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ABSTRACT

When freeway traffic flow approaches capacity, midisturbances or perturbations can cause
unstable traffic streams to break down into queardabttleneck conditions with the
accompanying heavy congestion costs. As the trafficme at which flow breaks down is
uncertain, this research utilizes a stochasticagpmodel to estimate congestion costs in terms
of delays, fuel, and emissions. We apply this stastih model to a congested freeway corridor in
Portland, Oregon in order to demonstrate the imphearious traffic parameters on the net
social benefits of traffic flow. Travel time is tid@minant cost, followed by fuel costs. For a
given value per trip (in $/mile), the traffic floolume that maximizes social benefits decreases
as travel time reliability decreases. Traffic flomesar capacity levels are justified by trip values
that are 50% higher if the impacts of stochasgeday capacity are considered. Comparing
macroscopic peak-period traffic characteristics mgnarban areas of varying size and density,
we see that for a given peak-period trip value dengban areas will have higher optimal flow
rates. This comparison demonstrates a fundamergatrade-off for traffic networks between
shorter trip lengths and higher traffic intensityrh increased urban density.



INTRODUCTION

Traffic congestion is increasing around the woplarticularly on urban freeway facilities
(European Conference of Ministers of Transport (H/OO07; Schrank and Lomax 2009).
Congestion has enormous social and financial insp@tated to traveler time, air pollution, fuel
consumption, freight costs, and safety costs, anotimgrs (Goodwin 2004; HDR 2009; Kriger et
al. 2007; Weisbrod, Vary, and Treyz 2001). In teohsaveler time and freight costs, we also
now appreciate that it is not only average condgibut unreliable/variable conditions that
increase total costs of congestion (BrownstoneSmdll 2005; Danielis, Marcucci, and Rotaris
2005).

One of the causes of unreliability is instabilitya traffic stream as it nears some
maximal throughput capacity (Kerner 1999; May 1988inor disturbances or perturbations can
cause unstable traffic streams to break down ingugd or bottleneck conditions with the
accompanying heavy congestion costs. But the ¢raffilume at which flow breaks down is not a
certainty, motivating past research to model nétwas having uncertain traffic volume
capacity (Boyles, Kockelman, and Travis Waller 201&m, Shao, and Sumalee 2008; Lo, Luo,
and Siu 2006; Chen et al. 2002). Lo and Tung (20@3)eled link capacities as uniformly
distributed random variables, while Brilon (2005)deled traffic capacity as a stochastic
variable following a Weibull distribution. Sinceaffic flow breakdown is a stochastic event, it
should also be treated as such in traffic managerireaffort to better utilize existing roadway
capacity, many metropolitan areas have establiabdednced traffic management systems
(ATMS). These systems employ various traffic conieahniques such as ramp metering,
variable speed limits, dynamic congestion pricaxgl dynamic traveler guidance (U.S.
Department of Transportation n.d.).

The proliferation of ATMS provides opportunitieskietter manage traffic flows. We
propose that traffic flows can be better manageldefimpacts of stochastic freeway capacity on
delays, fuel consumption, and emissions are propeoldeled. We apply a stochastic freeway
capacity model of traffic flow social benefits arakts to a congested freeway corridor in
Portland, Oregon using archived traffic data. Hinale make comparisons across a diverse set
of urban areas to illustrate relationships betwadan density, trip length, and congestion
levels.

METHODOLOGY

We contrast the models that result from assumihg:astant freeway capacity and (b) a
stochastic freeway capacity model.

(a) Constant Freeway Capacity
Notation.
A: traffic demand or vehicle arrival rate [vehiclesir]
A roadway capacity [vehicles/hour]
t(1): travel rate, time to travel one mile with demaateA [hour/mile]
v(4) = 1/t(1): average travel speed [miles/hour]
e(A): marginal emissions rate, with demand rvafkg/veh-mile]
f(A): fuel consumption rate, with demand ratggallons/veh-mile]
[: length of the freeway section under study [miles]
Ce. cost of emissions (of pollutant &{1)) [$/kg]



ci: value of time [$/hour]
cr. cost of fuel [$/gallon]

Travel Rate. Using the well-known Bureau of Public Roads (BRBume-travel time function
(1964), the travel rate as a function of arrivaééva(assumed constant over the analysis period)
is

t(d) = t, (1 +a (,1//16)”> =t, +t,a (,1//16)” (1)

wheret, is the free-flow travel rate andandb are parameters. Far> 0 andb > 0, t(1) is an
increasing convex function.

