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up private exchanges (1). Furthermore, the same source indicated
that an additional 28% of all Fortune 2000 companies planned to
implement a private exchange by the end of 2003. These market
changes have produced a recent shift away from fixed pricing and
toward flexible pricing. The typical dynamic pricing mechanisms
are auctions, in which prices and allocations are based on bids.

On the supply side, the use of different DVR technologies reflects
the asymmetric nature of competition. Even though carriers may
compete in the same market, they are endowed with inherently dif-
ferent resources, ranging from physical assets such as fleets and facil-
ities to communication and decision support systems. Furthermore,
the levels of adoption of communication technology and expertise
by carriers may vary greatly (2). This research presents the results
of simulation experiments performed to test different DVR tech-
nologies. These technologies can be reduced to algorithms when
simulated; however, they are referred to herein as “technologies,” as
their real-life implementation requires much more than implementa-
tion of an algorithm. Implementation may require upgrades in com-
munication and decision support systems, software, computational
power, trained personnel, as well as understanding of the nature and
complexity of the DVR problem.

The paper is organized as follows: the next section describes the
marketplace framework and operation. Previous work related to the
DVR problem is then discussed. This is followed by descriptions
of the different DVR technologies simulated in this paper and the
simulation framework developed to illustrate and evaluate tech-
nologies through numerical experiments. The experimental results
are analyzed and discussed, followed by concluding comments.

MARKET DESCRIPTION

This paper focuses on the performance of different DVR technologies
in sequential auction transportation marketplaces. The marketplace
enables the sale of cargo capacity mainly on the basis of price, yet it
still satisfies customer level-of-service demands. The specific focus
of the study is the reverse auction format, in which shippers post loads
and carriers compete over them (bidding). The auctions operate in real
time, and transaction volumes and prices reflect the status of demand
and supply. A framework for the study of transportation marketplaces
has been presented by Figliozzi et al. (3).

The market comprises shippers, which independently call for ship-
ment procurement auctions, and carriers, which participate in them
(it is assumed that the likelihood of two auctions being called at the
same time is zero). Auctions are performed one at a time as shipments
arrive at the auction market. Shippers generate a stream of shipments
with corresponding attributes, according to predetermined probabil-
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Technologies for a dynamic truckload pickup-and-delivery problem in a
competitive environment by use of sequential auctions are compared. In
this environment, demands arrive randomly over time and are described
by pickup-and-delivery locations and hard time windows. On demand
arrival, carriers compete for the loads in a second-price auction. Four
fleet assignment technologies with different degrees of sophistication are
tested with simulations. The technologies differ in how they deal with the
combinatorial and stochastic elements of the online problem. A one-step
look-ahead dynamic vehicle routing technology that tries to estimate the
impacts of current decisions on serving future loads (not yet arrived) is
introduced. The performance of each technology is analyzed in relation
to different demand characteristics.

The principal focus of the research described here is to compare and
evaluate the performance of dynamic vehicle routing (DVR) tech-
nologies in a competitive environment. This investigation covers the
truckload pickup-and-delivery problem, which entails the dynamic
operation of trucking fleets that provide service to a general pattern of
stochastic time-sensitive customer loads. The research uses an inno-
vative approach in which DVR technologies are compared in a market-
place environment; each arriving load triggers an auction in which
carriers compete with each other to win the right to service the load.

On the demand side, the motivation for this work is twofold. The
growing demand for customer-responsive, made-to-order manufac-
turing is increasing the time sensitivity of customer demands. This
trend is shifting the logistics and transportation process from one
that relies on long planned lead times to one that relies on real-time
operations. The operation of Dell computers in Texas exemplifies
this trend.

The explosive growth in business-to-business electronic com-
merce, which is changing the way in which business is conducted,
motivates the usage of marketplaces. A specific example of these
changes is the increasing use of private exchanges, in which a com-
pany invites selected suppliers to interact in a real-time marketplace,
compete, and provide the required services. Private exchanges are
growing in number. A report published in mid-2002 estimated that
as of June 2003, 15% of all Fortune 2000 companies would have set



ity distribution functions. A shipment attribute is its reservation
price, or the maximum amount that the shipper is willing to pay for the
transportation service. It is assumed that the auction announcement,
bidding, and resolution take place in real time, thereby precluding the
option of bidding on two auctions simultaneously.

