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mends the use of travel time values for congested periods that are 
2.5 times the value of time estimates during uncongested periods 
(7). Kawamura investigated differences in value of time among 
operators and trucking industry segments; findings from Kawamu-
ra’s research show that freight carriers have a value of time that is 
several times higher than that of passenger vehicles and that there is 
significant heterogeneity among carriers (8). Therefore, for accurate 
modeling of the impact of disruptions, a freight network assignment 
model must account for the variation in time value and associated 
costs under disruptions.

Disruptions can provoke delays that result in longer travel times, 
higher fuel consumption, and loss of a driver’s productivity. Delays 
and congestion at bottlenecks not only affect a company’s bottom 
line but also increase greenhouse gas emissions and pollution levels 
(9). There is also heterogeneity in vehicle–driver costs. A recent 
study by the American Transportation Research Institute found 
that specialized carrier types have the highest cost per mile, fol-
lowed by less-than-truckload and truckload carrier types (10). 
Hence, an assignment framework for freight networks must account 
for this variation in disruption and travel costs by commodity and 
carrier types.

Transportation costs can be up to 10% of the final product costs 
(11). Supply chain costs can greatly exceed transportation-related 
disruption costs if companies rely heavily on lean practices, such as 
just-in-time deliveries, as well as increasingly long international 
transportation chains. Companies use sophisticated logistics sys-
tems to meet customer requirements without an overall increase in 
operating costs (12). Continuous real-time monitoring of shipment 
cost and delivery time is being used by companies to reduce trans-
portation costs while avoiding costly delays or disruptions, high 
levels of safety stocks, and system redundancies (13). Continuous 
tracking and monitoring of vehicles and containers from origin to 
destination can increase shipment efficiency and profitability. Real-
time information and adaptive routing can help companies maintain 
high levels of customer service with less cost than comparable 
asset- or capital-intensive strategies that rely on redundant vehicles 
or capacity.

This paper develops an integer multicommodity flow with recourse 
formulation to capture the adaptive routing behavior of freight deci-
sion makers (FDM), shippers, and carriers and that incorporates 
heterogeneity in response to disruptions and valuations of time cost 
by commodity type. This presents a new modeling framework that 
builds on the work of Unnikrishnan and Figliozzi (14).

The essential difference between this paper and that earlier work is 
that capacity constraints are applied to every link of the network 
noticeably; the addition of capacity constraints makes the problem 

A modeling framework is proposed for the freight network assignment 
problem with recourse, network travel time and cost disruptions, and 
link flow capacity constraints. “Recourse” is defined as the ability of a 
user to reconsider and adapt his or her routing decisions in response to 
newly acquired information about network disruption. When real-time 
tracking and monitoring of network shipments allow companies a rout-
ing recourse, network capacity must be simultaneously considered. If a 
disruption significantly alters network flows, the capacity of alternative 
or secondary routes may be quickly reached. A new freight mathemati-
cal model with a capacitated network and adaptive routing was devel-
oped and solved. Results showed that simultaneous consideration of 
recourse and capacity constraints was superior to benchmark results 
obtained with nonadaptive deterministic behavior.

Modern supply chains operate with growing availability of real-
time information but also with higher exposure to disruptions and 
uncertain events. Supply chains are increasingly connected and 
interdependent, which makes them vulnerable to natural or man-
made disruptions (1, 2). State officials and business managers have 
become more aware of and sensitive to the vulnerabilities of their 
transportation and supply chain systems. State agencies and private 
companies are starting to question how to improve system resilience 
and mitigate the negative impact of network disruptions (3). Freight 
flow disruptions can be caused by many factors, ranging from 
weather-related events such as flooding (4) to network capacity 
limitations. Freight network capacity is a growing problem in the 
United States and has been documented and analyzed extensively 
(5, 6); more than 100 freight bottlenecks have been identified and 
ranked for severity and economic cost.

In this research, network disruptions are defined as any event that 
could interrupt freight flows or provoke delays that result in cost 
increases for the supply chain. Disruption costs are difficult to esti-
mate because one out-of-service factory or vehicle can have a dis-
proportionate ripple effect along connected supply chains. Research 
has shown great variation in freight value of time across regions, 
roadway conditions, and carrier types. NCHRP Report 431 recom-
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and optimization model much more realistic yet significantly more 
difficult to solve. The model presented in this work is for regional 
long-haul freight truckload transportation and may not be applicable 
to an urban network where multistop tours may be more appropriate. 
Because truckloads are the basic unit of flow, there is a natural integer 
flow constraint. However, the presented model and solution algorithm 
are readily applicable to problems with nonintegral flows.

