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ABSTRACT  

When freeway traffic flow approaches capacity, minor disturbances or perturbations can cause 
unstable traffic streams to break down into queued or bottleneck conditions with the 
accompanying heavy congestion costs. As the traffic volume at which flow breaks down is 
uncertain, this research utilizes a stochastic capacity model to estimate congestion costs in terms 
of delays, fuel, and emissions. We apply this stochastic model to a congested freeway corridor in 
Portland, Oregon in order to demonstrate the impact of various traffic parameters on the net 
social benefits of traffic flow. Travel time is the dominant cost, followed by fuel costs. For a 
given value per trip (in $/mile), the traffic flow volume that maximizes social benefits decreases 
as travel time reliability decreases. Traffic flows near capacity levels are justified by trip values 
that are 50% higher if the impacts of stochastic freeway capacity are considered. Comparing 
macroscopic peak-period traffic characteristics among urban areas of varying size and density, 
we see that for a given peak-period trip value denser urban areas will have higher optimal flow 
rates. This comparison demonstrates a fundamental cost trade-off for traffic networks between 
shorter trip lengths and higher traffic intensity from increased urban density.  
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INTRODUCTION 

Traffic congestion is increasing around the world, particularly on urban freeway facilities 
(European Conference of Ministers of Transport (ECMT) 2007; Schrank and Lomax 2009).  
Congestion has enormous social and financial impacts related to traveler time, air pollution, fuel 
consumption, freight costs, and safety costs, among others (Goodwin 2004; HDR 2009; Kriger et 
al. 2007; Weisbrod, Vary, and Treyz 2001). In terms of traveler time and freight costs, we also 
now appreciate that it is not only average conditions but unreliable/variable conditions that 
increase total costs of congestion (Brownstone and Small 2005; Danielis, Marcucci, and Rotaris 
2005).  

One of the causes of unreliability is instability in a traffic stream as it nears some 
maximal throughput capacity (Kerner 1999; May 1989). Minor disturbances or perturbations can 
cause unstable traffic streams to break down into queued or bottleneck conditions with the 
accompanying heavy congestion costs. But the traffic volume at which flow breaks down is not a 
certainty, motivating past research to model networks as having uncertain traffic volume 
capacity (Boyles, Kockelman, and Travis Waller 2010; Lam, Shao, and Sumalee 2008; Lo, Luo, 
and Siu 2006; Chen et al. 2002). Lo and Tung (2003) modeled link capacities as uniformly 
distributed random variables, while Brilon (2005) modeled traffic capacity as a stochastic 
variable following a Weibull distribution. Since traffic flow breakdown is a stochastic event, it 
should also be treated as such in traffic management. In effort to better utilize existing roadway 
capacity, many metropolitan areas have established advanced traffic management systems 
(ATMS). These systems employ various traffic control techniques such as ramp metering, 
variable speed limits, dynamic congestion pricing, and dynamic traveler guidance (U.S. 
Department of Transportation n.d.).  

The proliferation of ATMS provides opportunities to better manage traffic flows. We 
propose that traffic flows can be better managed if the impacts of stochastic freeway capacity on 
delays, fuel consumption, and emissions are properly modeled. We apply a stochastic freeway 
capacity model of traffic flow social benefits and costs to a congested freeway corridor in 
Portland, Oregon using archived traffic data. Finally, we make comparisons across a diverse set 
of urban areas to illustrate relationships between urban density, trip length, and congestion 
levels.  

METHODOLOGY 

We contrast the models that result from assuming (a)  constant freeway capacity and (b) a 
stochastic freeway capacity model.     

(a) Constant Freeway Capacity   

Notation.  
�: traffic demand or vehicle arrival rate [vehicles/hour]  
��: roadway capacity  [vehicles/hour] 
����: travel rate, time to travel one mile with demand rate � [hour/mile] ���� � 1/����: average travel speed [miles/hour] 

���: marginal emissions rate, with demand rate � [kg/veh-mile] 
����: fuel consumption rate, with demand rate � [gallons/veh-mile] �: length of the freeway section under study [miles]  
ce: cost of emissions (of pollutant in 
���)  [$/kg] 
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ct: value of time [$/hour] 
cf: cost of fuel [$/gallon] 
 

Travel Rate. Using the well-known Bureau of Public Roads (BPR) volume-travel time function 
(1964), the travel rate as a function of arrival rate � (assumed constant over the analysis period) 
is 

 ���� � � �1 � � �� ��� ��� � � � �� �� ��� ��
 (1) 

where � is the free-flow travel rate and � and � are parameters. For � � 0 and � � 0, ���� is an 
increasing convex function. 