Emissions and Fuel Rated-or emissions we estimate a functioi.qfer vehicle, per mile(4).
The CQ emissions estimates used for fitting in this stadyfrom Bigazzi and Figliozzi (2011)
based on MOVES 2010 emissions model with a 201@diight/heavy-duty fleet in Portland
Oregon. In the present study we estimate only, ®0t other pollutants can be similarly
modeled. For the base emissions rates we (i9eas above (the BPR model) to relat®
average speed — which is the input for the avespged emissions model — with= 60mph,
Ae = 2,200vphpl, a = 0.15 andb = 7.

We then apply a new emissions formulation whicsinisilar tot (1), using four positive
fitted parametersy,, a,, a,, n, and nominal capacity,:

n

e(D) = ay + a4 (A/ﬂc) + a, (/1//16) 2)
The fitted parameters are estimated by minimizouggse error of emissions rates with respect to
base rates usingas the independent variable, from 0 to 3,630 véh/hThis range of covers
an average speed range from 10 to 60mph. Fittisgctirvve we finch to be about 10. This
fitting gives us an Rof 0.996. Similar fitting is obtained for anothemission model proposed
by Barth and Boriboonsomsin (2008). The fitted pseters are shown in Table 1, and the fits
are illustrated in Figure 1 The difference in magadé of modeled emissions is to be expected, as
the MOVES model includes heavy vehicles while tlaetB model does not. Still, tle€A)
formulation fits well for each modeled fleet.

Table 1. Fitted CO, Emissions Equation Parameters

Parameter MOVES Estimate Barth Estimate

g 0.4043 0.3253
aq 0.02793 0.0000
ay 0.003650 0.002641
n 9.993 9.992

Assuming CQ emissions are directly proportional to fuel conption, we can use the
CO, emissions formulation to estimate both £&@nissions and fuel consumption. Using a fuel
carbon intensityr of 10kgCQ/gallon fuel (U.S. Environmental Protection Ager&909a), we
have the fuel consumptigf(4), in gallons/veh-mi,

n
f) = e@/F =|ao+ ay ('1//10) +a, (A//lc) |/F (3)
Alternatively, fuel consumption could be modeledadsanction of average travel speed and fit
with a new set of parameters, as was done for @nssabove.
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Figure 1. Emissions fit for MOVES (black) and Barth(grey) models

Total Costs and BenefitsAccounting for time, fuel, and emissions costs, tihtal costs per unit
of analysis time of flow raté are, in $/hour,
TCA) = c,t(DIA + ¢ f(DIA + c.e(DIA 4)

Introducing an inelastic demand function such #aath trip on the segment has an associated
benefitpl [$/vehicle] whergs > 0 [$/vehicle-mile], we can calculate the net sobiahefit per
unit time of flow ratel as

NB(A) = BIA — cet(DIA — ¢ f (DI — c.e(D)IA (5)
in $/hour. If we define a modified emissions casefficientc, = ¢, + ¢¢/F, we can notate the
net benefits simply a¥B (1) = BIA — c;t(1)IA — c.e(A)IA. The cost coefficient, could also be
further modified to take into consideration thetamfdocal pollutants (assuming their emissions
are roughly proportional to G@missions).

(b) Stochastic Freeway Capacity

The previous analysis assumes the travel speefilirecion of the volume of vehicles but that
traffic does not break down at any moment. Resdaashshown that after flow breakdown (a
stochastic event) the traffic flow characteristies altered (Zhang and Levinson 2004). Here we
consider the case of a probabilistic breakdownaw fas traffic nears the roadway capacity.

Probability of Breakdown. We definep(1) as the traffic flow breakdown Bernoulli probalyilit
function, where the mean of the probability ofdad is a function ofl. From Brilon, Geistefeldt,
and Regler (2005), we can formulate the relatignsisia Weibull-distributed cumulative
distribution function

w

p()=1—¢ @ 6)



wherew and¢g are shape and scale parameters, respectively.siheyed a 3-lane German
motorway and found =~ 13 consistently, while ranged from about 1,650 to 2,200 vphpl for a
1-hour steady flow interval. This agrees with reaesearch on flow breakdown on an urban
freeway in Portland, Oregon (Saberi and Figliot¥i@) — see Figure 2.
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Figure 2. Comparison of empirical breakdown probabiities
from a) Brilon, et al. (2005) and b) Saberi & Figlozzi (2010)