Literature Review

Little work has been done on freight network models that can account 
for changes in routing decisions in response to travel time or cost 
uncertainties caused by network disruptions. With advances in infor-
mation technology and tracking, FDMs now have access to real-time 
information about network conditions. Therefore, under network 
disruptions, FDMs can progressively update their routing strategy 
by using updated information about network conditions; this is 
called routing recourse. The actual route chosen will depend on net-
work conditions revealed as shipments traverse the network. Under 
such conditions, the objective is to determine the best routing policy 
that describes the routes to be chosen for different disruption sce-
narios. Such routing problems can be described as stochastic short-
est paths with recourse or online shortest path problems. Croucher 
(15) and Andreatta and Romeo (16) studied the online shortest path 
problem with stochastic arc presence and known probability distri-
bution functions. Polychronopoulos and Tsitsiklis solved the online 
shortest path problem with recourse using dynamic programming 
(17). They assumed that the user would obtain new information while 
traversing the network and compute the least expected cost for each 
scenario. Waller and Ziliaskopoulos developed an efficient algo-
rithm for the case in which network uncertainties had specific lim-
ited spatial and temporal dependencies (18). Hall (19), Pretolani 
(20), and Miller-Hooks (21) studied the shortest path problem with 
recourse in an uncertain and time-varying environment. Harks et al. 
solved the online version of the multicommodity flow problem by 
developing greedy algorithms that route the commodities sequen-
tially in the network, but they did not consider capacity restriction in 
their formulation (22). Recently, Unnikrishnan and Waller studied the 
problem of user equilibrium traffic network assignment with recourse 
as a nonlinear convex optimization problem (23). Unnikrishnan and 
Waller focused on an equilibrium formulation in which travel costs 
are a function of flow, the impact of hard capacities is not modeled, 
and there are no integrality restrictions on flow (23).

The only formulation that considers the impact of disruption and 
recourse routing in a dynamic freight network is that of Unnikrish-
nan and Figliozzi (14); however, that work did not consider capacity 
constraints. When capacity constraints are added to the formulation, 
the resulting problem becomes an integer multicommodity problem 
with recourse. This paper represents the first work that formulates 
and solves the integer multicommodity flow problem with recourse 
(MCF-R).

The multicommodity network flow problem is well known and has 
been solved by many researchers (24–26). Ahuja et al. made a com-
prehensive study of the multicommodity flow problem (24). Methods 
that can be used to solve multicommodity flow problems include 
Lagrangian relaxation and column generation heuristics. Multicom-
modity flow problems can be classified into two types, depending on 
whether there are integrality flow constraints. Barnhart et al. used 

branch-and-price-and-cut to solve the integer formulation type (27). 
The solution method proposed in this paper is a Lagrangian relaxation 
heuristic that has been applied to other multicommodity flow prob-
lems (28, 29). Two types of Lagrangian relaxation have been applied 
in the literature: (a) relaxing of link flow capacity constraints and  
(b) relaxing of link flow and flow conservation constraints (30, 31). 
In this paper, a Lagrangian relaxation is applied to the capacity con-
straints, and the algorithm presented by Unnikrishnan and Figliozzi  
is used to solve the resulting subproblem (14).

Model Formulation

This section presents an integer optimization formulation for solv-
ing the capacitated online freight network assignment problem. The 
model is formulated as an integer MCF-R.

Consider a network G = (N, A), where N denotes the set of nodes 
and A the set of arcs. An FDM, which can be a shipper, a carrier, or 
a third-party logistics agent, needs to transport a set of commodities 
Krs from a node in the set of origins R to a node in the set of destina-
tions S. The network can exist in multiple states that correspond to 
various disruption scenarios. The occurrence of a disruption is inde-
pendent of prior disruption occurrences. Let Ω represent the set of 
all potential network disruption scenarios. A discrete probability 
distribution P characterizes the relationship between any scenario ω 
and Ω; pω ∈ P and represents the probability of scenario ω ∈ Ω. In 
the presented model, for simplicity, every specific commodity must 
be sent from a single distinct origin to a single distinct destination. 
Therefore, the decision variable is the amount of flow of the com-
modity k ∈ Krs for each arc between origin r ∈ R and destination s 
∈ S in system state ω ∈ Ω.

