inhalation for delayed and constant-speed motorists at different 

corridor traffic speeds; without delay effects, the inhalation increase in congestion is slight 

In comparison to the values in Table 3, constant-speed motorists in the otherwise same exposure 

conditions experience trip CO inhalation increases of only 0.35 µg per additional minute of travel time by 

method (1) and 0.56 µg per minute of travel time by method (2) – reductions of 95% and 94% from the first row 

of Table 3, respectively. These estimates are significant at p<0.01, but while R
2
 for method (2) is 0.49, the R

2 
for 

method (1) is only 0.003. Thus, outside the effect of delay, varying wind and background concentration 

conditions are sufficient to obscure the impact of traffic conditions on inhalation.  

It might be noted that although they are similar measures, the statistical fit between ' and a constant-

speed motorist’s CO inhalation is poorer than between ' and CO exposure intensity �
 in Table 3. The reason 

for this difference is that �
 is affected by the distribution of travel time among segments of the corridor. As 

described in Section 3.1, there are bottleneck locations on the corridor with higher exposure intensity. During 

congestion, when the bottlenecks are active, a disproportionate amount of time is spent on those high-exposure-

intensity sections. The constant-speed motorist only measures the effects of varying on-road pollution 

concentrations, while �
 reflects the effects of congestion on both roadway concentrations and the distribution of 

exposure duration.  

3.3 Relationships among Model Variables 

This section examines the different model components to better understand how traffic conditions 

impact exposure. Table 4 shows linear correlation coefficients between CO and NOx exposure intensity at the 

segment level (��
) and the traffic flow and traffic speed variables �� and ��. The correlations reveal that traffic 
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flow �� has a stronger statistical linear relationship to all four exposure intensity variables than traffic speed ��. 

The strong positive effect of flow on exposure intensity means that a fixed amount of delay is less harmfully 

experienced on a lower-flow section. 

Table 4. Correlation Coefficients between Traffic Variables and Exposure Intensity (CO and NOx 

Inhalation Rates) 

As explained in Section 2.7, exposure duration is only affected by the travel speed �� (here the same as 

traffic speed ��), while exposure intensity is influenced by all the other model variables. This is important 

because the variables are correlated among themselves, which can have offsetting effects on exposure intensity. 

Table 5 shows correlation coefficients between model variables at the segment level for CO. As an example, 

consider that dispersion �� is positively correlated with traffic flow �� (also indicated by Equation 6). As can be 

seen in Equation 3, a simultaneous increase in these two variables will have offsetting effects on exposure 

intensity. A negative correlation between emissions rate �� and traffic flow �� (Table 5) also has offsetting 

effects on exposure intensity. 

Table 5. Correlation Coefficients between Model Variables for CO 

Figure 3 shows total emissions strength �� ∙ ��/m in kilograms per hour per lane-mile of roadway for 

CO. The modeled total emissions are plotted as shaded contours on the traffic speed-flow (�� versus ��/m) 

plane; circles illustrate the locations of observed traffic states on the study corridor during January 19-20, 2010 

(8,226 observations). Traffic flow is in vehicles per hour per lane (veh/hr/ln). Total emissions increase linearly 

with traffic flow and non-linearly with speed at very high and low travel speeds – based on the form of  

�� � ,(��).  

Figure 3. Modeled total CO emissions as shading on the traffic state (speed vs. flow) plane with 

illustrative traffic data: total emissions are highest in moderate congestion with high flows 

Heavily congested periods in Figure 3 with speeds below 20 mph have lower traffic flows than mildly 

congested periods, as can be expected from traffic flow theory (May 1989). Thus the highest total emissions are 

on moderately congested road segments with high flows and speeds above 25 mph. The most heavily congested 

segments (as indicated by traffic speed) have the highest emissions rates per vehicle-mile ��, but their lower 

vehicle flows �� offset the higher marginal emissions. Low vehicle flows cause queuing upstream, so congestion 
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will displace some emissions to upstream segments and later time periods. But at the location of interest, Figure 

3 shows that the time periods with the lowest speeds (and highest emissions rates) are not necessarily those with 

the most total emissions.  

