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ABSTRACT 
 
Transportation agencies’ motor vehicle count programs tend to be well-established and robust 
with clear guidelines to collect short-term count data, to analyze data and develop annual average 
daily traffic (AADT) adjustment factors, and to estimate AADT volumes. In contrast, bicycle 
and pedestrian traffic monitoring is an area of work for most transportation agencies. In most 
agencies, there are a low number of counting sites and limited agency experience to manage a 
citywide or statewide system of collecting, processing and utilizing non-motorized data. Short 
duration counts are used to estimate longer duration volumes such as AADT. Because bicycle or 
pedestrian short-term counts vary dramatically over time and significantly more than motorized 
vehicle counts, the direct application of motorized vehicle AADT estimation methods may be 
inadequate. The goal of this paper is to present a methodology that will enhance, if needed, 
existing AADT estimation methods widely employed for motorized vehicle counts. The 
proposed methodology is based on the analysis of AADT estimation errors using regression 
models to estimate a correcting function that accounts for weather and activity factors. The 
methodology can be applied to any type of traffic with high volume variability, but in this 
research is applied to a permanent bicycle counting station in Portland, OR. The results indicate 
that the proposed methodology is simple and useful for finding ideal short-term counting 
conditions and improving AADT estimation accuracy.    
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INTRODUCTION and MOTIVATION 

Motor vehicle count programs are well-established and robust; however, bicycle traffic 
monitoring is incipient. There are only a small number of established permanent counting sites 
and limited agency experience to manage a statewide system of non-motorized data. From a 
planning point of view, a key measure of traffic volumes is average annual daily traffic (AADT). 
AADT represents average daily volume over an entire year at a specific location/facility. The 
applications of AADT values are numerous and range from safety analysis to prioritization of 
investments.  

There are two primary procedures for calculating motorized AADT from permanent, 365-
day/24-hour counting stations, also referred to as automated traffic recorders (ATR).  One is a 
simple sum of all daily volumes for one year divided by the number of counting days in that 
year, and the other is an average of averages (FHWA, 2012). The AADT calculation for averages 
of averages from continuous counts comes from the AASHTO Guidelines for Traffic Data 
Programs, prepared in 1992 (AASHTO, 1992).  One outcome of the method to calculate the 
average of averages is estimates for day of week (DOW) factors for each month of the year. That 
is, 84 factors are estimated – seven factors for each DOW for each of the 12 months of the year. 
The procedure for the AASHTO method of determining AADT using continuous counts is as 
follows: 
1. Calculate the average for each DOW for each month to derive each monthly average DOW. 
2. Average each monthly average DOW across all months to derive the annual average DOW. 
3. The AADT is the mean of all of the annual average DOW. 
The formula for the AASHTO method for determining AADT is: 
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where: 
VOL= daily traffic for day k, of day of the week i, and month j 
i = day of the week 
j = month of the year 
k = index to identify the occurrence of a day of week i in month j 
n = the number of occurrences of day i of the week during month j 
Agencies’ motor vehicle count programs tend to be well-established and robust, and 

operate with clear guidelines. In general, the programs consist of sets of permanent count stations 
used to develop AADT factors and a short-term counting program, which uses these factors to 
estimate AADT volumes. Typically, for motorized counts, employing both DOW and monthly 
seasonal factors is sufficient to estimate AADT volumes using short-term counts. However, 
transportation agencies find that the estimation of bicycle or pedestrian AADT volumes from 
short-term counts is less accurate because pedestrian and bicycle counts vary dramatically over 
time – in most cases, significantly more than motorized vehicle counts. For example, Table 1 
compares data from a major commute freeway (Interstate 84) and the most important (by 
volume) commute bicycle facility (Hawthorne Bridge, with over 1.5 million counted bicycles per 
year) in the Portland, OR, metropolitan area from 2012. The monthly volume variability is 
significantly higher for the bicycles, especially when warmer and colder months are compared.  

The motivation for this research work stems from the need of transportation agencies, in 
this case the Oregon Department of Transportation (ODOT), to develop AADT estimation 
procedures that build upon existing agency knowledge and practices to estimate motorized 
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AADTs. For example, it is more cost-effective to utilize existing traffic monitoring staff and 
exploit the opportunities/synergies for coordinated short-term data collection efforts (e.g., 
simultaneous deployment of motorized vehicle traffic and bicycle tube counters) wherever this is 
possible. The goal of this research is to develop a methodology that will enhance, if needed, 
existing AADT estimation methods widely employed for motorized vehicle counts. The 
methodology can be applied to any type of traffic with high volume variability; in this research 
the application of the methodology is demonstrated utilizing bicycle count data.  In addition, it is 
necessary that the new methodology be practical, simple, and take advantage of the AASHTO 
DOW/monthly factors.  The starting point of the proposed methodology is the estimation of the 
84 DOW/monthly AASHTO factors, which can be readily estimated by the agency’s traffic 
monitoring staff. If more accuracy is needed, the proposed methodology develops a correcting 
function that can be applied to any day of the year.  The next section presents a literature review 
and specifies the contribution of this paper to the extant body of work.  