The generalized cost of transporting commodities in the network 
is considered to be a weighted linear combination of three costs:

1.	 Transportation cost ca
kω, the unit cost of transporting commodity 

k ∈ Krs on arc a ∈ A in system state ω ∈ Ω;
2.	 Travel time cost ta

kω, the unit travel time for transporting com-
modity k ∈ Krs on arc a ∈ A in system state ω ∈ Ω; and

3.	 Unreliability parameter ua
kω, which is based on the experience 

of the FDM in using a particular carrier or mode to transport goods.

The weight of each cost parameter, denoted wkw
trs , wkw

crs, w kw
urs, is  

chosen according to the relative importance of each component of 
the generalized cost. Therefore, the generalized cost for commodity 
k ∈ Krs on arc a ∈ A in system state ω ∈ Ω between origin r ∈ R  
and destination s ∈ S can be written as

C w t w c w uars
k

trs
k

a
k

crs
k

a
k

urs
k

a
kω ω ω ω ω ω ω= + +

As the commodities traverse the network, the FDM receives new 
information and updates about network disruption scenarios. When 
a node is reached, the FDM can use the information received until 
that moment to eliminate a set of potential network disruption sce-
narios in the set Ω. The FDM can use this knowledge to update the 
travel cost parameters, probability distributions, and routes. Under 
such conditions, the FDM’s routing strategy is described by a routing 
policy. A routing policy uses the information received to provide the 
routes or paths from each node to the destination; the routing policy 
thus captures the FDM’s response to information about network dis-
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ruptions. Let Hk
rs represent the set of all routing policies between 

origin r ∈ R and destination s ∈ S for commodity k ∈ Krs, and let f h
k 

denote the flow of commodity k ∈ Krs on routing policy h ∈ Hk
rs.

Let D represent the origin–destination vector comprising all ele-
ments dk

rs denoting the demand of commodity k between origin  
r ∈ R and destination s ∈ S. Every arc has a flow capacity denoted 
by Va, ∀a ∈ A. The capacity constraint either can represent the con-
straints on number of trucks or rail cars available to travel on that 
arc or can represent flow restrictions caused by environmental 
considerations (32).

The formulation and solution algorithm can be trivially extended 
to the case in which the capacity of the arc depends on the system 
state. Let δωah be the incidence variable where δωah = 1 if routing pol-
icy h ∈ Hk

rs uses arc a ∈ A in system state ω ∈ Ω and δωah = 0 other-
wise. The incidence variable relates the flow of the commodity  
k ∈ K for an arc a ∈ A between origin r ∈ R and destination s ∈ S in 
system state ω ∈ Ω, xkω

ars, and the flow on routing policy h ∈ Hk
rs as 

follows:

x f a A h H r Rars
k

ah k
h

h H
k
rs

rs

ω ωδ ω= ∀ ∈ ∈ ∈ ∈
∈
∑ , , , ,Ω ss S∈

The notation used in the formulation is given in Table 1.
Given the preceding definitions and notation, the optimization for-

mulation for the capacitated freight network assignment problem 
under disruption and recourse is given next. In network optimization 
terminology, the formulation can be described as an integer MCF-R 
or an online integer multicommodity flow problem (Equation 1).

min Z w t w c w u xtrs
k

a
k

crs
k

a
k

urs
k

a
k

ar= + +( )ω ω ω ω ω ω
ss

k

k Kr Rs Sa A

p
rs

ω ω

ω∈∈∈∈∈
∑∑∑∑∑

Ω

( )1

subject to

x f a A h H r Rars
k

ah k
h

h H
k
rs

rs

ω ωδ ω= ∀ ∈ ∈ ∈ ∈
∈
∑ , , , ,Ω ss S∈ ( )2

f d r R s S k Kk
h

h H
k
rs rs

rs∈
∑ = ∈ ∈ ∈, , ( )3

x V a Aars
k

a
s Sr Rk K

ω ω≤ ∀ ∈ ∈
∈∈∈
∑∑∑ , ( )Ω 4

x a A r R s S k Kars
k rsω ω≥ ∀ ∈ ∈ ∈ ∈ ∈0 , , , ,Ω and integger ( )5

f h Hk
h

k
rs≥ ∀ ∈0 6( )and integer

The first constraint relates the flow on an arc of a commodity 
between specific origin–destination pairs under a specific scenario 
to the flow on routing policies that uses the incidence variable. The 
second constraint states that for a specific origin–destination pair 
and commodity, the demand is equal to the sum of the flows on all 
routing policies. The third constraint restricts the flow on each arc 
to its capacity. Constraints 4 and 5 impose the nonnegativity and 
integrality constraints on the decision variables.