Bottleneck Analysis.Assume that once flow breakdown occurs, a bottleigactivated behind
which a queue of slow-moving vehicles forms. Thigue persists partly because of reduced
throughput capacity after flow breakdown. If wewass a simple triangular shape on the space-
time (x-t) plane for the extent of the bottleneck, we camede delay, fuel consumption, and
emissions after flow breakdown using some additipasameters. We define the following
parameters, illustrated in Figure 3:

T: duration of time where a bottlenedyy is present, fromt = 0

v¢: free-flow traffic speed outside the queue (edqoad(1) for A < 4,)

Vp: traffic speed in the queue, where> v,

V. Speed of queue propagationn@gativenumber)

Vi Speed of queue dissipation

l: length of the freeway section under study
The dashed lines in Figure 3 are idealized veltielectories, representing average traffic speed
as constant-speed vehicles.

Assume that a vehicle starts at the upstream etitedfeeway section under
consideration at a timewith respect to the start of a bottleneck at themkstream end of the

section such that < 7 + l/vf < T in order to encounter the queue. The vehiclerdethes the

queue at the initial activation of the bottlene€lpdrts at time = —t; wheret; = l/vf . The

vehicle that reaches the queue at the transitmn formation to recovery wave of the bottleneck
Towwvy) L . The last vehicle to encounter the bottleneck

v (WVw—vwr) vy

departs at time = t, wheret, = T — l/vf :

departs at time = t, wheret, =
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Figure 3. llustrated breakdown flow parameters on the spacéime plane

The travel timeover the freeway segmefor vehicles encountering the queue dul
formation (the propagation wave), whe—t; <t < t,, is
t, =4 20wy o e DT )
Vp Uf—UW Vp Uf—UW
and the travel timér vehicles encountering the queue during disgpdthe recovery wave
wheret, <7 <t,, IS
— L vpTVwr — 7). ow Ur7
t, = — + (T —1) b (8)
The travel timeduring the queuexistencas then a piecewise linear function of vehicle’s
departure timérom the start of the secti, with a maximum travel timior vehicles departir at

t;. These vehicles experienttee maximum delé Dy, 45 = I max (vi — f) where max quel
. vy
length 1, max = TU‘ZZ‘”’, and aravel timeof ¢, = t; + Dimay. The delay in the que,

averaged over time for vehicles encounterire queue, i® = Dmax/z.

Assume that if there islaottleneck, the duration of the bottleneT = §A whereA is the
time period of study witltonstant demanA maintained, an@ < § < 1 is a coefficient tha
indicates the relative duration of the bottlenatkhe period ostudyA. Theaveragetravel rate
(time/distance) during accounting for boleneck delays then

D &1 _max & _max
ty(1) = t(,1)+57=2ql—vb+t(,1)(1—q—) 9)

21
sincevy = 1/t(A)' Substituting foll may, T, andt(1) we get

2 _ 2 b
o) = t, + Sonralictan) | g [y S| (3. ) (10

21wy (v —vyr) 21wy —vwr)
which is an increasingonvex functiorof A, with parameters 6, A, v,,, vy, Vp, to, a, b, andA,
and physical constraints ,,,, < [ (the queue must be contained in the segr andl/vb >

t(1) (the queue speed must be less than t-queued speed). We camplify the notation wit
a new dimensionless parameter



_ Slqimax _ (SZAUWUW[
0= 2l 2l(vy-vyr) (11)
which indicates the fractional effective bottlenéekgth in the context of the study period and
road segment length. Usiitg

() =+ (1 -0)-t(D) (12)
and the average travel rate if flow breakdown ogasia function ofl with parameters
0,v,,t,,a,b, andA,.