 

Table 1. Percent of Annual Average Daily Traffic (AADT) by Month and Vehicle Type, 2012 

Month of 
Year 

Bicycles,  
Hawthorne 

Bridge 

Motor vehicles 
I-84* 

January 72% 96% 

February 85% 99% 

March 78% 100% 

April 107% 102% 

May 126% 102% 

June 96% 103% 

July 115% 103% 

August 135% 101% 

September 137% 100% 

October 112% 101% 

November 82% 96% 

December 55% 96% 

* Freeway I-84 and half mile east of freeway I-5

 

LITERATURE REVIEW 

One of the major differences between motor vehicle and non-motorized traffic demand 
fluctuations is the influence of weather and seasons on travel behavior. While weather can 
influence motor vehicle traffic, non-motorized traffic is more sensitive to changes in weather. 
Bicyclists and pedestrians are more exposed to the weather elements than motor vehicle drivers. 
In inclement weather, bicyclists and pedestrians may decide to use another mode of 
transportation.  

Numerous studies have found that weather conditions do have a significant impact on 
bicycling and pedestrian traffic volumes; early studies go back to the 1990s (Niemeier, D., 1996; 
Nankervis, M., 1999). The significant impact of weather on bicycling volumes has been 
confirmed across many cities/countries such as the Netherlands (Thomas T. et al, 2009); 
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Montreal, Canada (Miranda-Moreno and Nosal, 2011); Melbourne, Australia (Phung and Rose, 
2007); Boulder, CO (Lewin, A., 2011); Minneapolis, MN (Wang et al., 2012); rural Vermont 
(Flynn et al., 2012); and Portland, OR (Rose et al., 2011).  In all the cited studies, rain and 
temperature were key weather factors, and in some windy places it is possible that wind intensity 
is also a significant factor. The literature suggests that bicyclists’ sensitivity to weather varies 
across locations (Ahmed et al., 2012; Miranda-Moreno and Nosal, 2012). For example, the same 
amount of rainfall has a smaller effect on bicycle volume in rainy Portland than in sunnier 
Brisbane (Ahmed et al., 2012).  This finding strongly suggests that AADT adjustment factors 
must reflect local weather, population preferences, sensitivity to weather, and activity factors that 
drive the demand for bicycle trips.  

There are many studies that aim to estimate bicyclists’ volume using linear or log-linear 
regression models. For example, Lindsey et al. (2007) and several of the already mentioned 
studies looked at the impact of weather on bicycle volumes (Niemeier, D., 1996; Nankervis, M., 
1999; Miranda-Moreno and Nosal, 2011; Phung and Rose, 2007; Lewin, A., 2011; Wang et al., 
2012; Rose et al., 2011; Ahmed et al., 2012). There has also been work on negative binomial 
count regression models (Wang et al., 2012; Miranda-Moreno and Nosal, 2012; Nordback, 2012) 
and time series models (Thomas T. et al, 2009; Gallop et al., 2012).  Some studies have, in 
addition, looked at the impact of neighborhood, socio-demographic, built environment, and street 
characteristics using regression models (Hankey et al., 2012).   

There are fewer studies that focus on bicycle AADT estimation. One of the most relevant 
to this research is the work of El Esaway et al. (2013). This work utilized bicycle count data from 
the City of Vancouver, Canada. El Esaway et al. tested the addition of factors based on weekend 
versus weekday volumes, road class, and weather variables. It was found that precipitation 
adjustment factors improved bicycle AADT estimations and decreased error by three to eight 
percent. Although factoring for weather conditions was recommended, it was mentioned that it is 
necessary to group weather into general categories. It was found that creating adjustment factors 
for more than one weather variable can lead to an excessive number of factors. For example, the 
study simplified precipitation into just two categories: wet and dry weather.  “Wet weather” was 
defined as daily rain over five millimeters and “dry weather” was anything less than five 
millimeters.   

Dowds and Sullivan tested another method of weather-based factoring that was 
developed in Vermont and addressed seasonal and DOW adjustments (Dowds and Sullivan, 
2011). Additional adjustment factors were developed for each day of the week in each seasonal 
aggregation period, either by month or season.  This method takes into consideration weather 
variables such as temperature, rainfall and snowfall, and clusters segments of the year into 
similar yearly weather patterns. In this Vermont example, six different seasonal clusters were 
identified. Adjustment factors were then calculated for each DOW and each aggregation period. 
This method produced 84 adjustment factors and another 42 adjustment factors; one factor for 
each day of the week and for each of the six clusters. However, the use of the 42 season-based 
factors did not result in substantially different estimates of AADT than the use of the 84 
monthly-daily factors. 

