Algorithms to Quantify Impact of Congestion on Time-Dependent Real-World Urban Freight Distribution Networks

Ryan G. Conrad and Miguel Andres Figliozi

Urban congestion presents considerable challenges to time-definite transportation service providers. Package, courier, and less than truckload operations and costs are severely affected by growing congestion levels. With congestion increasing at peak morning and afternoon periods, public policies and logistics strategies that avoid or minimize deliveries during congested periods have become crucial for many operators and public agencies. However, in many cases, these strategies or policies can introduce unintended side effects, such as higher labor costs, shorter working hours, and tighter customer time windows. Research efforts to analyze and quantify the impact of congestion are hindered by the complexities of vehicle routing problems with time-dependent travel times and the lack of networkwide congestion data. Research used real-world road network data to estimate travel distance and time matrices, land use and customer data to localize and characterize demand patterns, congestion data from an extensive archive of freeway and arterial street traffic sensor data to estimate time-dependent travel times, and an efficient time-dependent vehicle routing (TDVRP) solution method to design routes. Novel algorithms were developed to integrate real-world road network and travel data to TDVRP solution methods. Results show the impact of congestion on depot location, fleet size, and distance traveled.

Congested urban areas present considerable challenges for less-than-truckload (LTL) carriers, courier services, and industries that require frequent and time-sensitive deliveries. With congestion increasing at peak morning and afternoon periods, public policies and logistics strategies that avoid or minimize deliveries during congested periods have become crucial for many operators and public agencies. However, in many cases, these strategies and policies can introduce unintended side effects, such as higher labor costs, shorter working hours, and tighter customer time windows.

Although current research on vehicle routing algorithms is extensive, much less attention has been given to investigation of the impact of congestion on carrier operations. Furthermore, most algorithms for solving the time-dependent vehicle routing problem (TDVRP) found in the existing literature do not deal with the estimation of distance and time-dependent travel time matrices. Thus, this research focuses on two primary objectives: (a) develop efficient algorithms to apply TDVRP solution methods to actual road networks by using historical traffic data with a limited increase in computational time and memory, and (b) utilize Google Maps open-source application programming interface (API) and network data to produce distance and travel time matrices. To the authors’ knowledge, no research effort has integrated time-dependent routing algorithms, historical traffic data, real-world road network data, and public open-source APIs to incorporate the impact of congestion on delivery routes.

LITERATURE REVIEW

This section covers two main areas of research: (a) the effects of congestion and travel time variability on vehicle routes and logistics operations and (b) TDVRP solution algorithms and their application to urban areas.

Direct and indirect costs of congestion on passenger travel time, shipper travel time and market access, production, and labor productivity have been widely studied and reported in the literature. The work of Weisbrod et al. provides a comprehensive review of this literature (1). Substantial progress has been made in the development of econometric techniques to study the joint behavior of carriers and shippers relative to congestion (2, 3).

Survey results suggest that the type of freight operation has a significant influence on how congestion affects carriers’ operations and costs. Survey data from California indicate that congestion is perceived as a serious problem for companies specializing in LTL, refrigerated, and intermodal cargo (4). Similar conclusions are reached by reports analyzing the effects of highway limitations and traffic congestion in the Portland, Oregon, region (5, 6). Golob and Regan identified a positive relationship between the level of local congestion and the purchase of routing software (7). Carriers that do not follow regular routes, such as for-hire carriers, tend to place a higher value on the use of real-time information to mitigate the effects of congestion and logistical services to plan fleet deployments (8). Other researchers attribute the scant usage of TDVRP algorithms to the lack of reliable time-dependent travel time data, which can be particularly expensive or difficult for small carriers to obtain (9). These authors recommend the implementation of open-access online TDVRP and data services to increase the efficiency of routes in congested urban areas.