Figure 4 shows dispersion parameter �� estimates as shadings on the same traffic speed-flow plane with 

the same illustrative traffic data as Figure 3. The modeled values of �� use the fixed-wind conditions in method 

(2): 3 m/s wind at a bearing of 135 degrees, and 3 travel lanes of 4 m each. Higher traffic speeds and flows both 

increase ��. In moderate levels of congestion, lower speeds offset the effect of higher flows on ��. Increasingly 

severe congestion has lower dispersion estimates as both speeds and flows are reduced. Since dispersion �� is 

inversely proportional to traffic-related pollutant concentrations, lower dispersion in heavy congestion will lead 

to higher roadway concentrations at a given emissions intensity.  

Figure 4. Modeled roadway dispersion as shading on the traffic state (speed vs. flow) plane with 

illustrative traffic data: dispersion is lowest in heavy congestion 

Together, Figure 3 and Figure 4 demonstrate offsetting effects of traffic conditions, where the highest 

total emissions but also the greatest dispersion are expected in high-flow traffic with moderate to high speeds 

(other things being equal). In heavy congestion with lower speeds, dispersion �� is lower and emissions rates �� 

are higher, but these exposure-increasing effects are mitigated by lower traffic flows ��. The partially offsetting 

effects of these model variables (��, ��, and ��) in changing traffic conditions help explain why exposure 

intensity plays a weaker role than exposure duration in determining total inhalation during congestion (Section 

3.2). 

Linear regression shows that �� increases 0.00086 m
2
/s with each veh/hr of ��, 0.055 m

2
/s with each 

mph of ��, and 1.52 m
2
/s with each m/s of wind speed / by method (1) – all significant at p<0.01, R

2
=0.46. 

Using the method (2) estimates, �� increases 0.00079 m
2
/s with each veh/hr of �� and 0.071 m

2
/s with each mph 

of �� – also significant at p<0.01, R
2
=0.94. The correlations in Table 5 shows that estimates of dispersion �� are 

more closely linearly related to traffic flow �� than traffic speed ��. Although �� explains more of the variance 

in �� than �� for both methods of estimating ��, / is the dominant factor for method (1) estimates of ��.  

Besides traffic variables, other influences on estimates of �� include the fraction of HD vehicles and the 

number of lanes. Using base conditions of a 3-lane road with 55 mph traffic at 1,000 veh/hr/ln and the same 

fixed wind of method (2), �� increases 11% if the percentage of HD vehicles on the road is increased from 8.7% 
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to 15% HD, and �� decreases 6% if the fraction of HD vehicles is decreased to 5% HD. Increasing the number 

of lanes from 3 to 4 increases �� by 12%, and decreasing the number of lanes from 3 to 2 decreases �� by 13%.  

A rotation of wind angle from 135° to 90° with respect to the roadway increases �� by 23%. In comparison, an 

increase in traffic flow from 1,000 to 1,500 veh/hr/ln increases �� by 9%. While traffic conditions do impact 

dispersion estimates, other factors (especially wind) could be more influential.  The sensitivity of �� to these 

factors reveals other potential offsetting effects for dispersion, where more HD vehicles or more lanes of 

roadway (with a commensurate increase in vehicle volume) would increase both total emissions (�� ∙ ��) and 

dispersion (��).  

3.4 Vehicle Penetration 

As stated in Section 2.5, it is possible that vehicle penetration of pollutants increases with vehicle speed, 

though data are insufficient to implement in this model. As an exploration of the potential effects of increasing 

	� with ��, consider a linear model where 	� increases from 0.54 at 20 mph to 0.64 at 70 mph (extracted from 

Xu and Zhu (2009) for 50 nm particulate matter with the vehicle’s fan and recirculation off). For the simulated 

trips in this paper the result is a mean 	� of 0.607. The estimated 	� by this approach are negatively correlated 

with segment exposure intensity, with a correlation coefficient between 	� and ��
 of �0.15 for CO and �0.28 

for NOx using the method (1) estimates. Using method (2), the correlation coefficients between 	� and ��
 are 

�0.62 and �0.58 for CO and NOx, respectively.  