Unlike the work of El Esaway et al. (2013) and Dowds and Sullivan (2011), the 
methodology proposed in this paper does not require the predefinition of weather categories, 
clusters or thresholds (e.g., rainfall below or above five millimeters). The regression-based 
correcting function proposed in this research selects the most relevant variables that have not 
been accounted for by the 84 DOW/monthly factors; in addition, there is no need to predifine 
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hard thresholds or groups. The correcting function is a function of the characteristics of the day 
of the count (and previous days if there are lagged variables) and includes not only weather 
variables (e.g., rain, temperature), but also activity or usage-based variables (e.g., holiday or 
school day) without adding new factors. In addition, the correction function allows for an 
incremental approach since it is built on top of the well-established DOW/monthly factors 
approach. It is important to note that the method does not add new factors regardless of the 
number of variables that are significant to reduce AADT estimation errors.  

Another line of research relevant to this work has focused on analyzing the relationship 
between short-term data collection durations and the bicycle AADT error or sampling error. 
Nordback et al.  (2012) studied bicycle-specific seasonal and daily adjustment factors using 
continuous bicycle counts from 26 stations in Boulder, CO from 1999 to 2012. The results from 
this study found that the optimal short-term count duration with the least error was one week of 
counts. The average error for one week of counts was 22 percent.  Average error for AADT 
estimated from counts less than one week had average error of as much as 60 percent. Longer 
than one week durations gave estimates with less error but with dimininshing returns. Similar 
results were found in a previous AADT estimation research applied to motorized counts; motor 
vehicle AADT errors from 24-hour counts averaged at about 15 percent (Gadda et al, 2007). 
Both Gadda et al. and Nordback et al. (2012) recommended that short-term counts be conducted 
when variation in counts is lowest. The next section describes the bicycle data used in this 
research and estimates AADT estimation errors by month and DOW.  

INITIAL DATA ANALYSIS  

The bicycle count dataset was obtained from the City of Portland’s bike tube counters on the 
Hawthorne Bridge, and paired with weather data from the National Weather Service and other 
calendar data related to U.S. federal holidays and active school periods. The Hawthorne Bridge 
is located immediately adjacent to downtown Portland and within five blocks of Portland State 
University (PSU). It connects the dense, pre-war housing stock on Portland’s east side with the 
central downtown core. Though there are other bridges with bicycle infrastructure, the 
connections and location make the Hawthorne the key facility in the bridge network.  PSU, a 
large attraction in the downtown area, has over 29,500 students and a bicycle mode share of 13 
percent.  

Daily 2012 count data were used for AADT factor estimation and analysis. These bicycle 
volume data were used to estimate daily and monthly factors. Plots of hourly and DOW volumes 
were created in order to display trends, which revealed a clear commute pattern. The average 
annual bicycle traffic is 4,440; the annual average weekday bicycle traffic (AAWDT) is 5,118; 
and the annual average weekend bicycle traffic (AAWEDT)  is 2,744. The weekday average 
volumes are almost double the weekend average volumes. 

This section analyzes the impact of counting duration and conditions on AADT 
estimation errors.  Note that the same data used to compute the factors are also used to estimate 
the error in AADT estimation from applying those factors.  If these factors were applied to 
another location (as one would do in using a permanent count station to estimate AADT at a 
short-term count locations), much higher errors would be expected than those reported here. 

Two types of conditions are studied: time of the year/week and count duration.  We 
define AADT estimation error as the ratio between the residual or estimated difference 
(difference between estimated and actual AADT) and the actual AADT. To facilitate 
interpretation of the numbers in this section, we employ error percentage (see Equation 2). Note 
that errors can be positive (overestimation) or negative (underestimation). When summing the 
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estimated AADT errors over a period of time, the errors tend to cancel each other out, and the 
sum can be equal to zero.  Hence, when comparing error estimations over a period of time, it is 
then better to use the absolute percentage error. In this section, when comparing different AADT 
estimations we employ the mean absolute percentage error (MAPE) metric (see Equation 3). 