Solution Methodology

Equation 1 is an integer MCF-R. As shown in the literature, solving 
integer multicommodity flow problems caused by capacity constraint 
on arc flows is relatively difficult. In this research, a Lagrangian 
heuristic method has been adopted for solving the MCF-R.

TABLE 1    Notation in Formulation

Term Definition

N Set of nodes

A Set of arcs indexed by a

R Set of origins indexed by r

S Set of destinations indexes by s

W Set of system scenarios indexed by w
P Discrete probability distribution system scenarios

pw Probability of scenario w
Krs Set of commodities to be transported from origin r to destination s indexed by k

ca
kw Unit cost of transporting commodity k on arc a in system state w

ta
kw Unit travel time for transporting commodity k on arc a in system state w

ua
kw Unreliability parameter associated with transporting commodity k on arc a in system state w

Ckw
ars Generalized cost for commodity k on arc a in system state w between origin r and destination s ∈ S

wkw
trs , wkw

crs, wkw
urs  Weights that express the relative importance attached by FDM toward travel time, travel costs, and  

unreliability parameter for commodity k in system state w between origin r and destination s ∈ S

Hk
rs Set of all routing policies between origin r destination s for commodity k indexed by h

f h
k Flow of commodity k on routing policy h

dk
rs Demand of commodity k between origin r and destination s

D Origin–destination vector

Va Capacity of arc a

d w
ah Incidence variable that is equal to 11 if routing policy h uses arc a between origin r and destination s  

in system state w and 0 otherwise

ckw
ars Flow of commodity k on arc a between origin r and destination s in system state w and 0 otherwise
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In the Lagrangian relaxation (LR) heuristic-based solution 
method, Constraint 3 in Equation 1 is relaxed and moved with non-
negative Lagrange multiplier λω

a to the objective function, as shown 
in Equation 7:

min LR λ ω ω ω ω ω ω( ) = + +(w t w c w utrs
k

a
k

crs
k

a
k

urs
k

a
k ))

+ −

∈∈∈∈∈
∑∑∑∑∑ x p

x

ars
k

k Kr Rs Sa A

a ars
k

rs

ω ω

ω

ω ωλ

Ω

VVa

k Kr Rs Sa A rs∈∈∈∈∈
∑∑∑∑∑ 



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( )7
ω Ω

subject to Constraints 1, 2, 4, and 5.
Given a set of values of λ = (λω

a , ∀a ∈ A, ω ∈ Ω), the objective 
function of the preceding formulation can be rewritten as

w t w c w u
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The term λω
aVa can be removed because it is constant given  

λ = (λω
a, ∀a ∈ A, ω ∈ Ω); then the Lagrangian relaxed model can be 

rewritten as Equation 8:

min LR λ

ω ω ω ω ω ω

( ) =

+ + +w t w c w utrs
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(88)

subject to Constraints 1, 2, 4, and 5. Figure 1 is a flowchart of the 
relaxation heuristic.

Equation 8 decomposes into Σr∈RΣs∈S |Krs| stochastic shortest path 
with recourse subproblems, which can be solved with the algorithm 
presented by Unnikrishnan and Figliozzi (14) by appropriately mod-
ifying the cost function. The solution for Equation 8 may not satisfy 
the capacity constraints in Equation 1. Therefore, the solution 
obtained from solving Equation 8 may be infeasible for the original 
problem. The solution to Equation 8 can be used to calculate the 
lower bound to the objective function. In such cases, the primal 
heuristic presented by Holmberg et al. is adapted and applied (28).

Number of iterations, n = 0 

Solve the relaxed  problem Equation 8 using  
the algorithm of Unnikrishnan and Figliozzi (14) 

Update Lower Bounds 

Is Equation 8  
solution infeasible for 
original problem 

Update Lagrange Multiplier 

Update cost 
using new 
multipliers 

Update Upper 
Bound 

Check for 
Convergence 

YES 

YES 
END 

NO 

NO 

Apply the primal 
heuristic of  
Barnhart et al. (27 ) 

Lower Bound LB = −∞
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0 otherwise 









 

Initialize Lagrange Multipliers λ = 0, 
∀a ∈A, ω ∈Ω.