The auction type used is the second-price or Vickrey auction. The
second-price auction for one load operates as follows:

1. Each carrier submits a single bid.
2. The winner is the carrier with the lowest bid (which must be

below the reservation price; otherwise, the auction is declared void).
3. The item (shipment) is awarded to the winner.
4. The winner is paid either the value of the second-lowest bid or

the reservation price, whichever is the lowest.
5. The other carriers (not winners) do not win, pay, or receive

anything.

A powerful characteristic of (one-item) Vickrey auctions is that the
optimal strategy is simply to bid the true cost of serving the shipment.
In economic terminology, this property is called a “truth-revealing
mechanism.” Furthermore, it is assumed here that the mechanism
implemented in the marketplace for the sequence of bids is truth
revealing at each bidding instance. This powerful assumption is nec-
essary because the objective of the paper is to compare different DVR
technologies. Bidding strategies are therefore reduced to marginal-
cost bidding, removing any strategic or speculative element from the
results obtained. Readers interested in the latter might refer to the
work of Krishna (4) for a general treatment of auctions and to the work
of Figliozzi et al. (5) for an analysis of carrier bidding and behavior in
transportation auctions.

FORMULATIONS AND SOLUTIONS 
OF DVR PROBLEM

The DVR problem is a relaxation of the static vehicle routing prob-
lem, in which information about the demand or shipments to be served
unfolds over time. Stochastic arrival times and shipment characteris-
tics differentiate the DVR problem from the vehicle routing problem.
Stochasticity transforms an NP (nonpolynomial) hard combinatorial
optimization problem (with complete information) into a decision-
making problem under uncertainty (partial information), while it
preserves all the intricacies associated with the original NP hard
problem. Powell et al. presented an extensive discussion of dynamic
network modeling problems that arise in logistics and distribution
systems, including a priori optimization and on-line decision policies
for stochastic routing problems (6).

Regan et al. analyzed the opportunities and challenges of using
real-time information for fleet management (7–9). They also for-
mulated and evaluated (using simulations) various heuristics for the
dynamic assignment of vehicles to loads under real-time informa-
tion. Subsequent work by Yang et al. (10, 11) introduced a static
optimization-based approach and tested it against the previously
developed heuristic rules. Their approach solves static snapshots of
the DVR problem with time windows by use of an exact mathemat-
ical programming formulation (which is the basis for two of the
technologies studied in this paper). As new input occurs, static snap-
shot problems are solved repeatedly, which allows a complete reas-
signment of trucks to loads at each arrival instance. Mahmassani and
colleagues studied DVR strategies for fleet size operations, in which
computational and response times are important constraints (12, 13).
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They also studied strategies for DVR under high arrival rates and
priority loads.

A growing body of work focuses on the solution of the stochastic
DVR problem. Powell (14–16) and Powell et al. (17) proposed a for-
mulation based on a Markov decision process and several formula-
tions using stochastic programming. Gendreau et al. (18) and Ichoua
et al. (19) used tabu search to solve a DVR problem with soft time
windows. Gendreau et al. suggested the use of information about
future requests to solve the DVR problem (18). This paper delves
further into this idea, presenting a methodology that uses informa-
tion about future requests to estimate the cost of servicing a new
load. More recently, Larsen et al. studied the DVR problem with dif-
ferent degrees of dynamism (defined as the percentage of demands
that carriers typically do not know in advance) (20).

DVR TECHNOLOGIES

Carriers must keep in mind the marginal cost for each transaction,
especially in a sequential auction that implements a truth-revealing
mechanism. The loaded distance is not included in the marginal cost
because it is assumed that all carriers have the same cost per mile;
therefore, the addition or subtraction of a constant to or from all the
bids (e.g., the loaded distance of an arriving shipment) does not alter
the ranking of bids. Besides, if all carriers include the loaded distance
in their bids, that term cancels out when profits are computed (the
payment, which in this case is the second bid, and the winner’s cost
include the same constant: the shipment loaded distance). Shippers’
reservation prices also do not include the loaded distance.

In real-time situations, this is an increasingly difficult task when
optimal decision making involves the solution of larger NP hard prob-
lems and the necessity of taking into account the stochastic nature of
future demands. This paper presents four levels of DVR technologies.
These technologies are presented in an order that shows increasing
levels of sophistication.

