
ical events and labor strikes. Companies can significantly reduce the
negative impact of delays on customer service level by keeping
redundant inventory or safety stock. Although safety stock protects
companies from disruptions or delays, this comes at a cost because
higher inventory levels tie up working capital and increase inventory
management costs, such as warehousing and damage rates. In addi-
tion, the higher inventory level increases the risks associated with
product obsolescence and perishability (3). Building supplier and
capacity redundancies in the supply chain can also reduce the impact
of disruptions; however, redundancies also increase fixed costs and
reduce competitiveness (4).

Continuous real-time monitoring of shipment cost and delivery
time is increasingly used by companies to reduce transportation
costs while avoiding costly delays or disruptions, high levels of
safety stocks, and system redundancies (5). For example, real-time
monitoring and decision support systems are especially relevant to
containerized multistage transportation chains for which alternative
modes or carriers are available at each stage. The principal focus of
this paper is the formulation and analysis of a mathematical model
for a new type of freight network assignment problem with recourse
defined in a dynamic environment and in the presence of probable
network disruptions or significant delays. Recourse refers to the abil-
ity of the shipper to update a routing strategy based on information
obtained about the state of the network disruptions. The adaptive
routing policy will help the shipper save costs. The paper develops
a mathematical model (a) to better capture shipper behavior in the
presence of network disruptions and rerouting and (b) to include the
heterogeneity in shipper routing behavior as a result of commodity
or product, mode, and logistics system characteristics. The model
presented in this paper is more suitable for national and regional
freight transportation and may not be applicable to urban freight
flows, which are dominated by multistop tours starting and ending
at depots.

LITERATURE REVIEW

Three strands of related research are reviewed: freight value of time,
freight network models, and online routing problems with recourse.

Although the evaluation of shippers’ value of time has not received
as much attention as the evaluation of passengers’ value of time, the
literature has clearly confirmed that freight value of time significantly
changes in the presence of delays or disruptions. The quantification
of freight value of time and reliability has been successfully under-
taken with econometric methods. It is widely accepted that shippers
and carriers have a higher valuation of time and reliability in congested
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Continuous real-time monitoring of shipment cost and delivery time is
increasingly used by companies to reduce transportation costs while
avoiding costly delays or disruptions. Recourse refers to the ability of
the shipper to update a routing strategy on the basis of information
obtained about the state of the network disruptions. An adaptive routing
policy is proposed to help shippers and carriers save costs by reacting
to information updates. Public transportation agencies can use the for-
mulation to predict the behavior of shippers under disruptions in multi-
modal transportation networks. A mathematical model is formulated
and analyzed; the model accounts for a new type of freight network
assignment problem with recourse defined in a dynamic environment
and in the presence of probable network disruptions or significant delays.
The mathematical model is intended (a) to capture shipper behavior
better in the presence of network disruptions and rerouting and (b) to
include the heterogeneity in shipper routing behavior as a result of
commodity or product, mode, and logistics system characteristics.
Results indicate that models that do not account for the likelihood of dis-
ruption can severely misrepresent freight system performance and flows
over the network, especially in situations in which freight is continuously
monitored and disruptions are either significant or frequent.

The development of cost-efficient supply chain transportation net-
works has significantly contributed to the outsourcing of manufactur-
ing activities to low-cost suppliers and the dispersion of economic
activity (1). In addition, ubiquitous and inexpensive tracking and com-
munication systems have allowed companies to heavily focus on lean
practices, such as just-in-time deliveries, as well as increasingly longer
transportation chains. At the same time, expectations for high levels
of customer service have grown. Thus, companies are using increas-
ingly sophisticated logistics systems to meet customer requirements
without an overall increase in operating costs (2).

Balancing customer service and transportation costs is complex
and delicate because of the high cost of disruptions or delays. Delays
or disruptions in the transportation system can be caused by recurrent
congestion or peak-season demand and any other nonrecurrent system
perturbation due to natural or manmade causes, such as meteorolog-
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situations or during disruptions. For example, one report recommends
that under congested conditions, the value of travel time should be
increased 2.5 times (6). A study by Cohen and Southworth indicates
that the value of time of freight trucks under congested conditions
can be between two and six times higher than the value of travel time
under normal operating conditions (7). The impact of commodity or
product type on the hourly cost of delay in truck transportation can
also be significant (8). The containerized transportation chains sur-
vey results have shown that logistics managers identify freight rates,
transit time, and reliability as the key transportation performance
indicators (9). Stated-choice surveys of logistics managers also indi-
cate that, on average, shippers’ willingness to pay for travel time
reductions have a fivefold increase when a transportation disruption
takes place. De Jong (10) and Massiani (11) discuss theoretical and
practical issues related to the evaluation of travel time savings in
freight transportation. Freight value of time and reliability under
congested conditions are explicitly incorporated in the proposed
model, as the shipper or carrier updates his or her knowledge of the
state of the freight network.