Another line of research investigated carrier reactions to toll measures intended to shift freight traffic to off-peak hours. Holguin-Veras et al. investigated the effects of congestion charges in New York City and found that delivery times are heavily dictated by customer time windows (10). Congestion charges increase carriers’ operating costs while inducing little shifting of deliveries from peak to off-peak hours. This suggests an inelastic relationship between freight congestion charges and routes with time-definite delivery times. Quak and Koster...
presented a methodology to quantify the impact of delivery constraints and urban policies by using a fractional factorial regression (11). They found that vehicle restrictions and delivery curfews have a compounding effect on customer costs, whereas vehicle restrictions alone are costlier only when vehicle capacity is limited. There is little research into the effects of congestion on vehicle route characteristics. Figliozzi analytically modeled routes (12), extending Daganzo’s continuous approximations (13), and analyzed how routing constraints and customer service durations affect route characteristics by using a classification based on supply-chain characteristics. This analysis showed that a decrease in travel speed severely affects total distance traveled for routes with time window constraints, whereas capacity constrained routes are less affected. The impact of travel time reliability on LTL delivery was also analyzed by using continuous approximations and real-world data (14). This research concludes that travel time variability has a significant impact on carrier costs when average distance to delivery areas increases and average travel speed decreases.

Classic versions of the vehicle routing problem (VRP) such as the capacitated VRP or VRP with time windows (VRPTW) have been widely studied. However, time-dependent problems have received considerably less attention. Figliozzi presented a comprehensive review of TDVRP approaches and an efficient TDVRP algorithm (15); that work also creates benchmark problems for the TDVRP altering the classical VRPTW Solomon instances. Fleischmann et al. reviewed the adaptation of the VRP algorithms to time-dependent data from traffic information systems in the city of Berlin (16). Eglese et al. analyzed the construction of a time-dependent travel time database (17) by using Dijkstra’s algorithm for time-dependent links. Eglese et al. applied their methodology to a real-world network in England. However, these research efforts do not incorporate into their analyses the influence of time windows and recurring bottlenecks or the impact of congestion on fleet size and total distance traveled.

PORTLAND, OREGON, CASE STUDY

Considered a gateway to international sea and air freight transport, the city of Portland, Oregon, has established itself as an important hub for international and domestic freight movements. Its favorable geography for both international ocean and domestic river freight via the Columbia River is complemented by its highway connections. I-5 is the most important freeway connecting the West Coast from Mexico to Canada as well as southern California ports and main West Coast population centers (5). The I-5 freeway is also used by many carriers delivering in Portland and the city’s surrounding suburbs because it provides the main north–south freight corridor through the city of Portland.

Recent increases in regional traffic congestion have negatively affected freight operations. A recent report investigated the effects of congestion on Portland-area businesses and LTL deliveries (5). That report provides insightful yet qualitative information on various strategies used by businesses to cope with congestion, additional delivery costs, and uncertainty. The report indicates that congestion has made some afternoon deliveries infeasible, which requires that deliveries be made during nonbusiness hours early in the morning. However, avoiding congestion by shifting deliveries to early morning generates additional costs by reducing route durations. In some cases, early deliveries are not feasible near residential areas where parking problems and noise can lead to sound or traffic ordinance violations and conflicts with residents (5).

The recurrent effects of traffic congestion at peak periods present daily challenges to LTL carriers in the Portland metropolitan area, represented by a numerical analysis presented in a later section. Customer data and depot locations are generated by using a land use zoning map of the Portland metropolitan area. Network and congestion data sources, including recurrent bottlenecks, are described, as is a methodology for applying TDVRP algorithms to real-world networks. The methodologies and algorithms developed in this research assume that customers’ demands and time windows are known a priori, for example, the night before delivery. Congestion data related to nonrecurrent conditions, such as due to accidents, is not analyzed and is left as a future research topic.

DATA SOURCES

Two main data sources were used in this research: Google Maps API for implementation of the TDVRP algorithm and the Portland Transportation Archived Listing (PORTAL) for obtaining historical travel time data.

Overview of Google Maps API

The Google Maps API allows access to the up-to-date street network in the studied region with a high level of geographical detail. The open-source application allows for considerable freedom in modifying the program and user interface (18). Figure 1 shows the process of creating customer distributions and obtaining optimized routes from the TDVRP algorithm as implemented with the API. The API consists of several interfaces:

- A customer selection screen where a set of customers and a single depot can be created by clicking on locations on the map. A coordinate output is provided that is then copied into a text (.txt) file.
- An interface that calculates the shortest paths between pairs of customers and constructs the distance and travel time origin–destination matrices. Distance and travel time matrices are estimated and stored as text files.
- Travel speed, occupancy and vehicle flow data from traffic sensors used to incorporate the impact of congestion on travel times.
- A solution interface where solution sets output from the TDVRP algorithm can be loaded and plotted to provide a visual verification of results.