ω
a

ni

FIGURE 1    Flowchart for Lagrangian relaxation heuristic.
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Primal Heuristic

In the primal heuristic algorithm, the commodities are assumed to 
enter the network sequentially. The algorithm is solved for the first 
commodity, and then every arc is checked for violation of arc capac-
ity. If an arc capacity has been violated, that arc will be closed for 
the next commodity assignment. This step must be repeated for all 
commodities until a feasible solution is created. Although the primal 
heuristic generates feasible solutions in most cases, when the capac-
ity of the network is too low, a good feasible solution may not occur.

The steps of the solution algorithm are as follows:

Step 0.	Initialization. Set the Lagrange multiplier λa
ω,n = 0, ∀a  

∈ A, ω ∈ Ω. The number of iterations is n = 0. Initialize the lower 
bound LB = −∞.

Step 1.	Solving the relaxed problem. Solve the relaxed model, 
Equation 8, and update the lower bound solution as the maximum 
of the new solution and previous lower bound. The relaxed model 
can be solved by applying the algorithm presented by Unnikrishnan 
and Figliozzi (14), Σr∈RΣs∈S |Krs| times.

Step 2.	Coping with infeasibility and generating feasible upper 
bounds. In some cases, the solution for Equation 8 may not satisfy 
Constraint 4 of the original problem. To obtain a feasible solution, 
the primal heuristic method suggested by Holmberg et al. is applied 
(28). Update the new best upper bound to be the minimum of the 
existing best upper bound and the upper bound calculated in this 
iteration.

Step 3.	Updating the Lagrange multiplier. Update the Lagrange 
multiplier λa

ω,n by subgradient optimization as

λ

λ

ω

ω ω

a
n

a
n
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k

a

k Kr Rs Sn
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













Step 4.	Termination criteria. The algorithm will stop if one of the 
following three conditions is satisfied: (a) the difference between 
the feasible solution and the lower bound solution is less than a 
predetermined value; (b) λa

ω,n = 0, ∀a ∈ A, ω ∈ Ω; or (c) the maxi-
mum number of iterations (κ) is reached. If termination criteria are 
satisfied, stop; else n = n + 1 and go to Step 2. Criterion (c) ensures 
that if criteria (a) and (b) are not satisfied, then the algorithm will 
stop after κ iterations. Ahuja et al. adopted similar criteria for 
multicommodity flow problems (24).

Numerical Analysis

Computational experiments are used to estimate the potential sav-
ings obtained by adopting a capacitated adaptive online routing 
approach versus a simpler deterministic nonadaptive routing approach. 
A numerical study based on a real-world collaborative freight network 
is described next.

Parameter Setting

The network corresponds to a national-level food distributor that 
ships three types of products—frozen, dried, and refrigerated—
from Idaho, Washington, Nevada, and California to the Portland, 
Oregon, area. Unnikrishnan and Figliozzi give a map of the network 
showing the locations of distribution centers (14). The network has 
32 nodes and 96 arcs with 20 origins and one destination, which is 
Portland. Table 2 demonstrates the demand for each origin–destination 
pair in weekly truckloads per type of commodity. There are  
three types of arcs: (a) arcs lying on regular shipping routes, (b) arcs 
lying on alternate routes, and (c) supplementary arcs that generally 
are not used. Supplementary arcs or paths are not used in normal 
operating condition because their travel time and transport costs are 
relatively higher than regular and alternate arcs and paths (25% pen-
alty on time and 100% penalty on cost). However, in the case of 
disruptions, supplementary arcs or routes may become viable, that 
is, may be a cheaper option than the alternate or normal arcs and 