Freight network models have steadily evolved in the past three
decades. Several proposed models have been based on the spatial
price equilibrium concept using mathematical programming and
freight network assignment-based formulations (12–16). Most of
the mentioned works use deterministic models and do not focus
on the effect of parameter uncertainty on freight decision making.
Friesz et al. (17) and Unnikrishnan et al. (18) have developed models
that capture the impact of demand uncertainty on shipper pricing
and carrier network design decisions. However, the authors are not
aware of any work focused on modeling the effect of network dis-
ruptions and shipper routing decisions and resulting commodity or
product flows.

Under stochastic network conditions, the cost realizations may be
revealed to the shipper when his commodities traverse the network.
For example, once a shipper’s commodity or product reaches a node,
the shipper may learn the cost values associated with all arcs ema-
nating from that node. Using the observed values, the shipper can
update his knowledge and make inferences about the rest of the net-
work and then choose a routing policy for his goods. The routing
policy will determine the routes on which the shipper will send his
goods for different disruption scenarios. Similarly, a carrier can
update routes as a vehicle arrives at a terminal or network node. Such
problems are called online routing problems or routing problems
with recourse. The model and discussion presented in this research
apply to the freight decision maker (FDM) agent (shippers, carriers,
or third-party logistic providers) that can alter routing policies for
shipments or vehicles as a function of information updates regarding
the state of the network.

Several works in the network optimization area focusing on
online routing and assignment problems under stochastic conditions
are relevant to the research presented in this paper. Croucher (19)
and Andreatta and Romeo (20) studied the online shortest path prob-
lem on a network with stochastic topologies where the existence of
arcs was random and described by a probability distribution. Poly-
chronopoulos and Tsitsiklis provided an exact algorithm and several
heuristics for a more general variation of the problem with stochastic
arc costs described by using discrete probability distributions (21).
Cheung (22), Provan (23), and Waller and Ziliaskopoulos (24)
have developed efficient algorithms for time-invariant versions of
the online shortest path problems with different assumptions on the
characterization of cost uncertainties. Several other researchers have
studied variations of the online routing problem in time-varying
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networks where the information learned by the user and thus the
decision taken depend on the time of arrival at a node (25–28).

Unnikrishnan and Waller formulated the traffic assignment
problem with recourse as a convex mathematical program (29) and
solved it by using the algorithms developed by Polychronopoulos
and Tsitsiklis (21) as a subproblem in a successive linearization
framework. The authors are not aware of any work capturing the
impact of FDM recourse decisions in the event of network disrup-
tions and determining the resulting network flows.

PROBLEM DESCRIPTION

Consider a network G = (N, A), where N denotes the set of all nodes
in the network and A represents the set of all arcs in the network.
A finite set of FDMs wants to transport goods from a set of origins R
to a set of destinations S. Every FDM is assumed to transport K
commodity or product types. For easing up on the notation, a distinct
FDM is assumed to be associated with every origin–destination pair.
This assumption is not restrictive, and the methodology presented
in this paper is applicable even if this assumption is relaxed. Let D
denote the origin–destination matrix. Every element of D is rep-
resented as d k

rs, which represents the amount of good of type k ∈ K
to be transported from origin r ∈ R and destination s ∈ S. The arcs
are assumed to be under the control of carriers; different arcs can
correspond to different modes used by carriers. It is assumed that
on every arc, a carrier or mode has enough capacity to handle all
of FDM’s goods either on its own or by subcontracting to other
carriers.

The cost experienced by an FDM in transporting a commodity or
product on an arc (which corresponds to a specific carrier) is assumed
to be a linear function of three attributes—unit transportation cost
of transporting a commodity or product, unit travel time to traverse
the arc for commodity or product, and the unreliability parameter. The
unreliability parameter is based on the FDM’s experience in trans-
porting goods by using a particular carrier or mode. The reliability
parameter is assumed to capture all attributes other than travel time
and travel cost that affect FDM routing decisions.