Using (1) and (2), the average emissions rajgper vehicle, per mile) for vehicles
inside a queue with average spegdan be estimated as:

_ 1-vpt, 1/b _ 1-vpt, 1/b 1-vpt, n/b
co=e(2e(52) ™) = (3525) 4 (125) (13

vptoa vptoa vptoa
with parameters, b, t,, ay, @1, a,, andn. The emissions for vehicles outside the queuleds t
same a#(1). Neglecting the transitions in/out of the queuealparallel process as the
development of (12) we can estimate the emissidreswa bottleneck occurs as
ep(A)=0-e,+(1-0)-e(1) (24)
If we estimate the excess queue transition emisdmma vehicle entering and exiting the queue
ase; in mass per vehicle encountering the queue, theaverage emissions rate after
breakdown (per vehicle, per mile) becomes
es() =0-eq+(1—0)-e(D)+- e (15)
The equations fog, (1) andt,(4) are linear functions af(1) andt(1), and so themselves
increasing convex.
We can estimate the sizegfusing an assumption of constant deceleration/aten
for vehicles encountering the queue. Let the emissiates (per vehicle-mile) with constant
acceleratiorn and constant deceleratidrbee, ande,, respectively, and free-flow emissions be
er. Then theexcesemissions in mass per vehicle during the tramstare
UZ—UZ UZ—UZ
ey = bde (ed — ef) + fZa 2 (ea — ef). (16)
Long (2000) discusses various acceleration charsiits of vehicles, and sites NCHRP report
270 for average accelerations around 2 mph/sdwiB8®-60mph speed range (Olson et al. 1984).
Assuming this value for both transition accelemgiand decelerations, we modeled constant
accelerations and decelerations in the 30-60mpédsgege using the project-level
methodology of the MOVES 2010 emissions model (&S/ironmental Protection Agency
2009b), with the same fleet and other charactesists above from Bigazzi and Figliozzi (2011).
MOVES outputs for C@generated, on averagg, = 0.957 kg/veh-mi ance; = 0.156 kg/veh-
mi. Usinger = 0.404 kg/veh-mi at 60mph free-flow speed (see TablérBse lead to
er =212 x 107°(vf — v}) (17)
with speeds in mph arg in kg/veh. For free-flow speed of 60mph and quespeds in the 10-
40mph range, this results in an equivalent emisstiistance penalty of, = :—; = (0.10to
0.18 miles (the distance at free-flow speed that producesain@g amount of excess emissions
as those produced by the queue transition).




Modified Cost Functions. Utilizing the probabilistic functiop(1) we generate the revised
travel rate function

t'(A) = pA) - t,(D) + (1 - pA)) - t(D)
=t +p(D6 -~ t() (18)
Similarly, the revised average emissions rate fonas
e'(D) =p)-e,() + (1 -pD)) - e(R)
=e(D) +p) [0 (eg —e) + e (19)
The fuel consumption estimate can also be revisqba(3) using’ (1) for e(1). For net social
benefits considering probabilistic flow breakdowa then have
NB'(1) = BIA — ¢ t' (DA — c.e' (DA (20)
wherec, = ¢, + ¢¢/F.

Value of Reliability

Thevalue of reliability(or cost of unreliability) with respect to traffilow instability is defined
as the decrease in social benefit due to stochastway capacity. In units of $ per hour of
analysis,

VR(A) = ¢ lA[t' (A1) — t(A)] + c.lAe' (1) — e(A)]

= MOp(Q) [ct [% - t(A)] + ¢, [eq —e(l) + %et]l (21)

This can be put into units of $/veh-mi by dividibhg! andA. So the value of reliability (related
to stochastic capcity) can be estimated as a fuamctiA with parameters of section length, the
cost coefficients (except), the breakdown probability function, the bottlekg@arameters, the

BPR parameters, the emissions formulation parasiedad the queue transition emissions.

CASE STUDY

We now present a case study application using\esdHbop detector data from OR-217, a
congested freeway corridor in the Portland, Oregetropolitan region. The parameter values
for use in the above equations and their soureestaown in Table 2. Much of the data come
from PORTAL, a transportation data archive at Rodl State University:
http://portal.its.pdx.edu. The freeway stochastipacity data come from Saberi and Figliozzi
(2010), who recently analyzed traffic charactezstn this corridor utilizing PORTAL data.
From (6), we can estimateto make the likelihood of breakdown at nominalafy a

. . 1 o .
certain valuep., p(4.) = p. usinge = A, [ln( /1 —p )] . For a median value @f. =
Cc

0.5, o5 = 1.028641,, for p. = 0.90, @y4 = 0.93791.. Here we assume the nominal capacity
(used in the BPR equation) equates to a 90% ligediof flow breakdowny, = 0.90. We
initially assume travel benefis = $0.50 per vehicle-mile. Theta, a function of theakdown
flow parametersA, ¢, w,andv,,) and segment length- see (11), is calculated from the
parameters in Table 2 as 0.27; the correspondingnmuan queue length is 4.8miles.