1. Base or naïve technology. A carrier that uses this type of tech-
nology simply serves shipments in the order in which they arrive. If
the carrier has just one truck, it estimates the marginal cost of an arriv-
ing shipment, s, simply as the additional empty distance incurred
when s is appended to the end of the current route. If the carrier has
more than one truck, the marginal cost is the cost of the truck with the
lowest appending cost. This technology does not take into account the
stochastic or combinatorial aspect of the cost estimation problem and
is considered one of the simplest possible. Nonetheless, it provides a
useful benchmark against which to compare the performance of more
complex and computationally demanding technologies.

2. Static truck optimal (STO). Carriers that use this technology
optimize the static vehicle routing problem at the truck level. If the
carrier has just one truck, it estimates s as the additional empty dis-
tance incurred when s is inserted or appended to the current route.
If the carrier has more than one truck, the marginal cost is the cost
of the truck with the lowest inserting or appending cost. Like the
previous technology, it does not take into account the stochastic
nature of the problem. This technology roughly stands for the best
that a myopic truck driver (i.e., one who ignores the future but who
has real-time information) can achieve.

3. Static fleet optimal (SFO). The carrier that uses this technology
optimizes the static vehicle routing problem at the fleet level. If the
carrier has just one truck, the technology is equivalent to the previ-
ous case. If the carrier has more than one truck, the marginal cost is



the increment in empty distance that results from the addition of s to
the total pool of trucks and loads yet to be serviced. If the problem
were static, this technology would provide the optimal cost. Again,
as for the two previous technologies, it does not take into account the
stochastic nature of the problem. This technology roughly stands for
the best that a myopic fleet dispatcher (i.e., one who ignores the
future but who has real-time information) can achieve. A detailed
mathematical statement of the mixed integer program (MIP) formu-
lation used by SFO is given elsewhere (10, 11). STO is a special case
of the general SFO formulation.

4. One-step look-ahead fleet optimal (1LFO). As was the case for
the previous carrier, this carrier optimizes the static vehicle routing
problem at the fleet level. This provides the static marginal cost (smc)
for the addition of s. However, this carrier also knows the distribu-
tion of load arrivals over time and their spatial distributions (this
paper does not discuss how the carrier has acquired this information).
Hence, the carrier can simulate whether and how much winning s
affects the marginal cost of serving the next arriving load; this is the
dynamic marginal cost (dmc) of serving s. Unlike the previous types
of technologies, this carrier takes into account the stochasticity of the
problem to estimate the static cost of serving s and the effect on the
marginal cost of serving the next arriving shipment (a one-step look
ahead). This technology roughly stands for what a fleet dispatcher
with real-time information and knowledge of the future (yet unreal-
ized probabilistic demands) can do. However, 1LFO is not an opti-
mal technology; rather, it is a heuristic that tries to estimate how
serving s affects the cost of serving the next shipment.

Define L as the set of loads (won bids) yet to be serviced by the car-
rier when s arrives; define c:L → ℜ as a function that, given a set
of loads and current fleet deployment return the minimal empty dis-
tance required to serve all the loads included in L; and define S =
{s1, . . . , sn} as a simulated set of n loads, in which each of these
loads represents a realization of the next unknown arriving load
(immediately after s) by using the probability distribution functions
that the shippers use to generate loads. Then

By use of the 1LFO technology, the marginal cost used to bid is the
average between smc (s) and dmc (s). The average is taken to cor-
rect the static estimation of smc by taking into account the impact of
serving s on the next bid.

Three cases are possible:

1. smc (s) < dmc (s), in which serving the arriving demand leads
to a fleet deployment that causes a higher dmc (relative to the current
smc); therefore, the bid is increased;

2. smc (s) > dmc (s), in which serving the arriving demand leads
to a fleet deployment that causes a lower dmc (relative to the current
smc); therefore, the bid is decreased; and

3. smc (s) = dmc (s), in which serving the arriving demand leads
to a fleet deployment that does not affect the value of dmc (relative
to the current smc); therefore, the bid is equal to smc (s).