The system is assumed to exist in multiple states or realizations
Ω corresponding to various network disruption scenarios. A discrete
probability distribution P is used to describe the system states. Each
system state corresponds to a vector of arcs attributes. For any
system realization ω ∈ Ω, let ca

kω and ta
kω denote the unit cost and 

unit travel time for transporting commodity or product k ∈ K on arc
a ∈ A. In the numerical example and without loss of generality, the
reliability parameter uk

a is assumed to be a property of the arc and to
not change with the system states.

Information Updates

An FDM progressively gets information about the system state by
observing or learning the state of the arcs when its goods traverse
the arcs. In this paper, it is assumed that whenever the goods reach
a node i ∈ N, the FDM learns the states of all outgoing arcs from
that node. Consider an FDM that wants to transport goods between
origin–destination pairs (r ∈ R, s ∈ S). The FDM observes the arcs
emanating from node r. The FDM learns that the travel time and
travel cost of an arc a′ emanating from node r to be t k

a′ and c k
a′,

respectively. Now based on this information, the FDM can elimi-
nate all scenarios from Ω where the travel time and travel cost on



arc a′ are not t k
a′ and ck

a ′. The FDM will then update its probability,
travel cost, and travel time matrices. Given the updated knowledge
about the possible system states, assume that the carrier sends all of
its commodities on arc a′. Once the commodities reach the tail node
of a′ (assume it to be node i ′ ∈ N), the FDM will observe the states
of all arcs emanating from node i ′ and update the probability, travel
cost, and travel time matrices.

At every node, the FDMs routing strategy, also known as routing
policy, involves choosing different arcs to transport goods depend-
ing on the state of the outgoing arcs. For example, consider a node
i ∈ N and let Γi represent the set of all outgoing arcs and Ψ(Γi )
represent the states of all outgoing arcs. For every possible state 
ψ ∈ Ψ(Γi), the FDM’s routing policy provides the next arc on which
the FDM will route its goods. A routing policy thus represents the
set of paths on which an FDM can possibly route the goods based
on the information received while traversing the network. There is
a probability associated with each path of the routing policy, which
depends on the probability distribution of the system states. Therefore,
an expected cost is associated with every routing policy.

Generalized Costs

Because the arcs used by the FDM depend on the system states, the
flow of a commodity or product on an arc also depends on the system
states. Let x kω

ars represent the flow of commodity or product k ∈ K
between origin r ∈ R and destination s ∈ S on arc a ∈ A in scenario
ω ∈ Ω. For any carrier corresponding to a unique origin–destination
pair (r ∈ R, s ∈ S), the cost of transporting commodity or product 
k ∈ K on a ∈ A in scenario ω ∈ Ω, Ckω

ars is assumed to be a weighted
linear combination of the transportation costs c a

kω, travel time ta
kω,

and reliability parameter u k
a. The transportation costs ca

kω denotes
the unit cost for transporting commodity or product k ∈ K and
incorporates besides freight rates any FDM or product-related char-
acteristics such as volume of sales or use of a just-in-time system.
The term ta

kω denotes the unit cost and unit travel for realization ω ∈ Ω;
that is, for a delay or disruption of a given magnitude there is an
associated cost increase that reflects the new valuation of the FDM’s
time. The reliability parameter uk

a is assumed to be a property of the
carrier or mode that is obtained from historical data or past perfor-
mance. The weights used to capture FDMs’ heterogeneity for the
trade-offs among travel costs, travel time, and unreliability for various
products can be obtained from surveys or discrete choice freight
models (10, 11, 30).

where w k
trs, w k

trs, and w k
urs represent the importance or weight 

associated with travel time, travel cost, and reliability for the FDM
corresponding to the origin–destination pair (r ∈ R, s ∈ S) for com-
modity or product k ∈ K. In this way it is possible to map product,
supply chain, and company characteristics that have been found to
significantly affect FDMs’ preferences and valuations of freight
transportation alternatives.

FORMULATION

The flow of commodity or product k ∈ K between origin–destination
pair r ∈ R, s ∈ S on arc a ∈ A under system realization ω ∈ Ω, 

C x w t w c w uk k k
a
k k

a
k k

a
k

ars ars trs trs urs
ω ω ω ω( ) = + +(( )