Because of the negative correlation, varying 	� would lower exposure intensity more for the higher-

exposure motorists. Thus, varying 	� introduces another offsetting effect of traffic that dampens the increase of 

exposure intensity in congestion, similar to lower �� in congestion as discussed in Section 3.3. For this reason 

assuming constant 	� is conservative with respect to the finding that exposure duration is the primary effect of 

traffic on exposure. Further still, the amount of error associated with a constant 	� is small: there is a correlation 

coefficient of 0.997 between trip inhalation estimates made with the varying 	� and with a fixed 	� at the mean 

value of 0.607. A steeper slope on the 	� � ,(��) line would lead to more error from using a constant 	�, but 

would also further offset increased exposure intensity in congestion. Simply lowering 	� in a way that is not a 

function of the traffic speed (for example from 1.0 to 0.6) will scale the estimated inhalation but not affect the 

Page 20 of 37

URL: http://mc.manuscriptcentral.com/ujst  Email: hhecwsc@hkucc.hku.hk

International Journal of Sustainable Transporation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

18 

main findings of this study. In other words, a uniform reduction in penetration can reduce total exposure, but the 

comparative impacts of congestion on exposure intensity and duration would be unchanged.  

4 DISCUSSION 

The modeling approach of this study allows isolation of traffic effects on exposure, which can be 

masked by the dominating influence of varying wind and background concentration conditions. But as a 

modeling study it necessarily employs simplifying assumptions and parameter estimates. This research uses a 

deterministic model and general results are based on expected values. However, to analyze the impact of 

parameter variability additional research is necessary to formulate and analyze this problem as a stochastic 

model. As illustrated in Section 3.2, including the exogenous influences of background concentrations and wind 

reduces the statistical strength of the relationships between traffic conditions and exposure. The modeled 

congestion impacts can be altered when accounting for uncertainty by including other, unobserved exogenous 

influences that would further reduce the statistical relationships; if the variability introduced by exogenous 

stochastic processes were sufficiently large it could render the traffic variables insignificant. This observation 

serves as 1) a caveat on the study results (the total effect of traffic congestion level may be insignificant, 

meaning that the relative importance of the intensity and duration effects of congestion may be irrelevant in 

some scenarios), 2) a motivation for the study design (showing the analytical benefit of isolating traffic 

variables), and 3) support for the finding that non-traffic factors (i.a. background concentrations and wind) are 

the dominant influences on total inhalation through changing exposure intensity.  

Parameter uncertainty especially applies to the dispersion estimates, which make use of a statistical 

approximation of the vertical distribution of pollutant concentrations. While the selected parameter values are 

considered reasonable for this study, large variability would exist about the parameters in a specific location, 

and some parameters (breathing rate and vehicle penetration, for example) would vary by motorist or vehicle. 

Despite the uncertainty of the estimates, the analysis in this paper is useful in elucidating trends and 

relationships among traffic-related variables that impact motorists’ inhalation of on-road pollution.  

Equation 3 is useful for assessing the effect of adjusting study parameters. For example, changing 

vehicle penetration 	� or breathing rate � in a way that is not a function of the traffic state (�� or ��) will simply 

scale the estimated exposure, without changing the main findings of the study. Increasing the background 

concentrations �� will lessen the influence of traffic conditions on total inhalation, but will not change the 

essence of the findings either. Decreasing �� will have the opposite effect, amplifying the influence of traffic. 
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Other parameters such as the assumed receptor height - will also have an effect on the estimated exposure, but 

as long as they do not correlate with the traffic variables �� or ��, the effect will be similar to that for the 

breathing rate �: changing estimated inhalation without materially changing the findings. The fraction of HD 

vehicles is a potentially important traffic-related parameter that would influence both emissions and dispersion 

estimates because of large differences between LD and HD vehicles (Table 1 and Bigazzi & Figliozzi (2013)). 

Further effects of varying HD vehicle presence are left as a topic for future study.  