The response or solution time is a key consideration in real-time
applications. However, given that the objective of this paper is to
analyze how much can be gained by using different technologies, it
is assumed that carriers have enough computational power that they
can always bid before another request comes in.

dmc s c L s s c L s n s Si i ii
( ) = + +( ) − +( )[ ] ∈∑

smc s c L s c L( ) = +( ) − ( )
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In all cases it is assumed that a carrier bids only if a feasible solu-
tion has been found. If serving s unavoidably violates the time win-
dow of a previously won shipment, the carrier simply abstains from
bidding or submits a high bid that exceeds the reservation price of s.

SIMULATION FRAMEWORK

This paper studies truckload carriers that compete over a square geo-
graphic region. It is assumed that the length of each square side is 
1 unit of distance. For convenience, trucks travel at a constant speed
equal to one unit of distance per unit of time. Demands for truckload
pickup and delivery arise over this area and over time. Origins and
destinations of demands are uniformly distributed over the square
area, so the average loaded distance for a request is 0.52 unit of dis-
tance. All the arrivals are random; the arrival process follows a time
Poisson process. The expected interarrival time (E[T]) is 1/(K λ),
where λ is the demand request rate per vehicle and K is the total mar-
ket fleet size. Roughly, the average service time for a shipment is
0.77 unit of time (λ is equal to approximately 1.3 unit of time). The
service time is broken down into 0.52 unit of time, which corre-
sponds to the average loaded distance, plus 0.25 unit of time, which
approximates the average empty distance (average empty distances
vary with the arrival rates and the time windows considered). Three
different Poisson arrival rates per truck per unit of time are simulated:

• λ = 0.5 (uncongested),
• λ = 1.0 (congested), and
• λ = 2.0 (extremely congested).

The shipments have hard time windows. Three different time
windows are simulated. In all cases it is assumed that the earliest
pickup time is the arrival time of the demand to the marketplace. The
latest delivery times (LDTs), in an order that reflects increasing
slackness, are as follows:

LDT1 = arrival time + 1 × (shipment loaded distance + 0.25) 
+ 1 × uniform (0.0, 1.0)

LDT2 = arrival time + 2 × (shipment loaded distance + 0.25) 
+ 2 × uniform (0.0, 1.0)

LDT3 = arrival time + 4 × (shipment loaded distance + 0.25) 
+ 4 × uniform (0.0, 1.0)

The time windows are called TW1, TW2, and TW3, respectively.
The first type of time window (TW1) provides hardly enough sched-
uling flexibility. The opposite can be said about the last type (TW3).
The reservation price distribution is uniform (1.42, 1.52) for all ship-
ments. In all cases, reservation prices exceed the maximum mar-
ginal cost possible (therefore, the highest bid) in the simulated area
(≈1.41 units of distance). It is also assumed that all vehicles and loads
are compatible; no special equipment is required for specific loads. In
all simulations, four carriers are competing for the demands. Of the
four carriers, three compete by using the base or naïve technology; the
other carrier uses one of the more sophisticated technologies.

Multiple performance measures are used to evaluate the various
technologies. The first is total profits, which equal the sum of all pay-
ments received by won auctions minus the empty distance incurred to
serve all won shipments (as mentioned earlier, shipment loaded dis-
tances are not included in the bids and loaded distances cancel out
when profits are computed). The second performance measure is the
number of auctions won or the number of shipments served, which is
an indicator of market share. The third is the carrier’s average empty
distance, or the average distance from the destination of one load to



the origin of the next load served. Average empty distance is a mea-
sure of the scheduling efficiency of the DVR technology. The fourth
performance measure is average shipment (served) loaded distance.

ANALYSIS OF EXPERIMENTAL RESULTS

Figure 1 compares the absolute performances of the STO and SFO
technologies. The graphs in the two columns have comparable scales
to facilitate visual comparisons. The results correspond to a market-
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place with four carriers, three of which use the naïve technology and
one of which uses a more sophisticated technology (either STO or
SFO). Each carrier has a fleet of two trucks. Figure 1 shows how SFO
outperforms STO in the number of won bids and the average empty
distance, for the most part with wider time windows and slightly con-
gested arrival rates. With wide time windows (TW4) and congestion
(arrival rate = 8 arrivals per unit of time), SFO outperforms STO in
all four performance measures.