݁ 	ൌ 	
 ഢ் ି		்

்
	100  (2) 

	ܧܲܣܯ ൌ 	 ଵ

∑ ሺ݁ሻݏܾܽ

ୀଵ                (3) 

i = any day whose AADT has been estimated 
ܦܣܣ పܶ = estimated AADT applying the daily and monthly AASHTO factors to day i  
n = total number of days i grouped for the MAPE estimation 
 ሻ = absolute function	ሺݏܾܽ
 

Table 2. MAPE by Day of the Week 

Day of the 
Week 

MAPE 
Average 

DOW Traffic 
 

Sunday 25.4% 2,609 
Monday 25.6% 4,982 
Tuesday 15.8% 5,354 

Wednesday 14.4% 5,186 
Thursday 16.6% 5,272 

Friday 15.4% 4,796 
Saturday 19.5% 2,885 

 

Table 3. MAPE by Month   

Month MAPE 
Average 

Monthly Traffic 
 

January 26.4% 3,199 

February 14.5% 3,790 

March 22.0% 3,463 

April 13.6% 4,738 

May 20.9% 5,574 

June 15.2% 4,249 

July 19.9% 5,126 

August 10.3% 5,999 

September 8.1% 6,065 

October 22.3% 4,970 

November 23.0% 3,656 

December 31.2% 2,456 

 
The MAPE by day of the week is shown in Table 2 and by month in Table 3. An analysis 

of traffic volumes by time of day and day of the week indicate that the bicycle traffic is 
predominantly utilitarian (commuters).  ܦܣܣ పܶ  , or estimated AADT, is calculated after applying 
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the daily and monthly factors for each day i of the year. As expected, middle days during the 
week and warmer months tend to perform better in terms of MAPE. The last column of the tables 
includes the associated traffic; it seems that there is a correlation between higher traffic volumes 
and lower MAPE.  

Count data were missing for 20 days in the month of July. This may help explain the 
relatively high MAPE for a summer month like July. Because the Hawthorne Bridge traffic has a 
typical commuter profile (commuters to/from downtown Portland), it is not surprising that 
Sundays have the lowest traffic and the highest MAPE. Mondays also show a high MAPE, and 
this may be explained by the high number of holidays that fall on a Monday; holiday counts tend 
to underestimate AADT significantly. 

Weather effects and DOW characteristics are inherently incorporated into the 84 
DOW/monthly factors. For example, in months when the weather is more comfortable, volumes 
will tend to increase and the factors account in part for this trend; similarly when considering 
weekdays versus weekend traffic volumes. Hence, it is not surprising that the 84 factors can 
produce very good estimations when short-term counts are performed in the warmer summer 
months and from Tuesday to Friday. It was mentioned in the literature review that motor vehicle 
AADT errors from 24-hour counts averaged about 15 percent (Gadda et al, 2007). Also note that 
the AADT estimation errors reported here are based on computing AADT at the same location 
from which the DOW/monthly factors were created. This results in lower error than would be 
expected if the same factors had been applied to any other location. 

A posterior analysis of the days with high error (both positive and negative) indicates that 
days with adverse weather conditions and before/during/after holidays or special events must be 
avoided for short-term counts. Other variables such as PSU/school class periods cannot be fully 
avoided because they take place over many weeks of the year, and it is better to adjust the 
counts.  

One policy or strategy to reduce AADT estimation errors can be to count only on 
favorable days. This begs the question, how can we define favorable days?  In addition, when 
scheduling traffic counting crews (e.g., over a one or two-month period) it is certainly possible to 
avoid holidays, but it is not realistic to accurately forecast weather conditions more than a few 
days in advance.  A more elaborate procedure is needed (a) if more accuracy is needed; (b) to 
better identify and quantify the characteristics of favorable days; and (c) to better gauge the 
tradeoffs between short-term count duration and the sophistication of the AADT estimation 
methodology.  A methodology to deal with these three issues is described in the next sections.  

REGRESSION ANALYSIS of AADT ESTIMATION ERRORS 

As demonstrated in the literature review, there is a growing body of research analyzing the 
impacts of weather on bicyclists’ volumes or estimating regression models for bicycle or 
pedestrian volumes. However, to the best of our knowledge, there is no published research effort 
that has linked the usage of DOW/monthly factors, estimation errors, and the development of a 
correcting function that can be applied to reduce AADT estimation errors. We have developed a 
regression model where the dependent variable is the daily percent AADT error, ei, (see 
Equation 2), and the independent variables are weather factors and day characteristics associated 
with the demand for travel, such as holidays or school days. Because the methodology applies to 
a specific ATR it is not possible to include spatial variables, such as neighborhood 
demographics, built environment, and socio-demographic or street type variables.  

An additional and significant contribution of the method presented in this section is that 
we employ lagged variables and regression models that account for serial correlation. Lagged 
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variables are important to explain the variability of the dependent variable when the recent past 
(e.g., yesterday’s temperature or a holiday) affects present conditions (e.g., today’s AADT 
estimation error). Accounting for serial correlation is important to properly estimate the 
regression coefficients. Count and error data do typically have high levels of serial correlation. 
Ignoring the serial correlation tends to artificially inflate the significance of the independent 
variables (e.g., showing that a variable is significant when, in reality, it is not). 