The use of a single dispersion parameter simplifies the discussion of traffic effects but might not be 

appropriate in traffic conditions where insufficient roadway mixing occurs. If a vehicle queue is sufficiently 

slow and atmospheric turbulence is low, individual vehicles’ emissions plumes in the roadway might not be well 

mixed, leading to high spatial and temporal variability of on-road concentrations. Whether the average 

motorist’s total exposure would be the same as in a well-mixed roadway air mass is not known, and would 

probably require development of new on-road dispersion models to answer. If cross-road advection does not 

dominate dispersion, horizontal vehicle-induced turbulence (not modeled here) could be a dominant factor in 

evolving roadway concentrations. A further complication would exist if turbulent kinetic energy vehicle wakes 

are not independent, in which case extremely detailed trajectory data for each vehicle would be required to 

model the cumulative vehicle-induced roadway turbulence (assuming the plume-interaction relationships are 

known). These questions require further investigation of on-road dispersion processes to assess. 

This paper is unique in isolating and assessing the mechanics of how short-term traffic states are 

expected to impact motorists’ trip exposure, including vehicle-induced dispersion. The finding that traffic 

effects on exposure intensity can be obscured by exogenous factors agrees with empirical research by Fruin et 

al. (2008), who found measured in-vehicle concentrations of several pollutants to be poorly correlated with 

traffic speed and volume. They hypothesize that a likely reason is “offsetting effects” of vehicle density and 

dispersion – which is supported by the present study. Some studies have found significant correlations between 

measured in-vehicle pollution concentrations and an aggregate measure of vehicle traffic (Koushki et al. 1992, 

Zagury et al. 2000, Kaur et al. 2007), but the traffic measure is usually long-term vehicle counts (1 hour or 

more), and so fundamentally different from the short-term traffic states analyzed here.  

Finally, the trip exposure results in this paper are presented with respect to varying departure times, not 

the number of motorists. For a population perspective, the trip exposures would need to be weighted by travel 

volumes throughout the day. A broader perspective of the role of traffic congestion in overall daily exposure 
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would also need to consider alternative exposure environments, congestion effects on travel decisions such as 

mode choice and land use patterns, and travel delay effects on daily time allocation.  

5 CONCLUSIONS 

The modeling results in this paper show that trip-total inhalation of traffic-related CO and NOx pollution 

is expected to increase for motorists in traffic congestion. Considering only traffic effects, model results show 

that exposure duration (i.e. motorist delay) is the primary influence of traffic congestion level on mass inhalation 

over a freeway trip. Exposure intensity also increases in congestion, but is less correlated with traffic conditions 

than exposure duration. Considering non-traffic factors, varying wind and background concentrations are the 

dominant influences on total inhalation through changing exposure intensity, and are sufficient to obscure the 

effects of traffic on exposure intensity. Uncertainty in the modeling means that factors other than congestion 

level could be even more important for trip-total exposure. The variability introduced by stochastic processes 

could be sufficiently large to make the expected differences between the exposure duration and exposure 

intensity effects of congestion insignificant. Additional research is needed to explore this point with a stochastic 

model.  

Variability in exposure intensity with changing traffic conditions is mitigated by offsetting impacts 

among traffic flow, emissions rates, and pollutant dispersion. Exposure intensity increases with traffic flow and 

decreases with higher traffic speed, though traffic flow has a stronger relationship with exposure intensity than 

traffic speed does. Heavy congestion with low average speeds has lower than maximal vehicle flows. This 

combination leads to long exposure duration, high emissions rates, and low pollutant dispersion – but not 

maximal total emissions. The distribution of exposure duration along a corridor also changes in congestion, 

intensifying the importance of exposure “hot spots” at traffic bottlenecks. Although vehicle penetration is not 

varied in this model, the expected impact on the findings is small, as varying vehicle penetration with speed 

would offset increased roadway concentrations in congestion.  

Assessing the effects of traffic management on motorists’ exposure requires consideration of both 

intensity and duration impacts. The findings in this paper suggest that traffic-based exposure mitigation should 

focus on reducing travel times through reduced vehicle flows (demand-side congestion mitigation) rather than 

through increased vehicle throughput  capacity (supply-side congestion mitigation). Decreasing travel time by 

increasing vehicle throughput can have the detrimental effect of increasing total emissions. Further, congestion 
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mitigation that only increases travel speeds without reducing vehicle volumes will not substantially reduce 

exposure for anyone outside of the congested traffic stream.  