Perhaps the greatest advantage of the API is that the open-source software and high-quality network data can be accessed free of charge from http://code.google.com/apis/maps. This together with the TDVRP solution algorithm developed to interface with the API offers very-low-cost solutions for route planning and optimization while allowing access to detailed and accurate network data such as road hierarchy and restrictions (e.g., one-way streets or no-left-turn movements at intersections). The effects of congestion are included by modifying the travel times initially calculated by Google Maps. After the TDVRP algorithm design the routes, the API interface can be used to obtain detailed driving directions.

Simulating Congestion Effects

Google Maps provides reasonable travel time estimations during uncongested periods. However, to increase the accuracy of travel time estimations, highway sensor data are used. For example, segments
1. Select Customers

Customers can be selected by clicking once on a location on the map. The first selection is the depot. Alternatively, customer locations in decimal latitude-longitude format can be uploaded.

2. O-D Matrices

The customer coordinate text file is uploaded to the Driving Distance screen where Google Maps calculates the free-flow travel time and distance between each pair of customers.

3. Calculate Results

Travel time data from PORTAL for the bottleneck locations and the free-flow speed O-D matrix are inserted into the speed function. Bottleneck coordinates are entered separately into the VRP algorithm along with the speed function. Optimized routes can be displayed in a route plotting interface in Google Maps. Results are also provided for several performance criteria including number of required vehicles, total driving distance and travel time.

FIGURE 1 Overview of TDVRP solution methodology and integration of Google Maps API.
Data obtained from PORTAL are also used to model the impact of traffic queuing on the surrounding network. The areas of reduced travel speed for each bottleneck location are assumed as a function of the measured occupancy and vehicle inflow and outflow rates at each bottleneck location. Research has shown that traffic queues often begin to form at occupancies approximately equal to or greater than 20% \((20)\), but according to speed flow data, queues may form at occupancies as low as 13%. From these queuing concepts and assumptions, the radius of the area of travel speed reduction around each bottleneck where vehicle travel speed reduced is varied in proportion to the difference in the inflow and outflow rates multiplied by average vehicle spacing when the occupancy is above a certain threshold value. Strictly, this assumes that there is conservation of vehicles (i.e., no vehicles enter or exit the road segment in question) and ignores the presence of moving traffic queues.

The travel speeds used in this research are calculated from 15-min archived travel time data averaged for the year 2007 along the I-5 freeway corridor from the Portland suburb of Wilsonville to Vancouver, Washington. These data are sufficient to demonstrate the proposed methodology, but consideration of seasonal or monthly variability in travel time is important for many LTL carriers and is feasible via PORTAL. In this research, it is assumed that carriers account for only recurrent congestion and plan their routes the night before making the deliveries.

METHODOLOGY

TDVRP Algorithm Overview

Figliozzi presented a description of the TDVRP algorithm used in this experiment, along with a full TDVRP formulation \((15)\). Because of hard time window constraints, the primary objective is the minimization of the number of vehicles or routes; the secondary objective is minimization of the travel time or distance. The TDVRP solution algorithm consists of a route construction phase and a route improvement phase, each using two separate algorithms (Figure 3). During route construction, the auxiliary routing algorithm \(H_r\) determines feasible routes with the construction algorithm \(H_c\) assigning customers and sequencing the routes. Route improvement is done first with the route improvement algorithm \(H_i\), assigning customers and sequencing the routes. Route improvement is done first with the route improvement algorithm \(H_i\), which compares similar routes and...

FIGURE 2 Example with bottleneck locations and areas of effective travel speed reduction.

FIGURE 3 TDVRP solution method.
consolidates customers into a set of improved routes. The service time improvement algorithm \(H_{s} \) eliminates early time window violations and then reduces the route duration without introducing additional early or late time window violations; these tasks are accomplished by using the arrival time and departure time algorithms \(H_{d} \) and \(H_{p} \), respectively, and customers are subsequently resequenced as necessary. It is with these algorithms that the POR-TRT algorithms are inserted into the solution algorithm.