∀ ∈ ∈ ∈ ∈ ∈

x

a A k K r R s S

k
ars

ω

ω, , , , Ω
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x kω
ars is equal to the sum of flow on all routing policies connecting

origin–destination pair r ∈ R, s ∈ S and using arc a ∈ A under 
system realization ω ∈ Ω. Let Hrs denote the set of routing policies
connecting origin–destination pair r ∈ R, s ∈ S and let f k

h represent
the flow of commodity or product k ∈ K on a routing policy h ∈ Hrs.
Let δω

ah be an incidence matrix such that

Given xkω
ars, the cost of transporting commodity or product k ∈ K on

a ∈ A in scenario ω ∈ Ω can be written as

The contribution of link a to the expected cost of routing policy h ∈ H,
Ch

a can be calculated as

Thus the expected cost of a routing policy h ∈ H, E[C(h)] can be
calculated as

Since the unit costs are assumed not to vary with flow, the system
objective coincides with every FDM’s objective. Therefore, mini-
mizing expected total cost will correspond to minimizing every
FDM’s individual costs for every commodity or product. Thus, the
mathematical programming formulation can be written as

subject to

Equation 6 constrains the sum of flow on all routing policies for
commodity or product k ∈ K connecting origin–destination pair r-s
to be equal to the demand for commodity k between that specific
origin–destination pair.

SOLUTION ALGORITHM

The preceding formulation can be solved by assigning flows to the
shortest expected cost routing policy for every commodity or prod-
uct and for every origin–destination pair. The shortest expected cost
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policy can be calculated with the R-SSPR algorithm developed by
Polychronopoulos and Tsitsiklis for the cost structure as defined in
this paper (21). The procedure is as follows:

Step 1. Cost calculation. Calculate the unit cost for every arc for
every possible system realization as

Step 2. Determining feasible information sets. As the goods
traverse the network, the FDM learns the set of possible system real-
izations by eliminating the realizations that are not consistent with
the observed costs and travel time. The set of possible system real-
izations is defined as the information set. If the cardinality of the set
of system states is �Ω�, then there are 2�Ω � − 1 information sets. For
example, if Ω = {1, 2, 3}, then the set of feasible information sets
Ξ = {1, 2, 3, 12, 23, 13, 123}. Let Ξm represent set of subsets of Ξ
with cardinality m. For example, Ξ1 = {1, 2, 3}, Ξ2 = {12, 23, 13},
and Ξ3 = {123}.

Step 3. Calculate minimum expected cost routing policy using
the R-SSPR (21). The extra notation used in the expected cost routing
policy algorithm is as follows:

Notation
ξ = information set corresponding to carrier’s knowl-

edge about system conditions;
ψ = node state observed by the carrier when a node

is reached;
V[i/ξ, ψ] = expected cost of routing policy for transporting

goods from node i to destination s given that the
carrier has knowledge of information set ξ when
the goods arrive at node i and learns the node
state ψ after reaching node i;

pathptr[i/ξ, ψ] = next node to be chosen by the same carrier;
E[i/ξ] = expected cost of routing policy for transporting

goods from node i to destination s given that the
carrier has knowledge of information set ξ when
the goods arrive at node i;

SEL = scan eligible list;
tempV[i/ξ, ψ] = variable defined to store temporary values of

V[i/ξ, ψ];
tempE[i/ξ] = variable defined to store temporary values of

E[i/ξ];
p[ψ/ξ] = probability of a carrier observing state ψ given

the information set ξ; and
C kω(ψ)

(v,w)rs = cost of transporting commodity/product k ∈ K on
(v, w) ∈ A in system state ω(ψ) ∈ Ω correspond-
ing to node states ψ ∈ Γ(v).

The basic premise behind the algorithm is that when the goods
arrive at a node v ∈ N, the FDM’s knowledge of the system will be
any element of the information set ξ ∈ Ξ. Given the carrier’s current
knowledge of the system states, he then observes ψ ∈ Ψ(Γv) the states
of all outgoing arcs from node v. Given the state he observes, ψ, he
then updates his information set ξ to ξ′. Information set ξ′ will be a
subset of ξ as the FDM will learn new information about the state of
the system, eliminate states that are not possible, or in the worst case,
not learn anything and retain the information set ξ.

For each node w ∈ W that can be reached from node v, the tem-
porary label for the expected cost, tempV[v/ξ, ψ], can be calculated
as the cost of arc (v, w) under the observed system state plus the cost

C w t w c w u a Ak k
a
k k

a
k k

a
k

ars trs crs urs
ω ω ω= + +( ) ∀ ∈ , kk K r R s S∈ ∈ ∈ ∈, , , ω Ω
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of traveling from node w to the destination given that the information
set the carrier has while arriving at w is ξ′. If tempV[v/ξ, ψ] is less
than the current label V[v/ξ, ψ], then the current label is updated to
be equal to the temporary label. Once the labels V[v/ξ, ψ] are cal-
culated for each possible node state Ψ ∈ Ψ(Γv), one can calculate
the temporary label for the expected cost to travel from node v to the
destination given the information set ξ, tempE[v/ξ], by multiplying
tempV[v/ξ, ψ] with the respective conditional probabilities of observ-
ing node state ψ given the information set ξ and summing up across
all possible node states. If tempE[v/ξ] is less than the current label
V[v/ξ], the current label is updated to be equal to the temporary label.
Then node v is added to the scan eligible list.