Exposure intensity can also be reduced by other strategies not considered in this analysis because of the 

paper’s focus on traffic congestion characteristics (Section 2.7). Improvements in engines and fuels can reduce 

emissions intensity per vehicle-mile of travel and improvements in vehicle design can reduce penetration and 

improve removal of pollutants in the cabin – both of which will decrease exposure intensity for motorists. These 

effects, if independent of congestion level, will simply scale down traffic impacts without changing the findings 

of the paper. The main exception would be if the impacts of traffic characteristics were muted to the point of 

insignificance (making any intensity/duration effect difference irrelevant). If a change in vehicle technology 

made a parameter more or less sensitive to congestion, then the effects of congestion on exposure intensity and 

duration could be affected as well (similar to Section 3.4). One example would be an advanced vehicle fleet with 

less emissions rate sensitivity to stop-and-go traffic because of hybrid engine technology with regenerative 

braking. Such a change would likely increase the relative importance of exposure duration by reducing the 

emissions rate (and thus exposure intensity) effects of changing congestion levels.   

Comparing estimated on-road exposure to background concentrations, corridor management can be an 

important part of traveler exposure mitigation for a reactive pollutant such as NOx, which is almost 5 times 

higher than background levels in this study. Estimated on-road exposure is 41% higher than background levels 

for CO, a relatively inert pollutant. But individual trip CO exposures range up to 36 times higher than 

background levels, illustrating the importance of location-targeted traveler exposure mitigation. 

Motorist delay is less deleterious when spent on low-flow segments than on high-flow segments, so a 

travel time shift to lower-flow facilities could reduce motorist pollution inhalation, even with the same travel 

time. Distributing vehicle traffic over lower-volume streets could lead to less pollution inhalation for motorists 

than concentrating travelers on high-volume facilities such as freeways, but it will affect pollution exposure for 

non-motorists and non-travelers as well, which must also be considered. On an individual scale, motorists can 

greatly reduce their own exposure during travel by adjusting their departure time to less congested periods, or by 

improving their vehicle cabin protection (reducing penetration of pollutants).   
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8 APPENDIX 

Notation 

Symbol Variable Unit �� Background concentration during travel on road segment � g/m
3 
� Total exposure concentration on road segment � g/m
3 �2 Total turbulent kinetic energy contributing to vertical dispersion m

2
/s

2 �2WXY Vehicle-induced turbulent kinetic energy contributing to vertical dispersion m
2
/s

2
 �2TUV Atmospheric turbulent kinetic energy contributing to vertical dispersion m

2
/s

2
 �� Pollution emissions rate for vehicles on road segment � g/veh-mi �� Dispersion parameter on road segment � m

2
/sec ,b Fraction of vehicle flow of class Z - Z Vehicle class designator  - Z� Set of characteristics for vehicles of class Z {height, width, length, drag coefficient}  {m, m, m, -} Λ Set of vehicle classes {light-duty, heavy-duty} - . Emissions line-source height m � Composite vehicle height m � Total mass inhalation over all road segments g ��
 Temporal inhalation rate on road segment � g/hr Ê
Ë Average temporal inhalation rate over all road segments g/hr ��� Spatial inhalation rate on road segment � g/mi �� Length of road segment � mi m Number of lanes  - 	� Vehicle penetration on road segment � - �� Traffic flow on road segment � veh/hr � Breathing rate m

3
/hr 12 Statistical approximation of the plume height m �� Travel speed on road segment � mi/hr 0� Wind angle with respect to the roadway on road segment � degrees   Residence time of traffic-emitted pollutants in the roadway s �� Travel speed mi/hr %� Travel time on road segment � hr ' Total travel time over all road segments hr / Wind speed m/s �� Traffic speed on road segment � mi/hr _`a,bcG  Vertical TKE at location (x,y) due to the wake of a vehicle of class Z m

2
/s

2
 _bcG Total vertical TKE on the roadway due to the wake of a vehicle of class Z m

2
/s

2 

n Width of a single lane m \ Distance from the vehicle centroid perpendicular to the direction of travel m ^ Distance behind the vehicle centroid parallel to the direction of travel m - Receptor height m 
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Table 1. Assumed vehicle parameters for estimation of traffic-induced turbulence on the roadway 

 Light-Duty Vehicles Heavy-Duty Vehicles 

Drag coefficient 0.3 0.9 

Vehicle height (m) 1.4 3.5 

Vehicle width (m) 1.8 2.4 

Vehicle length (m) 5.5 22.5 
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Table 2. Summary of Modeled Trip Exposures 