Notation

For the following travel time algorithms, the total depot working time \([e, l] \) is partitioned into a set of \(p \) time periods \(T = \{ T_1, T_2, \ldots, T_p \} \). Each traffic bottleneck location \(\beta_m \in \mathbb{B} = \{ \beta_1, \beta_2, \ldots, \beta_n \} \) is assigned the following data at each time partition \(T_k \in T \):

\[
\begin{align*}
O_{k,m}^n &= \{O_{\text{inflow}}, \text{table of occupancy values for each time period} T_k \in T \text{ and bottleneck } \beta_m \} = \beta; \\
U_{(\text{inflow})}^n &= \{U_{\text{inflow}}, \text{table of vehicle flow inflow and outflow rates for each time period} T_k \in T_k \text{ and bottleneck } \beta_m \}, \text{ respectively; and} \\
v_k^n &= \{v_{\text{inflow}}, \text{table of congested travel speeds obtained from PORTAL} \}.
\end{align*}
\]

All data are collected from PORTAL, and the point source location of each traffic bottleneck is assumed to be midway between detector loops. The algorithms include the following adjustable parameters for each bottleneck location:

\[
\begin{align*}
\beta_m \in \mathbb{B} &= \{ \beta_1, \beta_2, \ldots, \beta_n \}; \text{ set of initial radius values at time } t = 0; \\
L_m \in L &= \{ L_1, L_2, \ldots, L_m \}; \text{ set of average vehicle spacing values;} \\
\bar{O}_m \in \bar{O} &= \{ \bar{O}_1, \bar{O}_2, \ldots, \bar{O}_m \}; \text{ set of threshold occupancy percentages that determine the expected onset of traffic queuing; and} \\
\bar{v}_n &= \{ \bar{v}_1, \bar{v}_2, \ldots, \bar{v}_n \}; \text{ set of free-flow speeds.}
\end{align*}
\]

Table 1 contains a complete listing of variable and function definitions.

Traffic Queuing Algorithm

The following is a summary of the \(H_{s} \) algorithm that assembles a table of bottleneck radii \(R_m \) for each bottleneck \(\beta_m \) and time period \(T_k \). The algorithm requires the input data arrays \(O_{k,m}^n \) and \(U_{(\text{inflow})}^n \) as well as the adjustable parameters \(R, L \), and \(O \). The output table \(R^n \) contains the radius value for each time period \(T_k \) at each bottleneck \(\beta_m \) in a \(p \times n \) array. Beginning with the conditional statement within the nested for loop for a particular \(\beta_m \) and starting at \(t = 0 \), the algorithm can be described as follows:

1. Set \(R = R_m \) at \(t = 0 \).

2. Begin the \(k \) iteration; if the occupancy \(O_{n,m} \) at a given \(k \) iteration is greater than the threshold value \(O \), add the differences in the outflow and inflow traffic volumes multiplied by the duration of the time partition \(t_k - t_{k-1} \) by the average vehicle spacing \(L_m \) to the variable \(R \).

<table>
<thead>
<tr>
<th>TABLE 1 Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>(i, j, m)</td>
</tr>
<tr>
<td>(\beta = (x, y)); (\beta_j = (x, y_j)); (\beta_m = (x_m, y_m))</td>
</tr>
<tr>
<td>(a_i)</td>
</tr>
<tr>
<td>(b_i)</td>
</tr>
<tr>
<td>(e_i)</td>
</tr>
<tr>
<td>(g_i)</td>
</tr>
<tr>
<td>(d)</td>
</tr>
<tr>
<td>(d_{ij})</td>
</tr>
<tr>
<td>(t_0)</td>
</tr>
<tr>
<td>(u_q = d_{ij} / t_0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Array and Vector Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = [T_1, T_2, \ldots, T_p])</td>
</tr>
<tr>
<td>(\hat{R} = { \hat{R}_1, \hat{R}_2, \ldots, \hat{R}_p })</td>
</tr>
<tr>
<td>(\bar{L} = { \bar{L}_1, \bar{L}_2, \ldots, \bar{L}_p })</td>
</tr>
<tr>
<td>(\bar{O} = { \bar{O}_1, \bar{O}_2, \ldots, \bar{O}_p })</td>
</tr>
<tr>
<td>(v_k^n = { v_1, v_2, \ldots, v_n })</td>
</tr>
<tr>
<td>(U_{\text{inflow}}, U_{\text{outflow}})</td>
</tr>
<tr>
<td>(\bar{O}_m = { \bar{O}_1, \bar{O}_2, \ldots, \bar{O}_m })</td>
</tr>
<tr>
<td>(\bar{v}_n = { \bar{v}_1, \bar{v}_2, \ldots, \bar{v}_n })</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x, y, v, \bar{v}))</td>
</tr>
</tbody>
</table>
3. If the occupancy O_{in} is less than \bar{O}_{in} and the radius variable R is greater than the base parameter R_m, then subtract the quantity from Step 2 from R.