An important property exploited by the algorithm is that to calculate
the expected cost of routing policy from every node to the destina-
tion for information sets of cardinality k, Ξk, one needs the expected
cost of routing policy from every node to the destination for infor-
mation sets of cardinality less than k. Thus the optimal routing costs
are calculated for information sets in increasing order of cardinality.
That is, first calculate the costs to travel from each node to the des-
tination assuming that information sets of cardinality 1 is possible
(which can be trivially calculated with Djikstra’s algorithm). Then
calculate expected cost for routing policies for information sets of
cardinality 2 at each node to the destination. The process can be
repeated until the information set of cardinality �Ω� is reached.

The current example assumes that the FDM gets information about
all outgoing arcs. The preceding algorithm can be easily modified to
consider the case in which the FDM at each node gets information
about a set of arcs through intelligent transportation system devices
by modifying the way the current information set is updated to get
a new information set. The pseudocode of the RSSPR algorithm fol-
lows. Polychronopoulos and Tsitsiklis provide details on efficient
heuristics to speed up the process (21).
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Step 4. Flow assignment. For every origin–destination pair and
every commodity or product, use the algorithm presented in Step 3
to determine the shortest expected cost routing. Set the flow on the
shortest routing policy for every origin–destination pair for every
commodity or product equal to the demand for that commodity or
product between the origin–destination pair. From the shortest
expected cost policy, determine the link policy incidence matrix for
every scenario. Use Equations 1, 2, and 4 to determine the flow
and cost of commodities for every arc and the resulting expected
cost of routing policy for every commodity or product for every
origin–destination pair.

CASE STUDY

This section demonstrates the advantage of the adaptive strategy with
recourse against two deterministic planning models on a realistic
freight network. The authors obtained data from a freight network
involving shipments from a major distribution center to national-
level food chain stores in the Portland, Oregon, area. For simplicity,
some details are omitted; however, the network attempts to mimic
key aspects of actual operating conditions. In the network, 32 nodes
represent distribution centers in Idaho, Washington, Nevada, and
California (Figure 1); the 32 nodes have 20 origins and one destina-
tion (Portland). Three types of products or commodities are being
shipped: dry, frozen, and refrigerated. The demand data provided in
Table 1 represent truckload shipments. Travel costs for fuel and
operating expenses are $1.45, $1.65, and $1.75 per mile per truck
for the dry, refrigerated, and frozen products, respectively. For
simplicity, in the example the costs on the arcs do not vary with
origin–destination pairs.

The network has three types of arcs: arcs lying on normal shipping
routes, arcs lying on alternate shipping routes, and supplementary
arcs that are not generally used. The travel times are assumed to be
similar to the ones provided by Google Maps. Supplementary routes
are created by introducing a 25% time penalty and a 100% cost
penalty on the shortest cost routes during normal conditions. These
additional cost represent the cost of business during disruptions and
when using different carriers, modes, or routes. However, under
disruption of the normal or alternate shipping arcs or routes, these
supplementary arcs and routes may become cheaper. The network
has a total of 55 arcs, and it is assumed that every arc has a base
reliability of 10.

Scenario 1 is assumed to be the base case (normal operating
conditions). Network disruptions are generated stochastically, and
travel costs, travel times, and reliability values are scaled up cor-
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respondingly. Both moderate and extreme disruption levels are tested.
For example, under a extreme disruption for any arc a ∈ A,

where

� = uniform random number between 0 and 1,
SF = scaling factor within that severity level, and
�ψ� = factor used to scale up the impact of disruption based on the

cardinality of the node states of the upstream arcs. Under
moderate disruption �ψ� = 1 is assumed.

Different scaling factors, SF, are tested for both types of dis-
ruptions. Similarly, the travel times and reliability parameters were
scaled up. The value of the weighting parameters used to calculate
generalized cost (Equation 2) assumed for this study are

• 0.0957, 0.0029, and −0.1219 for travel time, costs, and reliability
parameters, respectively, under normal operating conditions and

• 0.4579, 0.0029, and −0.3657 for travel time, costs, and reliability
parameters, respectively, under disruptions.