Data Dictionary 

Dependent Variable: 
ei:  Percent AADT error for each day. This is a continuous variable and can be positive or 

negative – measuring overestimation or underestimation, respectively.  
 
Independent Variables: 
Tmaxi:  Daily maximum temperature in Fahrenheit degrees registered in day i.  
Tmax>70i:  Degrees (in Fahrenheit) above 70 degrees for the daily maximum temperature 

registered in day i. If the maximum temperature exceeds 70 degrees, the value is zero (for 
example, if maximum temperature is 75 the value of the variable is 5; if maximum 
temperature is 65 the value of the variable is 0). 

Tmax<50i:  Degrees (in Fahrenheit) below 50 degrees for the daily maximum temperature 
registered in day i. If maximum temperature exceeds 50 degrees, the value is zero (for 
example, if maximum temperature is 35 the value of the variable is 15; if maximum 
temperature is 65 the value of the variable is 0). 

TempDev+i: Positive deviation or difference between the maximum temperature in Fahrenheit 
degrees registered in day i and the long-term average daily maximum temperature 
provided by NOAA(2013); for example, if the maximum temperature is 65 and the long-
term average for the day is 55,  the value of the variable is 10; if the maximum 
temperature is 45 the value of the variable is 0. 

TempDev-i: Deviation or difference between the long-term average daily maximum and the 
maximum temperature in Fahrenheit degrees registered in day i; for example, if the 
maximum temperature is 65 and the long-term average for the day is 55, the value of the 
variable is 0; if the maximum temperature is 45, the value of the variable is 10. 

Precip i: Daily precipitation in inches (note that precipitation contains more than just rainfall and 
includes drizzle or dew accumulation, for example). 

Tmaxi 
2:  The square of the daily maximum temperature in Fahrenheit degrees registered in day i.  

 Precipi 
2:  The square of the daily total precipitation in inches (note that precipitation contains 

more than just rainfall and includes drizzle or dew contributions, for example). 
 Holidayi: Dummy variable that is 1 if day i is a federal holiday; the variable is zero otherwise.  
PSU Hol.i: Dummy variable that is 1 if day i is a weekend or a weekday when PSU is not in 

session for any of the fall, winter or spring terms.   
Previous research utilizing Hawthorne Bridge data (Rose et al., 2012) has shown that the impact 
of temperature on bicycle volumes is not linear. The squared terms for temperature and 
precipitation are introduced to allow non-linear effects. Similarly, Tmax>70i and Tmax<50i are 
introduced to detect the impact of extreme temperatures on AADT estimation errors (50 and 70 
degrees were chosen because they are approximately equal to the 25th and 75th percentile, 
respectively). The TempDevi variables also attempt to measure the impact of extreme 
temperatures.  
In addition, the significance of lagged variables was also tested, for example: 
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Holidayi-1: Dummy variable that is 1 for the day i-1 if the day i is a federal holiday; the 
variable is zero otherwise.  

The variable Holidayi-1 is employed to test if there is a significant change in AADT errors the 
day before a holiday. Similarly, Tmax i-1 , TempDevi , and Precip i-1 (and their squares and/or 
extreme temperatures) were included in the analysis.  In all the models some of the temperature 
parameters are significant at the p <= 0.05 level, and even lagged-temperature variables are 
significant in some cases. However, in the autoregressive models the lagged-temperature 
variables are estimated with   p > 0.10.  An examination of the data shows that unusually cold or 
hot days are serially correlated.  

Regression Results 

The final regression model is shown in Table 4. Alternative specifications for temperature were 
tested, including non-linear terms for both high and low temperatures. Only the final model was 
included in the paper based on the model that better fits the data (lower MAPE) with fewer 
parameters as well as model stability. Stability was measured by the change in the estimated 
coefficients when a variable was removed. It is worth noting that several alternative model 
specifications produce models whose MAPE were very close.  

Only independent variables that were significant at the p<= 0.05 level are included in the 
final model and are shown in Table 4. It is possible to observe that there are two significant 
lagged variables: precipitation and holiday. Precipitation also has linear and quadratic significant 
variables. The only significant temperature variable is associated temperature above 70 degrees 
(linear increase above 70 degrees). To facilitate the interpretation of the coefficients, they are 
expressed as a percentage in Table 5.  

The interpretation of PSU Holidayi is that, on average and removing the impact of the 
other significant variables, performing a one-day count on a day without significant PSU activity 
underestimates AADT, estimated using only daily and monthly DOW/monthly factors, by 9.4 
percent (the coefficient is negative). In all cases, the interpretation of the coefficient should be 
accompanied by the qualifying words “on average and removing the impact of the other 
significant variables;” for the sake of brevity, we are removing these qualifying words when 
interpreting the remaining coefficients.  