Table 2. Parameters used in the case study

Parameter Value Units Source

I 7 mi roadway

A 1 hours approximated from PORTAL data

o 0.8 - approximated from PORTAL data

FFS 60 mph approximated from PORTAL data

a 0.15 - (Saberi and Figliozzi 2010)

b 7 - (Saberi and Figliozzi 2010)

A 2200 vphpl (Saberi and Figliozzi 2010)

A 26 mph (Saberi and Figliozzi 2010)

Vi -12 mph (Lu and Skabardonis 2007; Castillo and ®eri995)
Vi 12 mph assumed to be the sameg,as

) 13 - (Brilon, Geistefeldt, and Regler 2005)

Q 2063 vphpl Makes/, the 9¢" percentile from (6), see above
e Eq'n (17) kg/veh MOVES2010 modeling (see above)

G 15 $/veh-hr assumed from (Schrank and Lomax 2009)

Ce 0.02 $/kg CQ assuming US$20/tonne G@rom EU ETC

o 3 $/gal assumed from (Schrank and Lomax 2009)

F 10 kgCQ/gal (U.S. Environmental Protection Agency 2009a)
B 0.50 $/veh-mi assumed

Net Benefits, Optimal Flow, and the Value of Reliability

The results of applying the parameters in Table Gatculate net benefits as embodied in (20)
are shown below. The cost components, total cbstgfits, and net benefits are illustrated in
Figure 4. The total costs are dominated by trawe tosts, and emissions costs are negligible.
All cost components increase more rapidly as v #ipproaches capacity and the likelihood of
flow breakdown increases. The optimal flow herenaximize net benefits is 1,658vphpl (75%

of 1,).
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Figure 4. Case study cost and benefit curves



The parameter with the highest uncertaintg,isvhich would require some knowledge of
the trips and travelers to estimate accuratelys parameter impacts both net benefits and the
optimal flow rate. Given this uncertainty, it igenesting (and perhaps most useful) to look at
how optimal flows vary witl3. To this end Figure 5 illustrates the impactsarfying S on
optimal flow. Figure 5 also shows the impacts @f pnobabilistic breakdown formulation with
two different optimal flow curves — with and withozonsideringy (1).
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Figure 5. Impact of considering probabilistic brealdown on optimal flows

Here we see that there is an initial per-mile bietiefeshold, below which auto travel is
not worthwhile. FoB just above this threshold, optimal flows quickiserto the lower
probabilities of breakdown flow, around 1,400 vpfwhich equates tp(1400) = 0.01). Asf
increases, higher flows are optimal because theevail additional trips outweighs the increased
marginal costs for all vehicles. Optimal flows iease more slowly witf when using the
probabilistic formulation, which considers the pbgiy of flow breakdown below capacity.
Using stochastic costs a doubling of the benefitsawel from $0.40 to $0.80/veh-mi results in
an optimal flow increase of only about 30%, while tleterministic curve increases to capacity
(more than 45%). Lower optimal flows reduce theliitood of flow breakdown at the sacrifice
of additional throughput; up t® = $0.80/veh-mi the optimal flow is still beloy(1) = 0.27.

The optimal flow difference between the curvesigufe 5 shows that reducingA) is a key
factor to increasing optimal traffic flow volumes.

As the optimal flow rates approach the roadway cipavhere breakdown is nearly
certain, there is a “Capacity Point” fBrat which, despite the increased costs of queued
conditions, the value of travel supersedes flowria®ns. This occurs at around $0.70/veh-mile
considering deterministic costs and $1.06/veh-golesidering stochastic costs. The “Capacity
Point” considering probabilistic breakdown is 50%¢ager than for deterministic conditions —
indicating that trip values must be much higheorider to warrant high volumes if we consider
traffic instability below the capacity thresholdrfprobabilistic breakdown there is a sudden
change in the optimal flow curve as traffic flowean capacity that reflects the flattening of the
Weibull distribution near capacity flows (see Fig@).
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The value of reliability (or cost of unreliabilityhere computed by (21), increases with
p(1) as we approach the roadway capacity. The margowal value of reliability increases
from essentially zero at flows below 1500vphpl boat $0.08/veh-mi at flows just below
capacity. This value of reliability is about 16%tofal estimated stochastic costs (per vehicle-
mile) near capacity for the study corridor. Theueadf reliability is alternatively expressed as
$0.56 per vehicle throughput on the segment, strisenegligibly sensitive to segment length.
As a reminder, this is only the unreliability deestochastic capacity, not due to crashes or other
incidents.