Hence, the travel time weight increases five times, the reliabil-
ity weight increases three times, and the cost parameter remains

c ca
k

a
kω ψ= +( )1 1 8SF� ( )

FIGURE 1 Distribution center locations [red, green, and 
blue denote origin, destination (Portland), and additional nodes,
respectively].



unchanged under a disruption scenario. Higher reliability is desir-
able, hence the negative sign associated with this parameter and the
positive sign associated with time or cost parameters. These changes
in the weight parameters under disruptions are consistent with findings
obtained in the literature and stated preference carrier or shipper
surveys (9).

The performance metric used was the percent gain obtained by
the adaptive strategy over the nonadaptive strategy:

where Znonadaptive is the system cost when the FDM routes the goods
on the normal routes even under disruptions. Two cases are possible:

1. In the base case, the FDM uses the costs under nondisruption
scenarios to route the goods; the FDM does not recognize that there
may be changes in the state of the network, that is, as if the FDM
assumes �ψ� = 0. The gain in this case is denoted Gbase.

2. In the expected cost case, the FDM uses the expected costs
considering the base case and the disruptions. The gain in this case
is denoted GEV.

In the stochastic optimization literature (31)
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This is the efficiency obtained by accounting for uncertainty in
the model over the deterministic scenario. The routing costs under
both nonadaptive scenarios are deterministic, and no rerouting is
involved. All the results presented are average gains obtained from
30 runs generated with random seeds.

ANALYSIS OF CASE STUDY RESULTS

Three experiments are run to study the effect of (a) disruption severity
levels, (b) number of uncertain scenarios, (c) distribution of scenario
probabilities, and (d) flows on supplementary arcs.

Disruption Severity Levels

In the disruption severity levels experiment, the cost parameters
under high disruption are scaled up by the ordinality of the node
state, the scaling factor, and a random number between 0 and 1; the
cost parameters under low disruption are scaled up only by a random
number between 0 and 1, and the scaling factor was used to scale up
the cost factors. Four scenarios are assumed in the network, that is,
�Ω � = 4 (each arc could take up to four values). In the high-disruption
scenario, the number of scenarios and the number of outgoing arcs
affect the ordinality of node states �ψ� in Expression 8. The number
of scenarios also affects the cardinality of the information sets 
(15 in this case).

In the equally likely case, all scenarios were assumed to have equal
probability; in the asymmetric case, Scenario 1 (normal conditions)
has the highest probability of Ω1 = 0.7, and the other three scenarios
were assumed to have a probability of Ω2 = Ω3 = Ω4 = 0.1.

It is worth observing that the value of updated information is
higher under large disruptions (Table 2). The effect of the initial cost
differences to transport the three products is relatively minor com-
pared with the changes caused by the disruption scale. Planning for
base case normal operating conditions yielded significantly worse
solutions compared with planning for the expected value case. When
planning was done with the expected values, the gains appeared
to stabilize with an increase in scaling factors. The savings of the
adaptive strategy over the expected value case were higher in 
the asymmetric case compared with the equally likely case. Hence
the value of information and updates is higher when the disruption
scenarios are not equally likely.

Number of Uncertain Scenarios

The second set of experiments studied the effect of number of 
scenarios on the average gain (Table 3). The severity scaling factor
was set to be equal to 1. In this experiment, a changing number of
scenarios affects the cardinality of the information set and the value
of �ψ�. The solution or running time increases with the number of
scenarios, and thus the gains are obtained at higher running times.

For almost all the cases, the gains over expected value strategy
were found to increase when the number of scenarios increased to
five and then to stabilize or decrease. In the high-disruption case, the
gains over the base case routing strategy were found to increase with
an increase in number of scenarios. In the low-disruption case, the

G
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i

i

=
=
∑
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TABLE 1 Truck Load Demands to Portland

Origin Commodity or Product Weekly Truck Load

Burlington, Ore. Refrigerated 1

Spokane, Wash. Dry 1

Vancouver, Wash. Dry 1

Tacoma, Wash. Dry 1

Idaho Falls, Idaho Dry 1

Aberdeen, Idaho Frozen 1

Burley, Idaho Frozen 2

Boise, Idaho Refrigerated 1

Fruitland, Idaho Frozen 1

Las Vegas, Nev. Refrigerated 1

Reno, Nev. Dry 1

Long Beach, Calif. Frozen 1

Riverside, Calif. Dry 1
Frozen 1
Refrigerated 1

Ontario, Calif. Dry 2
Frozen 2
Refrigerated 2

Los Angeles, Calif. Dry 4
Frozen 9
Refrigerated 2

Fresno, Calif. Dry 4
Refrigerated 2

Salinas, Calif. Refrigerated 1

Stockton, Calif. Dry 9

Oakland, Calif. Dry 1

San Francisco, Calif. Frozen 1
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As the probability of Scenario 1 increases, the gain obtained over
the base case strategy decreases. In the low-disruption case, as the
probability values vary, the gain obtained over expected value strategy
remains constant and stable. However, in the high-disruption strategy,
the gain over the expected value strategy was found to increase with
the increase in probability of Scenario 1. This is an interesting result
because it states that as the probability increases for the conditions

TABLE 2 Percentage Gain

Base EV

SF Dry Frozen Ref. Dry Frozen Ref.