TABLE 2    Demand to Portland in Scale of Truckloads

Origin
Commodity or 
Product

Weekly 
Truckloads Origin

Commodity or 
Product

Weekly  
Truckloads

Burlington, Wash. Refrigerated 1 Riverside Refrigerated 1

Spokane, Wash. Dry 1 Ontario, Calif. Dry 2

Vancouver, Wash. Dry 1 Ontario Frozen 2

Tacoma, Wash. Dry 1 Ontario Refrigerated 2

Idaho Falls, Idaho Dry 1 Los Angeles, Calif. Dry 4

Aberdeen, Idaho Frozen 1 Los Angeles Frozen 9

Burley, Idaho Frozen 2 Los Angeles Refrigerated 2

Boise, Idaho Refrigerated 1 Fresno, Calif. Dry 4

Fruitland, Idaho Frozen 1 Fresno Refrigerated 2

Las Vegas, Nev. Refrigerated 1 Salinas, Calif. Refrigerated 1

Reno, Nev. Dry 1 Stockton, Calif. Dry 9

Long Beach, Calif. Frozen 1 Oakland, Calif. Dry 1

Riverside, Calif. Dry 1 San Francisco, Calif. Frozen 1

Riverside Frozen 1
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routes. The supplementary arcs are assumed to have infinite capac-
ity because disruption takes place on the heavily used regular links 
(a) and (b). To get 15% of the regular shipping route arcs over 
capacity, an arbitrary link capacity constraint of three weekly truck-
load units was set. As a result of the capacity constraints, regular 
shipping routes around the Portland area become a bottleneck 
because capacity is exceeded. The objective is to analyze the impact 
of freight bottlenecks on routing strategies. (The constraint is arbi-
trary and could apply to a different mode, for example, number of 
trains limited to three per day, in another context.)

Google Maps is used to compute travel times between nodes. 
Operating travel costs that cover fuel and other per-mile costs are 
$1.45, $1.65, and $1.75 per mile per truck for dry, refrigerated, and 
frozen commodities, respectively. The weight of the parameters for 
each of the three cost types is considered to be different in normal 
conditions and during disruption; the parameter value changes are 
consistent with the values obtained from stated preference surveys 
(33). The values of the weight parameters are as follows:

1.	 0.0975, 0.0029, and 0.1219 for travel time, costs, and unreli-
ability parameters, respectively, under normal operating conditions 
and

2.	 0.4579, 0.0029, and 0.3657 for travel time, costs, and unreli-
ability parameters under disruption.

Under disruption, travel time and unreliability parameters do 
increase significantly; however, cost per mile to operate the vehicle 
remains constant, but this cost would increase if rerouting takes 
place on a longer path.

Modeling Disruption

The various disruption scenarios are randomly generated, and the 
transportation costs, travel times, and unreliability levels are scaled 
up according to Equation 9. Three parameters are considered for 
modeling disruption in the network:

1.	 Severity factor Ψ. Two disruption levels are considered: low 
and high. In the case of low disruption, the severity factor is equal 
to 1. In the case of high disruption, the severity factor is set equal to 
the cardinality of the node states of the upstream arc.

2.	 Scaling factor (SF). The SF is used to further scale up the 
disruption within each disruption severity level.

3.	 Random parameter ε. The random parameter is a realization 
of a uniform random number between 0 and 1.

Travel costs, travel time, and unreliability parameter, the three 
parts of the generalized cost, are scaled up to model the two cases 
of low and high disruption. The random cost function for generating 
cost for each scenario is

C Ca
k

a
kω ε= +( )1 1 9ΨSF ( )

The network is assumed to operate under normal conditions in 
Scenario 1 and Ca

k1 is the cost under normal operating conditions.
The proposed algorithm is tested on the network in case of low and 

high disruption for different amounts of severity factors. The perfor-
mance metric used is the cost savings obtained by online routing over 
deterministic routing. Two types of deterministic routing are used, the 
base case and the expected cost case. In the base case, the goods will 

be shipped using the costs under nondisruption normal scenarios; in 
the expected cost case, routing will be done based on expected costs 
on each arc. The deterministic problem is solved with a Lagrangian 
relaxation algorithm given by Ahuja et al. (24). The total savings S 
when adaptive online routing is used is calculated with the formula

S
Z Z

Z
= −





×DET AD

DET

100

where ZDET is the total expected cost of the system under determin-
istic routing and ZAD is the total cost of the system under adaptive 
online routing.

The effect of randomness in the results was reduced by using the 
average of 30 generated network disruption samples to calculate the 
savings:

S
Si

i

=
=

∑ 301

30

Results of Experiments

Four types of experiments are conducted to demonstrate the savings 
of capacitated adaptive online routing over deterministic routings.

Disruption Severity Levels

The first set of computational runs, shown in Tables 3 and 4, com-
pares the savings for different disruption severity levels. The num-
bers given in the base case columns correspond to the savings over 
base case deterministic routing, and the numbers given in the expected 
value columns correspond to savings over expected value determin-
istic routing. The number of scenarios is considered to be four in this 
test, and the experiments are done for two cases of probability dis-
tributions for each scenario: (a) equally likely probability distri-
bution and (b) asymmetric probability distribution. In the case of 
asymmetric probability distribution, the probability of Scenario 1 is 
assumed to be the highest among all scenarios and is equal to .70; 
the probability of the remaining scenarios is the same and equal to 
.10. In the case of equally likely probability distribution, all the 
probabilities are the same and equal to .25.