The impact of the variable holiday is even more dramatic. Performing a one-day count on 
a federal holiday on average underestimates AADT by a 50.6 percent (the coefficient is 
negative). Furthermore, there is a lagged effect of the variable holiday because performing a 
count a day before a federal holiday will result in an AADT value that is on average 
underestimated by 20.5 percent.  

Precipitation has an important impact on AADT estimation errors. Because a lagged 
variable is significant, one inch of rain (on the previous day) on average tends to underestimate 
AADT by 10.5 percent if monthly and daily factors are applied to (today) a one day volume.  
Because the squared term is significant, for a given day the impact of rain on AADT error is non-
linear. For example, if the total measured precipitation for today is one-half an inch, AADT is 
underestimated, on average, 19.2 percent; if today’s rain is one inch, AADT is underestimated an 
average of 28.4 percent. The maximum impact of rain is reached when rain is equal to 1.22 
inches, and AADT is underestimated by 29.4 percent.  As a reference, only 0.75 percent of the 
days in a year exceed the 1.22 inch amount.     

Temperature (above 70 degrees) is the only temperature coefficient that was significant at 
a p<= 0.05 level. The interpretation of the temperature variable is related to the value of the 
maximum temperature above 70 degrees. For example, if the maximum temperature on the day 
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of the count is 80 degrees Fahrenheit, AADT is likely to be overestimated by 8 percent, on 
average; if the maximum temperature reaches 90 degrees Fahrenheit, estimating bicycle AADT 
using DOW/monthly factors will overestimate AADT by 16 percent, on average.    

 

Table 4. Regression ei vs. daily condition variables 

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 0.054 0.014 3.968 0.000 0.027 0.081 

PSU Holid.i -0.094 0.037 -2.563 0.011 -0.166 -0.022 

Holiday(i-1) -0.506 0.059 -8.571 0.000 -0.622 -0.390 

Holiday i -0.205 0.059 -3.476 0.001 -0.321 -0.089 

Precip(i-1) -0.105 0.038 -2.770 0.006 -0.179 -0.030 

Precip i  -0.483 0.074 -6.496 0.000 -0.630 -0.337 

Precipi
2 0.199 0.056 3.559 0.000 0.089 0.309 

Tmax i (>70)  0.008 0.003 2.810 0.005 0.002 0.013 
Correlation coefficient ρ = 0.46 
 

Table 5. Regression coefficients as % 

Intercept 5.4% 

PSU Holid.i -9.4% 

Holiday(i-1) -50.6% 

Holiday i -20.5% 

Precip(i-1) -10.5% 

Precip i  -48.3% 

Precipi
2 19.9% 

Tmax i (>70)  0.8% 

 
 
Finally, the model is technically described as an autoregressive model of order one (1) or 

AR(1); in this model, the serial correlation coefficient is 0.46 (a positive correlation coefficient 
can vary from +1 to 0). This positive correlation indicates that conditions and estimation error 
present the day before do impact today’s estimation error. For example, if the error yesterday 
was highly negative (AADT underestimation), then, on average, today’s error will tend to be 
negative, too. On the other hand, if yesterday’s error was positive (AADT overestimation), then, 
on average, today’s error will tend to be positive, too.   

It is worth mentioning that AR(2) models were also estimated, but the additional term 
does not improve the results according to AIC; the correlation between percent AADT errors 
decreases rapidly as the number of lags increases. The final model passed the Ljung-Box and 
Breusch-Godfrey tests for serial correlation.  



 Figliozzi et al.   11 

In the next section, the performance of the correcting function is presented, followed by a 
succinct summary of the proposed methodology to select count duration and improve the AADT 
estimation process.   

 

CORRECTING FORMULA PERFORMANCE 

Employing the estimates of the final regression model shown in Table 4, it is possible to 
formulate a correcting function  ݂ሺ࢞ሻ  that is a linear combination, where ࢞ is the vector of 
parameters that represent the significant variable values (e.g., rain, holiday, etc.) for any given 
day i and lagged days/variables that were significant in the final model. The newly corrected 
AADT estimation is shown in Equation 5.  

ܶܦܣܣ ′ 	ൌ 	
ை

ௌு்ை∗ሺଵାሺ࢞ሻ	ሻ
		  (5) 

where  
ܶܦܣܣ ′= estimated AADT on day i utilizing the correcting formula 
 = volume of bicycle traffic on day i (a one-day count)ܮܱܸ
ܶܪܵܣܣ ܱ= AASHTO DOW/monthly factor for day i 
݂ሺ࢞ሻ= the value of the correcting function for day i 

 
Formula 5 can be interpreted as follows: if the value of the correcting formula is negative for day 
i, (e.g., because there was heavy rain) the estimated value ܶܦܣܣ ′ will be higher than that solely 
using the DOW/monthly factors.  