From a competitive point of view, it is essential to see the relative
performance of carriers that use these technologies with respect to
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FIGURE 1 Comparison of performances of carriers using STO (a, c, e, g) and SFO (b, d, f, h) with that of carriers
using naïve technology.



that of carriers that use naïve technologies. Figure 2 compares the
relative performances of the carriers that use STO and SFO with
those of the carriers that use the naïve technology. As expected, the
sophisticated technologies in general outperform the naïve one.
However, relative performance critically depends on the arrival rate
and time windows that characterize the demand. Shorter time win-
dows clearly have a negative effect on profit performance. The first
type of time window (TW1) is so short that it provides few oppor-
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tunities to improve schedules. The plots of won bids and profits look
like flat lines. As time windows get larger, there are more opportu-
nities to swap load service orders and to swap loads among trucks.
For wider time windows, plots of won bids versus arrival rates have
a concave curve.

Under low arrival rates, the carriers with optimal formulations
have few shipments to work with. Under very high arrival rates, all
the carriers’ fleets are fully used, irrespective of their intrinsic tech-
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FIGURE 2 Percentage change for carriers using STO (a, c, e, g) and SFO (b, d, f, h) compared with the values for
carriers using naïve technology.



nology or efficiency. Therefore, there is an optimal arrival rate that
maximizes the competitiveness of static optimization techniques.

Average loaded distance is included as a performance measure
because it reveals how the optimal static technologies are working.
The MIP formulations manage to join together a larger number of
short loaded distance shipments. As shipments arrive one at a time,
the likelihood that a small shipment will fit into the existing routes
increases as its loaded distance decreases. In this paper, reservation
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prices in the marketplace setting are independent of the shipments’
loaded distances. In a marketplace in which shipment reservation
prices strongly depend on loaded distances, however, carriers that
use the sophisticated technologies would surely exhibit a different
profit performance, although won bids, loaded distances, and empty
distances could, by and large, remain unchanged.

Figures 3 and 4 depict graphics similar to those described above,
but they illustrate the absolute and relative competitiveness of
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FIGURE 3 Comparison of performances of carriers using SFO (a, c, e, g) and 1LFO (b, d, f, h) with that of carriers
using naïve technology.



SFO and 1LFO technologies. The knowledge about the stochastic
nature of the demand makes an obvious difference in the number of
won bids (Figure 4). Averaging of smc and dmc seems to more accu-
rately reflect the true marginal cost of serving a shipment. However,
the relative performance of 1LFO decreases with increasing arrival
rates. Under very high arrival rates (arrival rates = 32 arrivals per
unit of time in Figures 3 and 4), the respective performances of SFO
and 1LFO are comparable. This seems to suggest that at high arrival
rates, smc is approximately equal to dmc.
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Figure 5 illustrates the results for a carrier that uses the SFO tech-
nology and that is competing against three carriers that are using the
STO technology. The graphs on the left represent the absolute per-
formance of the carrier using SFO; the graphs on the right represent
the relative performance of the carriers using SFO against the rela-
tive performance of carriers using STO. The same patterns discussed
in Figures 1 and 2 hold here. Optimization at the fleet level is more
competitive under moderately congested conditions and with wider
time windows. Unlike the previous case, however, the average loaded
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FIGURE 4 Percentage change for carriers using SFO (a, c, e, g) and 1LFO (b, d, f, h) compared with the values
for carriers using naïve technology.



distance does not vary as much, except for the case with a high arrival
rate and wide time windows.

CONCLUSIONS

A sequential auction framework was used to compare the competi-
tiveness of different DVR technologies. The technologies were eval-
uated under different demand conditions. It was shown that under
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severely constrained DVR problems the performance gains obtained
with sophisticated technologies are scarce. Major performance gains
are obtained under moderately congested conditions as well as with
ample time windows.

The methodology proposed for the testing of DVR technologies
seems adequate for the evaluation of competitive performance, espe-
cially for logistics and transportation problems that are embedded in
dynamic stochastic environments or that support e-commerce market-
places and activities. The paper also introduced a DVR strategy that
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FIGURE 5 Comparison of SFO and STO: SFO absolute values (a, c, e, g) and percentage change for carriers using
SFO compared with the values for carriers using STO (b, d, f, h).



assumes knowledge about the shipment arrival and other character-
istics. Simulation results show that this new strategy outperforms
myopic ones, particularly in uncongested marketplaces. Further
research is needed, however, to fully tap the competitive edge provided
by knowledge about the stochastic nature of future demand arrivals.
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