As expected, the benefit of adaptive routing is greater in the high-
disruption scenario than in the low-disruption scenario. Within each 
disruption severity level, as the SFs increase, the savings obtained by 
adaptive routing over deterministic routing increases significantly. 
Planning for normal operation conditions would return a considerably 
worse solution than would planning for expected value. When the dis-
ruption scenarios are equally likely, the savings are higher than when 
the scenarios are asymmetric. The gain obtained by adaptive routing is 
found to be highly dependent on the commodity type.

Number of Uncertain Scenarios

The impact of different numbers of scenarios on the savings through 
online routing is tested in this experiment. The SF is assumed to be 
1 for the cases of low and high disruption. The results are shown in 
Table 5. The numbers in the base case columns correspond to the sav-
ings over base case deterministic routing, and the numbers in the 
expected value columns correspond to savings over expected value 
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TABLE 3    Disruption Severity Levels: Percentage Gain Under High Disruption

Savings, Base Case Routing (%) Savings, Expected Value Routing (%)

SF Dry Frozen Refrigerated Dry Frozen Refrigerated

Equally Distributed

0.5 5.68 2.82 6.42 0.95 2.13 1.67

1 20.63 10.19 21.33 0.86 2.08 1.40

1.5 36.73 18.09 37.04 0.74 1.75 1.19

2 53.06 26.1 52.91 0.66 1.53 1.08

2.5 69.47 34.13 68.83 0.60 1.40 1.01

3 85.91 42.19 84.76 0.57 1.31 0.97

Asymmetrically Distributed

0.5 4.14 2.02 4.71 1.59 3.35 3.24

1 15.26 7.39 15.69 2.32 5.18 4.1

1.5 27.17 13.11 27.27 2.35 5.31 4.11

2 39.29 18.92 38.97 2.34 5.23 4.07

2.5 51.47 24.76 50.7 2.31 5.14 4.02

3 63.67 30.62 62.45 2.28 5.07 3.99

TABLE 4    Disruption Severity Levels: Percentage Gain Under Low Disruption

Savings, Base Case Routing (%) Savings, Expected Value Routing (%)

SF Dry Frozen Refrigerated Dry Frozen Refrigerated

Equally Distributed

0.5 0.31 0.11 0.10 0.07 0.16 0.08

1 2.06 1.18 2.10 0.69 1.13 1.11

1.5 6.25 3.54 6.10 1.09 2.16 1.41

2 11.49 6.46 10.59 1.18 2.48 1.34

2.5 17.16 9.63 15.32 1.17 2.43 1.3

3 23.02 12.91 20.12 1.11 2.27 1.21

Asymmetrically Distributed

0.5 0.23 0.08 0.07 0.08 0.15 0.07

1 1.52 0.85 1.53 0.82 1.31 1.45

1.5 4.63 2.58 4.47 1.85 3.3 2.93

2 8.53 4.71 7.77 2.48 4.75 3.38

2.5 12.76 7.03 11.24 2.82 5.54 3.56

3 17.13 9.42 14.76 3.00 5.9 3.65

deterministic routing. The savings are found to increase significantly 
with an increase in the number of scenarios. However, the increase 
in savings is marginal for low-disruption scenarios. The product type 
has significant influence on the savings under high disruption com-
pared with the low-disruption scenarios. The results show that as 
uncertainty in the network increases, there is significantly more ben-
efit for FDMs to invest in technology that will allow them to adopt 
and implement the adaptive recourse routing strategies.

Impact of Scenario Probabilities

The effects of different values of scenario probability over the savings 
in costs through online routing are tested. Table 6 shows the savings 
for low and high disruption. The numbers in the base case columns 
correspond to the savings over base case deterministic routing, and 
the numbers in the expected value columns correspond to savings over 

expected value deterministic routing. The SF is considered to be 1, the 
number of scenarios is four, and the probability of Scenario 1 increases 
from .25 to .7 in increments of .05. The probability of the remaining 
scenarios is assumed to be equally likely and equal to (1 − p1)/3.

In the high-disruption case, as the probability of Scenario 1 
increases, the savings obtained by adaptive routing over determin-
istic base case routing decrease, whereas the savings obtained by 
adaptive routing over expected value routing increase. The change 
in savings is relatively marginal for low disruption compared with 
high disruption. However, the increase is relatively marginal com-
pared with the high-disruption scenario. In the low-disruption case, 
the savings over the expected value routing is relatively stable with 
an increase in probability of Scenario 1.