Equally Likely—Low Disruption

0.5 0.30 0.53 0.21 0.24 0.31 0.16

1 1.14 1.41 0.69 0.78 0.86 0.45

1.5 3.25 3.90 2.64 2.30 2.75 2.12

2 9.75 10.83 9.09 5.05 5.44 4.88

2.5 18.94 20.27 18.08 5.69 6.00 5.67

3 29.63 31.15 28.60 5.47 5.75 5.54

Asymmetric—Low Disruption

0.5 0.23 0.40 0.16 0.22 0.28 0.15

1 0.89 1.10 0.54 0.74 0.77 0.43

1.5 2.62 3.12 2.12 2.22 2.55 1.87

2 7.95 8.79 7.39 7.08 7.73 6.94

2.5 15.52 16.53 14.79 12.65 13.15 12.44

3 24.34 25.48 23.46 16.37 16.59 16.05

Equally Likely—High Disruption

0.5 4.32 5.15 3.86 3.33 3.86 3.31

1 29.02 31.00 28.53 5.7 6.22 6.06

1.5 62.92 65.73 62.45 4.49 5.03 5.04

2 98.61 101.87 97.79 4.1 4.48 4.51

2.5 134.60 138.26 133.41 3.97 4.18 4.26

3 170.62 174.71 169.09 3.84 4 4.11

Asymmetric—High Disruption

0.5 3.47 4.11 3.09 3.05 3.5 2.83

1 23.80 25.32 23.36 15.8 16.48 16.05

1.5 51.80 53.89 51.33 19.21 19.57 19.69

2 81.26 83.62 80.47 19.5 19.92 19.64

2.5 110.97 113.57 109.86 19.48 19.48 19.8

3 140.71 143.58 139.30 19.43 19.31 19.66

NOTE: SF = scaling factor; EV = estimated value; ref. = refrigerated.

TABLE 3 Number of Scenarios

Number of
Base EV

Scenarios Dry Frozen Ref. Dry Frozen Ref.

High Disruption

2 7.03 8.78 6.80 2.83 3.44 3.34

3 18.92 20.14 18.14 7.77 8.30 8.35

4 29.02 31.00 28.53 5.70 6.22 6.06

5 39.30 41.55 39.09 7.44 7.34 7.67

6 52.78 55.54 53.30 5.35 5.49 5.70

Low Disruption

2 0.85 1.08 0.48 0.18 0.13 0.08

3 1.15 1.43 0.79 0.57 0.77 0.38

4 1.14 1.41 0.69 0.78 0.86 0.45

5 1.16 1.40 0.67 0.91 0.97 0.51

6 1.01 1.30 0.59 0.87 0.96 0.51

TABLE 4 Probabilities of Scenario 1

Probability of
Base EV

Scenario 1 Dry Frozen Ref. Dry Frozen Ref.