Count Duration and Sample Size Error 

The results presented in the previous sections assumed one-day count durations. If the count 
duration is extended, AADT estimation errors tend to decrease because a one-day or special 
weather condition anomaly can be averaged out across more days. In addition, the longer the 
count, the less likely that a condition persists over a the entire period of time (e.g., it is more 
likely to have two days with heavy rain than 10 consecutive days of heavy rain).   

The results presented in Table 6 show the distribution of absolute AADT error values as a 
function of count duration. The meaning of the column labels is the following: 
One-day: MAPE distribution estimated assuming one-day counts in 2012 (i.e., each day 

applying the corresponding factors to estimate AADT).  
Three-day: MAPE distribution estimated assuming three-day counts in 2012 (i.e., each Tue.-

Wed.-Thu. applying the corresponding factors to estimate AADT).  
Five-day: MAPE distribution estimated assuming five-day counts in the 2012 year (i.e., 

Monday to Friday applying the corresponding factors to estimate AADT).  
Seven-day: MAPE distribution estimated assuming seven-day counts in 2012 (i.e., a whole 

week applying the corresponding factors to estimate AADT).  
Ten-day: MAPE distribution estimated assuming 10-day counts in 2012 (i.e., from Tuesday to 

Thursday of the next week applying the corresponding AADT factors). 
Fourteen-day: MAPE distribution estimated assuming 14-day counts in 2012 (i.e., two whole 

weeks applying the corresponding factors to estimate AADT).  
The results shown in Table 6 indicate that for the Hawthorne Bridge data, the mean error 

is approximately 19 percent, but only 15 percent if only the seven warmest months are analyzed 
(comparable to the 15 percent mean observed for motorized by Gadda et al, 2007). The 
estimation error (MAPE) can be also reduced by extending the count duration from one to three 
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days (Tuesday to Thursday). It is noticeable that three-day counts outperform five-, seven-, and 
10-day counts. This can be explained by the lack of weekends and the presence of the more 
stable high-volume days of the middle of the week. This finding is potentially significant for the 
design of cost-effective sampling strategies in areas where traffic is predominantly utilitarian 
(commuting). Future research efforts are needed to validate this finding across different urban 
areas. 

 It is important to notice that, in all cases, the mean is always larger than the median and 
that the distribution is not symmetrical around the mean. Removing the five coldest months 
improves the results, but even if a mean error of 15 percent is acceptable one out of four times, 
the MAPE will be larger than 25 percent for a one-day count.  

 

Table 6. Absolute Error as a function of Count Duration 

Time Period Statistic 1-day 3-day 5-day 7-day 10-day 14-day 

January to 
December (all 

year) 

Mean 19.1% 13.0% 13.2% 12.8% 10.9% 9.0%
St.Dev. 16.6% 12.3% 11.2% 9.7% 8.3% 7.2%
1st Quartile 6.4% 2.4% 4.7% 5.0% 1.6% 2.3%
Median  14.9% 9.2% 9.4% 10.8% 9.6% 8.1%
3rd Quartile 27.2% 18.8% 21.3% 19.8% 18.5% 12.6%

April to 
October (7-

months) 

Mean 15.4% 8.4% 9.8% 10.8% 9.3% 7.8%
St.Dev. 14.6% 7.6% 7.5% 7.7% 9.2% 7.8%
1st Quartile 4.6% 2.2% 3.8% 4.5% 1.1% 1.9%
Median  10.6% 6.7% 8.7% 9.1% 7.6% 3.0%
3rd Quartile 25.4% 18.1% 20.4% 19.9% 15.9% 13.0%

  

Correcting Formula Results 

If the correcting formula is applied, Table 7 is obtained.  In all cases the errors are 
reduced and the mean error for one-day counts is reduced to 15 percent considering all the 
months of the year. Furthermore, the reduction in the third quartile is almost 8 percent, while the 
reduction in the first quartile is almost 2 percent. Hence, the greater benefit of applying the 
correcting formula is in reducing the AADT estimation errors in days that tend to highly 
overestimate or underestimate AADT values. This is a desirable distribution of the improvement 
in AADT estimation. The performance of three-day counts also improves significantly after 
applying the correcting formula. In particular, three-day counts outperform all the other count 
durations, with the exception of the 14-day counts.  