Finally, Figure 6 presents optimal flows vergus/hen considering different
combinations of cost components. While emissiorséscare negligible (at present valuations),
the impacts of considering fuel costs are substhriior example, the “Capacity Point” for total
costs is about 20% higher than when neglectingdaosts. In the other dimension,fat
$0.80/veh-mi the optimal flow is about 5% lower whemnsidering fuel costs as compared to
neglecting them.
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Figure 6. Optimal flow versusp, with different cost components
Case Study Sensitivity

Elasticities of net benefits, optimal flows, ane tralue of reliability to changes in various
parameters were calculated, as presented in Talllee3elasticity is the percent change in the
dependent variable (benefit/flow/reliability) widach percent change in the parameter value,
with respect to initial parameter values from T&hl& he initial optimal flow is 1,658vphpl with
the initial net benefit of $1,323/hour estimatedhés optimal flow. The initial value of reliabijit
is estimated at capacity flow (2,200vphpl) as $3/B@ur.

The cost coefficient for time and the benefits pée (c;andf) are important factors for
net benefits. The free-flow speed (FFS) is alsoartgnt for net benefits as it greatly impacts the
travel time on the segment. Optimal flow is gerlgralss sensitive to parameters than net
benefits are, though andg are still among the more important factors. Theesparameter of
the breakdown probability functigp is the most important factor for optimal flow, whiis to
be expected from the importance of flow breakdowelihood illustrated in Figure 5. The value

11



of reliability is most impacted by bottleneck chatmistics such a&andw,, as well as the
breakdown probability scale parameger

Table 3. Elasticities of net benefits, optimal flowand the value of reliability to parameters

Parameter Net Benefit Optimal Flow Value of Reliability
Elasticity Elasticity Elasticity
L 1.00 0.06 0.00
A4 -0.05 -0.07 0.90
0 -0.09 -0.13 1.66
FFS 2.00 0.17 0.83
a -0.04 -0.03 -0.11
b 0.08 0.03 0.00
A 0.32 0.20 0.76
Vb 0.08 0.11 -1.67
Vi -0.03 -0.04 0.47
Vi -0.03 -0.04 0.47
w 0.12 0.10 0.00
7 0.55 0.71 -2.50
& 0.00 0.00 -0.02
(7] -0.05 -0.07 0.90
C -2.00 -0.28 0.83
Ce -0.07 0.00 0.01
C -1.00 -0.10 0.13
B 3.33 0.38 0.00

Urban Area Comparisons

Our final analysis looks at how city size and dgnsan impact optimal traffic flows. To do this
we gather macroscopic characteristics of peak-gdreeway volumes in different cities from
the data tables of the Texas Transportation Instg2009 Urban Mobility Report (UMR)
(Schrank and Lomax 2009). The urban areas selactetthe most and least “traveler-dense”
urban areas in the three top size categories: “Mead{0.5-1 million people), “Large” (1-3
million), and “Very Large” (>3 million). Travelerahsity is assessed as the number of peak
period travelers per square mile, easily extraetédoim the UMR data tables.

From the UMR data tables we can estimate averagje period trip distance on major
facilities by dividing total peak period freewaydharterial vehicle-miles traveled (VMT) by the
number of peak period travelers. Since the numbgawvelers will exceed the number of
vehicles, this is a low-end approach to estimatnilgs per person, per day. We also use the
UMR data to calculate average congested peak pfgeday volumes, in vehicles per hour per
lane (vphpl), by assuming the portion congested/ T and lane-miles) is equivalent on
freeways and arterials, and an even directiondl $jar each Urban Area the UMR provides
estimates of freeway and arterial VMT and lane-sjifeactions of VMT and lane-miles
congested, and number of “rush hours™- assumee tmwhgested. By assuming even
distributions this is a conservative approach tome estimates. These assumptions provide an
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admittedly rough approximation, but one which carubed to illustrate the differences among
urban areas.