4. Take the maximum of the set $\{R, R_m\}$; this and the second condition of Step 3 prevent R from being assigned a negative value and ensure that R_m is a lower bound for the variable R when the predicted traffic queue is dispersing.

5. Otherwise, retain $R = R_m$.

6. Construct a column vector R^p of R values obtained from each k iteration.

7. Repeat Steps 1 through 6 n times and construct the output matrix R^p from the column vectors R^p obtained from each iteration.

The H_a algorithm adds or subtracts expected lengths of traffic queues to the radius of the effective size of each bottleneck that is dependent on whether the measured occupancy is above or below each threshold value contained in O_{in}. The table of values in R^p is referenced by the H_{a} and H_{b} algorithms described in detail in the following section. The objective is to extrapolate travel time trends from the data that are available and apply them to the surrounding road network.

Arrival and Departure Time Algorithms

The following is a summary of the arrival time and departure time algorithms H_a and H_b, adapted from Figliozzi (15) that estimate travel times between pairs of customers β_i and β_j by using the travel time data. The H_a algorithm calculates the expected arrival time at a customer β_j when departing from a previous customer β_i by using a forward-iterative process. Similarly, the H_b algorithm uses a backward-iterative process and simultaneously calculates the required departure time from customer β_j to reach customer β_i.

The impact of bottlenecks as vehicles are moving through different periods is a function of the estimated distance between the vehicle and the bottleneck at the beginning of each time period. A linear approximation of the vehicle location is used to reduce computational complexity because shortest-path and Euclidean distances are highly correlated. High levels of correlation between Euclidian and shortest-path distances are usually found in urban areas (21). The distance traveled along the Euclidean connecting line is calculated as a percentage of the actual route traversed such that

$$d' = \frac{d}{d_y}D_y$$

where

$$D_y = \text{Euclidean distance between customers } i \text{ and } j,$$

$$d_y = \text{shortest-path driving distance from customer } i \text{ to customer } j \text{ calculated by the API, and}$$

$$d = \text{iterated distance from } i \text{ to } j \text{ along the actual driving route (a derivation of this function is given in the appendix).}$$

With the law of cosines (see Figure 4), the distance from a point on the Euclidian connecting line to each bottleneck at a given time iteration in the forward iterative calculation can be shown to be

$$r_a = \sqrt{\left(\frac{d}{d_y}D_y\right)^2 + D_m^2 - \frac{d(D_y^2 + D_m^2 - D_m)}{d_y}}$$

(2)

where D_m and D_m are Euclidean distances between customer i and bottleneck β_m and customer j and bottleneck β_m, respectively.

Similarly, for the backward process of the departure time algorithm, the distance from the nearest bottleneck is

$$r_a = \sqrt{\left(\frac{d}{d_y}D_y\right)^2 + D_m^2 - \frac{d(D_y^2 + D_m^2 - D_m)}{d_y}}$$

(3)

The travel speed function s_m is applied at each time iteration T_k and calculates a speed value for each bottleneck. This function calculates congested travel speeds s_m as reductions in the API-derived speed u_y proportional to the speed reduction measured at the traffic bottlenecks such that $s_m/u_y = v_m/v_y$ if the virtual location on the Euclidian connecting line is within the radius R_m. Here v_y is the time-varying speed obtained from PORTAL, and v_m is an adjustable parameter that may represent the freeway free-flow speed. In other words, the reduction in travel speed due to congestion in the surrounding network is assumed to be proportional to the reduction observed from the PORTAL.