Comparing the results of Table 6 and 7, it is clear the AADT estimation errors can be 
reduced by (a) reducing the sampling error (increasing count duration); (b) improving the 
sophistication of the AADT estimation process; or (c) being more selective in terms of the timing 
of the counting. For example, one-day counts in the seven warmest months of the year after 
applying the correcting formula outperform three-day, five-day, and seven-day counts using only 
the DOW/monthly factors and sampling anytime throughout the year.  
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Table 7. Absolute Error after Applying the Correcting Formula 

Time Period Statistic 1-day 3-day 5-day 7-day 10-day 14-day 

January to 
December (all 

year) 

Mean 15.6% 10.7% 10.5% 10.3% 9.1% 8.4%
St.Dev. 16.2% 12.3% 11.4% 9.9% 8.7% 7.2%
1st Quartile 4.6% 4.6% 3.6% 4.3% 3.7% 4.2%
Median  11.2% 7.0% 7.0% 7.3% 6.8% 6.6%
3rd Quartile 19.8% 9.5% 10.4% 11.3% 10.4% 7.6%

April to 
October (7-

months) 

Mean 11.9% 8.3% 8.0% 8.6% 8.2% 7.9%
St.Dev. 10.8% 6.1% 5.7% 5.5% 4.5% 4.3%
1st Quartile 4.1% 4.2% 3.8% 4.3% 5.0% 5.6%
Median  8.2% 6.8% 5.9% 7.2% 7.3% 6.6%
3rd Quartile 18.4% 8.9% 8.3% 11.4% 9.7% 8.0%

  

PROPOSED METHODOLOGY  

The steps proposed in this research to characterize ideal short-term counting conditions and 
improve AADT estimation accuracy are the following:  
1. Select a permanent counting station.  
2. Estimate AASHTO AADT DOW/monthly factors 
3. Apply the DOW/monthly factors to estimate AADT estimation errors.  
4. Estimate AADT errors as a function of count duration (sampling error). Analyze the tradeoffs 

between duration costs and admissible errors.  
5. Evaluate if the short-term counts AADT estimation errors are within the range admissible for 

the agency. If the answer is yes to go Step 9, otherwise go to Step 6.  
6. Select the days with highly positive or negative AADT estimation error. Find the day of 

week, month and weather (e.g., rain) or activity (e.g., holidays) variables that are associated 
with highly positive or negative AADT estimation errors.  

7. Produce a correcting function after estimating a regression model utilizing the estimated 
errors (from Step 3) as the dependent variable and the variables identified in Step 6 as the 
independent variables. Explore non-linear effects, lagged variables, and correct for any 
potential estimation problem (e.g., serial correlation, heteroscedasticity, etc., as needed).  

8. From the analysis of the results of Steps 6 and 7: (a) find the optimal conditions for short-
term counts; (b) identify most favorable days/months characteristics; and (c) evaluate the 
new tradeoffs between count durations and AADT estimation errors.  

9. Select a suitable combination of short-term count duration, timing and estimation method.  
Within a statewide counting program, a correcting function would need to be estimated for each 
permanent data collection station, especially those stations with high daily count variability or 
AADT estimation sampling errors. Unless there are significant changes in travel patterns, the 
correcting function can be estimated annually or less frequently, if sampling errors are steady or 
decrease over time.    

We should emphasize that the proposed methodology improves only sampling errors. 
There is another type of error associated with assuming that the permanent counter distribution 
of volumes is also applicable to short-term counting stations. This type of error, also known as 
classification error (Gadda et al., 2007), is outside the scope of this research. Given the higher 
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variability of bicycle and pedestrian counts, it may be reasonable to speculate that these errors 
could be significant for bicycle and pedestrian factoring methods. 

CONCLUSIONS 

With increasing bicycle ridership in Portland, OR, and across the country, the ability to improve 
estimates of AADT values for non-motorized travel it is important to city, county, and state 
agencies that build and manage transportation facilities. This paper proposes a new methodology, 
based on the analysis of AADT estimation errors, to (a) reduce sampling errors; (b) improve the 
sophistication of the AADT estimation process; and (c) be more selective in terms of the timing 
of the counting. The proposed methodology is suitable for any type of traffic with high volume 
variability; this paper demonstrated the method successfully applied to bicycle counts. Unlike 
previous work in the AADT estimation literature, the proposed method does not rely on the 
predefinition of weather categories, clusters or thresholds. The methodology utilizes a correcting 
function that is accounts for the characteristics of the day of the count (and previous days, if 
there are lagged variables) and includes not only weather variables (e.g., rain, temperature), but 
also activity or usage based variables (e.g., holiday or school day).  

The correction function was shown to significantly improve the accuracy of the AADT 
estimation process for one-day and three-day counts for our test case. It is reasonable to expect 
that the method can be extrapolated to other short-term count location and, ultimately, could 
reduce short-term count costs without compromising AADT estimation accuracy. In addition, the 
proposed methodology allows for an incremental approach, since it is built on top of the 
DOW/monthly factors.  

Future research efforts can apply the proposed methodology to other datasets with 
predominantly non-utilitarian traffic (recreational), and in areas with different urban and 
transportation system characteristics.   
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