Table 4. Urban areas’ average characteristics

Peak . Peak Peak
Urban . Lane-mi .
Population Traveler Trip Freeway
Area . Congested .
Density Distance  Volume
(1,000's) (per mi?) (%) (mi) (vphpl)
Atlanta 4,440 771 58 19.5 1,570
Los Angeles 12,800 3,087 61 19.2 2,098
Raleigh- 1,025 671 53 20.6 1,089
Durham
Las Vegas 1,405 2,539 53 16.4 1,700
Nashville 995 725 43 23.8 1,061
Honolulu 705 2,771 51 12.2 1,174

Table 4 shows the six urban areas analyzed alotigthweir population, peak-period
traveler density, percent of lane-miles congesigdrage peak-period trip distance, and average
congested peak-period freeway volume — all extdaotecalculated from the UMR data tables
for 2007. We next use these data to calculate énd¢raveler dollar values of daily peak period
trips that would warrant capacity flows and optieexisting average peak period freeway flows
— each for both deterministic and stochastic coont Forf in each urban area (the effective
fraction of roadway in queued conditions after flomeakdown) we assume a value equal to the
percent of lane-miles congested during the peakg@é€rable 4), and fow, we assume a value
of 35mph (from the UMR methodology — see Appendigfahe UMR (Schrank and Lomax
2009)). The other parameters for cost coefficiar({it), e(1), andp(1) are assumed to be the
same as above for the case study (bottleneck ptaesyd not apply since we are usijg

Table 5. Comparison of travel values across urbanraas

B Values ($ per veh-mi) Trip Values (S per peak period traveler)
To warrant To optimize existlng To warrant To optimize exn.stmg
Urban Area . avg peak period . avg peak period
capacity flow capacity flow
freeway flows freeway flows
Det. Sto. Det. Sto. Det. Sto. Det. Sto.
Atlanta $0.70 $1.10 $0.41 $0.46 $13.68  $21.49 $8.01 $8.99
Los Angeles | $0.70  $1.13 $0.60 $1.12 $13.43 S$21.68 | $11.51 $21.49
Raleigh-

Durham $0.70 $1.06 $0.38 $0.38 $14.44  $21.87 $7.84 $7.84
Las Vegas $0.70 $1.06 $0.43 $0.54 $11.46  $17.35 $7.04 $8.84
Nashville $0.70  $0.98 $0.38 $0.38 $16.67 $23.33 $9.05 $9.05
Honolulu $0.70  $1.04 $0.38 $0.38 $8.52  $12.66 | $4.62 $4.62
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The necessarg to warrant capacity flow in each urban area is tt@mputed as above
for Figure 5, and the average trip value to warcamacity flow calculated usingyand the
average peak-period trip distances. Results anersioTable 5 and Figure 7. The values flor
andv, here are higher than in the case study, which bppesite (and off-setting) effects gn
at the “Capacity Point”.

Atlanta (sprawled)

Very Large Urban Areas

Los Angeles (dense)

| = —————

Large Urban Areas
Las Vegas (dense)

Nashville (sprawled)

Medium Urban Areas

O Deterministic Capacity
oo Cers) | — st Brea
( ) B Probabilistic Breakdown
] T T

I I
$0.00 $5.00 $10.00 $15.00 $20.00 $25.00

Per-Traveler Value of Daily Peak-Period Trips to Warrant Capacity Volumes
Figure 7. Comparison of peak period trip values thawarrant capacity flows

Similarly, theg at which observed flows are optimal can be catedlgagain as from
Figure 5), and converted to travel values usingaye peak-period trip distances. Table 5 and
Figure 8 show the results for each city for botteduinistic and stochastic conditions. These
trip values can be interpreted as the ‘break-etrgmvalues, above which increasing freeway
flows are still warranted, but below which the abveel flows are inefficiently high.

Atlanta (sprawled)
Very Large Urban Areas
Los Angeles (dense)

ll

Raleigh-Durham (sprawled)
Large Urban Areas

Las Vegas (dense)

Nashville (sprawled)
Medium Urban Areas
Honolulu (dense)

O Deterministic Capacity
B Probabilistic Breakdown

I I I I
$0.00 $5.00 $10.00 $15.00 $20.00 $25.00

il

Per-Traveler Value of Daily Peak-Period Trips to Warrant Current Average Volumes

Figure 8. Comparison of peak period trip values thaoptimize existing freeway volumes
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Less dense urban areas require higher trip vatuesitrant capacity flow since the trip
lengths tend to be longer (which lowers value pige)nConversely, for a given peak-period trip
value denser areas will have higher optimal flotesdecause the value is larger. This is
particularly true for mid-sized urban areas, sitieelarger the population the less of a difference
in trip distance is observed for areas with differeaveler densities.