 (1) Varying wind and background (2) Fixed wind and background 

 Mean Median Std. 

deviation 

Mean Median Std. 

deviation 

Travel time � (min) 17.44 14.95 6.16 - - - 

CO inhaled � (µg) 118.69   97.87      75.44 116.76   95.95      54.36 

CO exposure intensity �� 

(µg/hr) 

401.58  359.56     185.61 392.52  386.13      31.45 

CO background �� (µg/m
3
) 456.68  395.02     258.73 - - - 

NOx inhaled � (µg) 18.12   14.10      13.28 17.15   13.35      11.10 

NOx exposure intensity �� 

(µg/hr) 

59.65 53.27      28.66   55.57   53.67      12.29 

NOx background �� (µg/m
3
) 25.09 16.98      25.23 - - - 

Dispersion �� (m
2
/s) 9.87  9.52 3.54 9.72 9.98 1.17 

CO emissions, �� ∙ 
� 

(kg/hr/mi) 

7.39 7.58 2.98 - - - 

NOx emissions, �� ∙ 
� 

(kg/hr/mi) 

3.21 3.31 1.26 - - - 
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Table 3. Mass Inhalation and Congestion: Regressions of Trip CO and NOx Total Inhalation and 

Inhalation Rates on Minutes of Travel Time 

N=45,226 (1) Varying wind and background (2) Fixed wind and background 

  Unit change per 

minute � 

Std. 

Error 

R
2 

Unit change per 

minute � 

Std. 

Error 

R
2
 

CO inhaled (µg) 7.69 0.0450 0.39 8.78 0.0043 0.99 

NOx inhaled (µg) 1.51 0.0073 0.50 1.76 0.0018 0.96 

Traffic-generated CO 

inhaled (µg) 

3.32 0.0125 0.61 3.76 0.0043 0.94 

Traffic-generated NOx 

inhaled (µg) 

1.31 0.0052 0.59 1.48 0.0018 0.94 

CO exposure intensity 

(µg/hr) 

3.16 0.1416 0.01 4.18 0.0138 0.67 

NOx exposure intensity 

(µg/hr) 

1.19 0.0214 0.07 1.57 0.0058 0.62 
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Table 4. Correlation Coefficients between Traffic Variables and Exposure Intensity (CO and NOx 

Inhalation Rates) 

N=678,390 (1) Varying wind and background (2) Fixed wind and background 

 CO exposure 

intensity (µg/hr) 

NOx exposure 

intensity (µg/hr) 

CO exposure 

intensity (µg/hr) 

NOx exposure 

intensity (µg/hr) 

Traffic flow �� (veh/hr) 0.18 0.72 0.40 0.77 

Traffic speed �� (mph) -0.15 -0.62 -0.28 -0.58 
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Table 5. Correlation Coefficients between Model Variables for CO 

N=678,390 Traffic 

flow �� 

Traffic 

speed �� 

Emissions 

rate �� 

Dispersion 

(1) �� 

Dispersion 

(2) �� 

Wind 

speed � 

Background 

conc. �� 

Traffic flow �� 1.00       

Traffic speed �� -0.01 1.00      

Emissions rate �� -0.06 -0.77 1.00     

Dispersion (1) ��  0.28 0.13 -0.09 1.00    

Dispersion (2) �� 0.74 0.62 -0.50 0.32 1.00   

Wind speed � 0.02 -0.04 0.04 0.68 0.00 1.00  

Background conc. �� 0.04 -0.05 0.00 -0.17 0.00 -0.17 1.00 
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Figure 1. The travel exposure modeling framework  
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Figure 2. Comparison of total trip CO inhalation for delayed and constant-speed motorists at different 
corridor traffic speeds; without delay effects, the inhalation increase in congestion is slight  
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Figure 3. Modeled total CO emissions as shading on the traffic state (speed vs. flow) plane with illustrative 
traffic data: total emissions are highest in moderate congestion with high flows  
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Figure 4. Modeled roadway dispersion as shading on the traffic state (speed vs. flow) plane with illustrative 
traffic data: dispersion is lowest in heavy congestion  
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