![FIGURE 4 Illustration of the method to approximate bottleneck influence.](image)
freeway data at the bottleneck (detector station) with the slowest travel speed. This function can be expressed as

$$s_m = \begin{cases} \frac{u_{i,m}}{v_m} & r_n \leq R_{i,m} \\ u_i & r_n > R_{i,m} \end{cases}$$

where r_n is the distance from a point along the Euclidean connecting line to a bottleneck β_n.

The following is a summary of the H_n algorithm pseudocode:

1. First determine if the arrival time a_i is less than the lower time window e_i at customer i
 - If so, then the vehicle waits and the expected departure time is e_i plus the service time g_i.
 - If not, then the departure time is simply the arrival time plus the service time.
2. Determine k for the discrete time period T_k with bounds $[t_1, t_2]$ that the expected departure time b_j lies in. This is the initial value for the iterator in the while loop.
3. Determine the Euclidean distance of each traffic bottleneck to the location $\beta_i = (x_i, y_i)$ of customer i; the speed function is calculated for each value m and a row vector S_n of speeds is assembled. The initial travel speed of the vehicle in the subsequent forward-iterative process is calculated as the minimum value of S_n that is, the travel speed is only as fast as that imposed by the bottleneck with the worst travel speed (only among the subset of bottlenecks whose area of influence affects the path between customers at a given time).
4. Terminate the while loop when the vehicle has reached its destination. In each period, speeds are recalculated and distances accumulated until the vehicle has reached its destination. Output: the expected arrival time a_i at customer j when departing from customer i at time b_i.

The H_n algorithm works in a similar fashion: given a customer j at location β_i with an expected arrival time a_i, obtained from the H_n algorithm, determine the required departure time b_i from customer i at location β_i to make the trip between β_i and β_j without allowing for late time window violations.

Calibration

Travel times can be calibrated by adjusting $R_{i,m}, \bar{l}_m, \bar{O}_m, \bar{v}_m$ parameters as well as the time-dependent travel speeds provided by PORTAL (\(v_{i,m}\)). Directional and time-of-day effects can be incorporated. Memory requirements are reduced because the algorithms work with one travel time and distance matrix. Simple linear functions and intuitive parameters are used to adapt free-flow travel times to congested conditions.

EXPERIMENTAL SETTING

To test the model with real-world constraints, two delivery periods are modeled and analyzed: (a) an early morning delivery period that avoids most of the morning peak hour traffic congestion but with tighter time windows, and (b) an extended morning delivery time that increases the feasible working time but with increased travel during the morning peak. Figure 5 provides a qualitative comparison of the simulated delivery times.

A total of 50 customer locations are used (Figure 6) with constraints assigned according to the zoning criteria. All customers normally served after 9:00 a.m. are assumed to be able to shift delivery times before this hour. Time windows of 15 min are randomly assigned to all customer types. Additionally, deliveries to all customers in mixed-use and residential areas are prohibited before 7:00 a.m. to model required compliance with local noise ordinances. In the early-morning delivery option, this reduces the effective depot working time to just 2 h for these customers. The extended morning delivery option provides a 4-h working time for these customers but includes the effects of the morning peak-hour congestion to a greater degree. The calibration of the model was tested by varying the travel speed parameters $v_{i,m}$ to alter the simulated travel speed derived from the PORTAL travel time data and contained in the travel speed table $v_{i,m}$.

EXPERIMENTAL RESULTS

Results comparing the number of vehicles and total distance traveled during the morning and extended morning delivery periods are presented in this section. In addition, to incorporate the impact of travel time reliability, time-varying travel speeds from PORTAL are decreased by a coefficient δ. This adjustment maintains the overall trend in travel speed variation throughout the delivery period but allows for adjustments to the travel time to more accurately reflect real-world differences between average travel speeds and the actual distribution of travel speeds. A value $\delta = 1$ utilizes average time-varying travel speed PORTAL data and assumes that no hard time-window violations take place if realized travel times are at least the average travel speed. However, if the carriers would like to
account for travel time unreliability, a value of $\delta < 1$ can be used in the calculations as follows:

$$ r_n = \begin{cases} \frac{\delta u_n v_{in}}{v_{in}} & r_n \leq R_{in} \\ u_n & r_n > R_{in} \end{cases} $$

(5)

A value of $\delta < 1$ guarantees a higher value of customer service (14). The sensitivity to travel time unreliability and buffer times was tested by setting the parameter $\delta = \{0.4, 0.6, 0.8, 1\}$.