Dense but smaller-sized urban areas have the loesired trip value to optimize
existing flows (Honolulu) since trips are short amhgestion is light. Higher existing volumes
increase marginal costs, and so increase the eehjrip values — particularly as flows approach
capacity and the probability of breakdown increa3ée denser Large and Very Large urban
areas have markedly higher volumes than lower teaseas of the same size (since travel is
less spatially distributed), which increases thegmmal costs of travel and can offset shorter trip
lengths. Despite higher volumes, Las Vegas has amabje break-even trip values to the less
dense urban areas because the average trip lsngtbriter. Finally, urban areas with low peak
volumes (below 1,200 vphpl) have no observabletkfice between probabilistic and
deterministic conditions, while those very nearamaty (e.g. Los Angeles) are greatly affected
by the uncertainty of breakdown conditions. ThehHilgelihood of traffic flow breakdown
combined with long trip lengths makes the breaknavig value for existing conditions in Los
Angeles double that of any other urban area whesidering stochastic capacity.

As stated above, these comparisons by urban ased loa a set of loose assumptions. To
see the sensitivity of these results, we varieddt@ssumptions and the key parameters as
indicated by Table 3. Using the Portland case suadlyes for6 andv, (both of which are lower)
has no large impact on the results. Decrea@irggduces stochastic costs at capacity and for high-
volume areas, but decreaswghas the opposite (and here offsetting) effects Bhiggests that
these results are consistent with varying threshofccongestion.

Increasing the roadway capacity (or scale paranoétitie probability of breakdown
function) reduces the stochastic costs for highua areas since they are less exposed to
congestion or flow breakdown. On the other hanslying less homogenous flow distribution
increases the costs for higher-volume urban afFeasexample, assuming a 60/40 directional
split increases the stochastic costs for Las VagdsAtlanta by around 80%; the cost increase
for Los Angeles is muffled since a 60/40 directiosalit puts the congested volumes over the
assumed capacity, violating the model assumptiasying other parameters such as free-flow
speed and cost coefficients has little to no effecthe comparison among urban areas.

The ratio of stochastic to deterministic costsdach urban area similarly increases with
parameters that increase congestion penaltiesolsarved volumes the stochastic/deterministic
cost ratio ranges from 1.0 for low-volume areas.®for Los Angeles. This ratio tends to
increase with higher volumes (which themselvesaase with traveler density).

Given the uncertainty in parameter estimation abeve results comparing urban areas
are presented as conservative estimates, withatreatthat they are highly sensitive to
assumptions abo@, v,, and the directional split. The estimates are enagive in that they will
tend to underestimate trip distances, peak voluares stochastic costs, as explained above.
While the absolute cost estimates are highly sgedib the assumptions, the same general trends
in the results hold (though possibly magnified) farying parameter values.

CONCLUSIONS

In this paper we model the costs and benefitsesvilay traffic flows with stochastic freeway
capacity. We apply this model to a congested frgeswaridor in Portland, Oregon using real-

15



world archived traffic data. Case study resultsastimat unreliability decreases optimal traffic
flow volume — and increases travel value that guned to warrant flow at capacity. Travel time
is the dominant cost, followed by fuel costs; emoiss costs are negligibly small at present
valuations. Over a wide range of trip values, optiffow remains at levels with a low
probability of breakdown — indicating the importaraf the breakdown probability function. A
sensitivity analysis indicates that net social iégmnand optimal flow are most sensitive to the
travel time cost coefficient, the travel benefieffiwient, the free-flow speed, and the probability
of breakdown. The value of reliability is most séue to the breakdown flow characteristics
and the probability of breakdown function.

Comparing macroscopic peak-period traffic charasties among urban areas of varying
size and density, results indicate that lower dgr@seas require higher trip values to warrant
flow near capacity since average trip distancedosrger. The large and dense urban areas have
markedly higher flows which increase the margiradts of travel and can offset shorter trip
lengths when estimating net benefits. These resuisate that there is a trade-off between trip
length and traffic intensity in urban areas witffetient density. The urban comparisons are
conservative with respect to cost estimates anahggensitive to several key assumptions. Still,
the trends of the results hold across varying patanvalues.
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