 
Emissions and Fuel Rates. For emissions we estimate a function of λ per vehicle, per mile,
���.  
The CO2 emissions estimates used for fitting in this study are from Bigazzi and Figliozzi (2011) 
based on MOVES 2010 emissions model with a 2010 mixed light/heavy-duty fleet in Portland 
Oregon. In the present study we estimate only CO2, but other pollutants can be similarly 
modeled. For the base emissions rates we use ���� as above (the BPR model) to relate λ to 
average speed – which is the input for the average-speed emissions model – with � � 60mph, �� � 2,200vphpl, � � 0.15 and � � 7. 

We then apply a new emissions formulation which is similar to ����, using four positive 
fitted parameters: %&, %', %(, ), and nominal capacity ��: 
 
��� � %& � %' �� ��� � � %( �� ��� �*

 (2) 

The fitted parameters are estimated by minimizing square error of emissions rates with respect to 
base rates using λ as the independent variable, from 0 to 3,630 veh/hr/ln. This range of λ covers 
an average speed range from 10 to 60mph. Fitting this curve we find n to be about 10. This 
fitting gives us an R2 of 0.996. Similar fitting is obtained for another emission model proposed 
by Barth and Boriboonsomsin (2008). The fitted parameters are shown in Table 1, and the fits 
are illustrated in Figure 1 The difference in magnitude of modeled emissions is to be expected, as 
the MOVES model includes heavy vehicles while the Barth model does not. Still, the 
��� 
formulation fits well for each modeled fleet.  
 
Table 1. Fitted CO2 Emissions Equation Parameters 

Parameter MOVES Estimate Barth Estimate 

+, 0.4043 0.3253 

+- 0.02793 0.0000 

+. 0.003650 0.002641 

/ 9.993 9.992 

 
Assuming CO2 emissions are directly proportional to fuel consumption, we can use the 

CO2 emissions formulation to estimate both CO2 emissions and fuel consumption. Using a fuel 
carbon intensity F of 10kgCO2/gallon fuel (U.S. Environmental Protection Agency 2009a), we 
have the fuel consumption ����, in gallons/veh-mi,  

 ���� � 
��� 0⁄ � 2%& � %' �� ��� � � %( �� ��� �*3 0�  (3) 

Alternatively, fuel consumption could be modeled as a function of average travel speed and fit 
with a new set of parameters, as was done for emissions above.  
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Figure 1. Emissions fit for MOVES (black) and Barth (grey) models 

 
Total Costs and Benefits. Accounting for time, fuel, and emissions costs, the total costs per unit 
of analysis time of flow rate λ are, in $/hour,   
  45��� � 67������ � 68������ � 69
�����  (4) 
  
Introducing an inelastic demand function such that each trip on the segment has an associated 
benefit :� [$/vehicle] where : � 0 [$/vehicle-mile], we can calculate the net social benefit per 
unit time of flow rate λ as 
  ;<��� � :�� = 67������ = 68������ = 69
�����  (5) 
in $/hour. If we define a modified emissions cost coefficient 6> � 69 � 68 0⁄ , we can notate the 
net benefits simply as ;<��� � :�� = 67������ = 6>
�����. The cost coefficient 6> could also be 
further modified to take into consideration the cost of local pollutants (assuming their emissions 
are roughly proportional to CO2 emissions).  

(b) Stochastic Freeway Capacity  

The previous analysis assumes the travel speed is a function of the volume of vehicles but that 
traffic does not break down at any moment. Research has shown that after flow breakdown (a 
stochastic event) the traffic flow characteristics are altered (Zhang and Levinson 2004). Here we 
consider the case of a probabilistic breakdown in flow as traffic nears the roadway capacity. 
 
Probability of Breakdown. We define ?��� as the traffic flow breakdown Bernoulli probability 
function, where the mean of the probability of failure is a function of �. From Brilon, Geistefeldt, 
and Regler (2005), we can formulate the relationship as a Weibull-distributed cumulative 
distribution function 

 ?��� � 1 = 
@�A
B�C

 (6) 
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where D and E are shape and scale parameters, respectively. They studied a 3-lane German 
motorway and found D F 13 consistently, while E ranged from about 1,650 to 2,200 vphpl for a 
1-hour steady flow interval. This agrees with recent research on flow breakdown on an urban 
freeway in Portland, Oregon (Saberi and Figliozzi 2010) – see Figure 2.  