The computational times for solving the algorithm were found to 
depend on the total number of uncertain scenarios. The computational 
time for two, three, four, five, and six uncertain scenarios was found 
to be 36.375, 53.994, 93.19, 150.26, and 275.52 s, respectively.
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The savings with the use of adaptive routing is expected to 
increase with an increase in incident severity and with the number 
of potential disruption scenarios. The numerical experiments con-
ducted in the study show that, depending on the commodity and the 
scenarios, the savings can be as high as 85%. An FDM can use this 
model to evaluate the benefits obtained by developing adaptive 
routing strategies and decide whether to invest in technologies that 
can help implement such a system.

Conclusions

FDMs now have the ability to optimize their routing processes by 
using real-time information provided by monitoring and tracking 
technologies. This research developed an assignment model for 
freight networks that captures the adaptive routing behavior of an 
FDM in response to network disruptions. The model takes into 
account capacity constraints on flows. To the authors’ knowledge, 

TABLE 6    Impact of Scenario Probabilities

Savings, Base Case Routing (%) Savings, Expected Value Routing (%)

Probability of Scenario 1 Dry Frozen Refrigerated Dry Frozen Refrigerated

High Disruption

0.25 20.63 10.19 21.33 2.08 0.86 1.4

0.3 20.27 10 20.94 2.3 0.96 1.59

0.35 19.94 9.83 20.6 2.5 1.06 1.76

0.4 19.49 9.59 20.12 2.77 1.19 1.99

0.45 18.96 9.31 19.57 3.08 1.34 2.26

0.5 18.51 9.07 19.11 3.35 1.46 2.48

0.55 17.83 8.72 18.39 3.75 1.65 2.83

0.6 17 8.28 17.53 4.22 1.87 3.24

0.65 16.03 7.79 16.48 4.75 2.12 3.73

0.7 15.26 7.39 15.69 5.18 2.32 4.1

Low Disruption

0.25 2.06 1.18 2.1 1.13 0.69 1.11

0.3 2.03 1.15 2.06 1.03 0.62 1.07

0.35 1.99 1.13 2.02 1.2 0.74 1.22

0.4 1.95 1.11 1.98 1.24 0.77 1.28

0.45 1.9 1.07 1.92 1.29 0.81 1.35

0.5 1.85 1.05 1.87 1.32 0.83 1.39

0.55 1.78 1.01 1.8 1.35 0.85 1.45

0.6 1.7 0.96 1.72 1.36 0.85 1.48

0.65 1.63 0.92 1.65 1.35 0.84 1.47

0.7 1.52 0.85 1.53 1.31 0.82 1.45

TABLE 5    Uncertain Scenarios

Savings, Base Case Routing (%) Savings, Expected Value Routing (%)

Scenario Dry Frozen Refrigerated Dry Frozen Refrigerated

Equally Distributed: High Disruption

2 9.01 4.38 9.21 1.75 0.83 1.48

3 12.54 6.14 12.71 2.28 0.98 1.64

4 20.63 10.19 21.33 2.08 0.86 1.4

5 25.11 12.41 25.39 1.87 0.79 1.21

6 32.18 15.95 33.13 1.61 0.67 1.11

Equally Distributed: Low Disruption

2 1.61 0.9 1.6 0.64 0.42 0.75

3 1.42 0.79 1.33 1 0.6 1.02

4 1.67 0.88 1.68 1 0.59 1.02

5 1.86 1.06 1.88 1.36 0.83 1.4

6 2.16 1.25 2.28 1.49 0.93 1.56
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this is the first model formulation of an integer multicommodity 
flow problem with recourse and capacity constraints. A Lagrangian 
relaxation-based heuristic for solving the formulation was provided. 
The model can be applied to quantify the value of adaptive routing 
in response to network disruption over deterministic solutions and 
to consider the effects of disruption on shipper behavior. Numerical 
analysis was conducted on a real-world truckload network. Wher-
ever actual data, such as actual travel times, were not available 
because of privacy concerns, realistic assumptions were made. The 
numerical analysis shows that adaptive capacitated routing can lead 
to significant savings over nonadaptive deterministic routing behav-
ior. During high-severity disruptions, FDMs can benefit signifi-
cantly by investing in technologies that enable implementation of an 
adaptive routing process. The model can be used by FDMs to evalu-
ate the value of developing adaptive routing strategies that account 
for early information about disruption and avoid formation of freight 
bottlenecks.
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