Impact of Congestion on Number of Vehicles

For the number of required vehicles (Figure 7), the central depot showed less sensitivity to changes in travel time reliability than did the suburban depot. As expected (14), reduced travel speed appears to have a greater impact on fleet size when the depot has a suburban location. The number of vehicles required is consistently less for the extended early-morning delivery period, and a larger fleet is still required when the depot has a suburban location.

Impact of Congestion on Total Distance Traveled

Figure 8 compares total vehicle miles traveled (VMT). Similar to the required number of vehicles, total VMT is significantly higher for tours originating at the suburban depot location. Constrained service times for customers in the early-morning delivery period also appear to affect total VMT to a slightly greater extent than does travel speed.

CONCLUSIONS

This research proposed a new methodology for integrating real-world road networks and travel data to time-dependent vehicle routing methods. The use of traffic sensor data and Google Maps API provides a unique approach to interface routing algorithms, travel time, and congestion data. Intuitive algorithms and parameters are used to incorporate the effects of congestion on time-dependent travel time matrices. The proposed methodology is a significant improvement for representing the impact of congestion in congested urban areas leveraging on existing open-source data and applications.

The results show the dramatic effects of congestion on carrier fleet sizes and distance traveled. The results also suggest that congestion has a significant impact on fleet size, particularly for depots located in suburban areas outside the customer service area.

APPENDIX A

The following is the derivation of the bottleneck distance function r for the forward-iterative calculation in the arrival time algorithm. An identical argument with the distance d iterated in the backward
FIGURE 7 Effects of congestion on fleet size: (a) central depot and (b) suburban depot.

FIGURE 8 Effects of congestion on total VMT: (a) extended morning delivery period and (b) early morning delivery period.
direction from a customer \(j \) to \(i \) obtains the bottleneck distance function for the departure time algorithm in a trivial manner.

Let \(\theta_{im} \) be the angle opposite \(D_{im} \), the Euclidean distance from customer \(i \) to bottleneck \(B_m \). With the law of cosines, \(D_{im} = D_j^2 + D_{jm}^2 - 2D_jD_{jm}\cos(\theta_{jm}), \)

\[
\cos(\theta_{jm}) = \frac{D_j^2 + D_{jm}^2 - D_{im}^2}{2D_j D_{jm}} \tag{A-1}
\]

\(\theta_{jm} \) is also the angle opposite to \(r \). Equating \(r \) and Equation A-1, and with the law of cosines again,

\[
\begin{align*}
 r_{im}^2 &= \left(\frac{d}{d_x} D_{ij} \right)^2 + D_{jm}^2 - 2 \left(\frac{d}{d_y} D_{ij} \right) D_{jm} \cos(\theta_{jm}) \\
 &= \left(\frac{d}{d_x} D_{ij} \right)^2 + D_{jm}^2 - 2 \left(\frac{d}{d_y} D_{ij} \right) D_{jm} \left(\frac{D_j^2 + D_{jm}^2 - D_{im}^2}{2D_j D_{jm}} \right) \\
 &= \left(\frac{d}{d_x} D_{ij} \right)^2 + D_{jm}^2 - \frac{d}{d_y} \left(D_{ij}^2 + D_{jm}^2 - D_{im}^2 \right) \\
 \Rightarrow r_{im} &= \sqrt{\left(\frac{d}{d_x} D_{ij} \right)^2 + D_{jm}^2 - \frac{d}{d_y} \left(D_{ij}^2 + D_{jm}^2 - D_{im}^2 \right)}
\end{align*}
\]

ACKNOWLEDGMENTS

The authors thank the Oregon Transportation, Research and Education Consortium, the Port of Portland, and Portland State University Research Administration for sponsoring this research. The authors also thank Myeonwoo Lim of the Computer Science Department at Portland State University for assisting with the computer programming aspects of this project and Nikki Wheeler of the Department of Civil and Environmental Engineering at Portland State University for compiling and aggregating the PORTAL travel time data used in the final computer model.

REFERENCES

The Urban Freight Transportation Committee peer-reviewed this paper.