High Disruption

0.25 29.02 31.00 28.53 5.70 6.22 6.06

0.3 28.98 30.96 28.52 6.40 6.93 6.76

0.35 28.44 30.37 27.96 7.22 7.75 7.58

0.4 28.00 29.89 27.52 8.13 8.66 8.48

0.45 27.59 29.44 27.11 9.15 9.68 9.50

0.5 27.11 28.92 26.65 10.28 10.79 10.59

0.55 26.44 28.19 25.98 11.54 12.03 11.79

0.6 25.77 27.46 25.31 12.96 13.42 13.16

0.65 24.96 26.57 24.51 14.43 14.95 14.63

0.7 23.80 25.32 23.36 15.89 16.48 16.05

Low Disruption

0.25 1.14 1.41 0.69 0.78 0.86 0.45

0.3 1.13 1.39 0.68 0.78 0.86 0.45

0.35 1.11 1.37 0.67 0.78 0.85 0.45

0.4 1.09 1.35 0.66 0.78 0.85 0.45

0.45 1.07 1.32 0.65 0.78 0.84 0.45

0.5 1.04 1.29 0.63 0.78 0.83 0.45

0.55 1.02 1.26 0.62 0.78 0.82 0.45

0.6 0.98 1.21 0.59 0.77 0.81 0.44

0.65 0.94 1.16 0.57 0.76 0.79 0.44

0.7 0.89 1.10 0.54 0.74 0.77 0.43

gains over the base case strategy were found to stabilize and reduce
when the number of scenarios increased from five to six. Thus the gains
obtained need not always increase with the increase in the number
of uncertain states, which validates the need for such a model to
evaluate the actual gain. The gain is also highly dependent on the
type of product in some situations, such as under low disruption.
However, high disruptions overshadow any influence that product
type may have.

Distribution of Scenario Probabilities

The third set of experiments studies the effect of various values of
probabilities on the gains (Table 4). There are four scenarios, and the
scaling factor is set to be equal to 1. Scenario 1, which is the normal
base operating conditions, is assumed to have a probability of p1 vary-
ing in increments of 0.05 from 0.25 to 0.7. The other three scenarios
are assumed to be equally likely and have a probability distribution of

1

3
1−( )p



being normal, the performance of the expected value strategy in
relation to the adaptive strategy may decrease.

Again, the gain is highly dependent on the type of product in
some situations, for example, under low disruption. However, high
disruptions overshadow any influence that product type may have.

Flows on Supplementary Arcs

A final set of experiments aims at comparing the percentage of flows
on supplementary arcs (corresponding to other modes or other car-
riers that the FDM will not use during normal operating conditions)
to percentage of flows on normal shipping routes. The performance
metric used was the ratio of flows on supplementary arcs and normal
shipping routes expressed as a percentage. With An and As the set of arcs
used under normal operating conditions and the set of supplementary
arcs, respectively, where An � As = {}, An ∪ As = A, then for adaptive
routing, the flow ratio for commodity k is calculated as follows:

The ratio was calculated for both the high- and low-disruption
scenarios for each commodity and for total flows for six scaling
factors ranging from 0.5 to 3.0. The ratio was calculated under
online adaptive routing and when routing was conducted with the
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expected cost scenario. The ratio of flow on supplementary arcs to
normal shipping route arcs increases with an increase in the mag-
nitude of disruptions (Figure 2). The ratio of flow on supplementary
arcs to flow normal arcs is higher in the high-disruption scenario.
When the FDM makes routing decisions by using the expected cost
scenario, the flow ratio is nearly half the ratio under adaptive routing
conditions. Considering the significant cost benefit achieved by the
FDM, the adaptive routing strategy leads to more efficient use of
other modes or other carriers that the FDM will not use during
normal operating conditions (Figure 2).

The use of additional arcs also has implications for transportation
agencies. As more supplementary routes are used, the impact of
disruption can be distributed more uniformly across the network.

Some of the trends obtained cannot be generalized to all networks.
The actual gain obtained by the adaptive strategy may depend on the
nature of disruption, network topology (number of rerouting options
available), cost parameters on the alternate options, and so forth.
However, this section demonstrates the usefulness of the adaptive
model in a realistic freight network. Various FDMs (carriers, shippers,
and freight operators) can apply this model and estimate the gain
obtained by using an adaptive strategy. Depending on the estimates
of the gain, they can then decide if it will be worthwhile to invest in
communication and sensor technologies that provide up-to-date
real-time information on the conditions. In addition, transportation
agencies may invest in information systems to provide real-time
information to carriers, because this may create a substantial eco-
nomic benefit by reducing logistics costs and spread out utilization
of the network when disruptions do take place.

(a) (b)

(d)(c)

FIGURE 2 Ratio of arc flows in artificial arcs to normal arcs: (a) high disruption and
expected scenario routing, (b) high disruption and online routing, (c) low disruption and
expected scenario routing, and (d) low disruption and online routing.



CONCLUSIONS

This research provides an online freight network assignment model
with transportation disruptions and recourse. The model can better
reflect the use of real-time tracking technology. Public agencies can
use this model to predict the behavior of FDMs (carriers or shippers)
when significant disruptions take place. The presented methodology
can be used to estimate network flows in situations in which dis-
ruptions are either significant or frequent. Given the large difference
between freight agents’ preferences under normal and disruption
conditions, models that do not account for the likelihood of disruption
can severely misrepresent freight system performance and flows
over the network. Private companies can also apply the proposed
model. Freight agents and decision makers can significantly benefit
from adopting an adaptive strategy as the severity of the disruption
increases.
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