   

(a)                                                                                   (b) 
Figure 2. Comparison of empirical breakdown probabilities  
from a) Brilon, et al. (2005) and b) Saberi & Figliozzi (2010) 

 
Bottleneck Analysis. Assume that once flow breakdown occurs, a bottleneck is activated behind 
which a queue of slow-moving vehicles forms. This queue persists partly because of reduced 
throughput capacity after flow breakdown. If we assume a simple triangular shape on the space-
time (x-t) plane for the extent of the bottleneck, we can estimate delay, fuel consumption, and 
emissions after flow breakdown using some additional parameters. We define the following 
parameters, illustrated in Figure 3:  

T: duration of time where a bottleneck (bn) is present, from � � 0 
vf : free-flow traffic speed outside the queue (equal to ���� for � H ��) 
vb: traffic speed in the queue, where �8 � �� 

vw: speed of queue propagation  (a negative number) 
vw’: speed of queue dissipation  
�: length of the freeway section under study  

The dashed lines in Figure 3 are idealized vehicle trajectories, representing average traffic speed 
as constant-speed vehicles.  

Assume that a vehicle starts at the upstream end of the freeway section under 
consideration at a time I with respect to the start of a bottleneck at the downstream end of the 

section such that 0 J I � � �8� J 4 in order to encounter the queue. The vehicle that reaches the 

queue at the initial activation of the bottleneck departs at time I � =�8 where �8 � � �8�  . The 

vehicle that reaches the queue at the transition from formation to recovery wave of the bottleneck 

departs at time I � �K where �K � LMNOPMN@MQR
MQ�MN@MNO� = S

MQ . The last vehicle to encounter the bottleneck 

departs at time I � �9 where �9 � 4 = � �8�  . 
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Figure 3. Illustrated breakdown flow 

The travel time over the freeway segment 
formation (the propagation wave), where 

 

and the travel time for vehicles encountering the queue during dissipation (the recovery wave), 
where �K J I J �9, is  

 

The travel time during the queue 
departure time from the start of the section

tr. These vehicles experience the maximum delay

length  �T_VWX � LMNMNO
MN@MNO, and a travel time 

averaged over time for vehicles encountering th

Assume that if there is a bottleneck, the duration of the bottleneck 
time period of study with constant demand 
indicates the relative duration of the bottleneck in the period of 
(time/distance) during Δ accounting for bott

  ����� � ����
since �8 � 1 ����� . Substituting for 

 ����� � � � Z[\
(

which is an increasing convex function 
and physical constraints �T_VWX J
���� (the queue speed must be less than the un
a new dimensionless parameter  

breakdown flow parameters on the space-time plane

over the freeway segment for vehicles encountering the queue during 
formation (the propagation wave), where =�8 J I J �K, is 

 �' � S
M] · M]@MN

MQ@MN � I · MN
M] · M]@MQ

MQ@MN 

for vehicles encountering the queue during dissipation (the recovery wave), 

 �( � S
M] · M]@MNO

MQ@MNO � �4 = I� · MNO
M] · MQ@M]

MQ@MNO . 
during the queue existence is then a piecewise linear function of the 

from the start of the section, with a maximum travel time for vehicles departing

the maximum delay _VWX � �T_VWX � '
M] = '

MQ�, where max queue

travel time of �VWX � �8 � _VWX. The delay in the queue

averaged over time for vehicles encountering the queue, is _̀ � _VWX 2� .  

bottleneck, the duration of the bottleneck 4 � aΔ
constant demand � maintained, and 0 J a J 1 is a coefficient that 

indicates the relative duration of the bottleneck in the period of study Δ. The average 
accounting for bottleneck delay is then 

� � � a b̀
S � Z·Sc_def

(SM] � ���� �1 = Z·Sc_def
(S �  

Substituting for �T_VWX, 4, and ���� we get 

\MNMNO�'@7gM]�
(SM]�MN@MNO� � �� 21 = Z[\MNMNO

(S�MN@MNO�3 �� ��� ��
 

convex function of λ , with parameters �, a, ∆, �i, �ij, �� ,
J � (the queue must be contained in the segment)

(the queue speed must be less than the un-queued speed). We can simplify the notation with
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time plane 

for vehicles encountering the queue during 

(7) 

for vehicles encountering the queue during dissipation (the recovery wave), 

(8) 

is then a piecewise linear function of the vehicle’s 
for vehicles departing at 

, where max queue 

The delay in the queue, 

Δ where Δ is the 
is a coefficient that 

average travel rate 

(9) 

(10) 

, � , �, �, and �� 
(the queue must be contained in the segment) and 1 ��� k

simplify the notation with 
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 l � ZSc_def
(S � Z[\MNMNO

(S�MN@MNO�   (11) 

which indicates the fractional effective bottleneck length in the context of the study period and 
road segment length. Using l, 

 ����� � m
M] � �1 = l� · ���� (12) 

and the average travel rate if flow breakdown occurs is a function of � with parameters l, �� , � , �, �, and ��.  
Using (1) and (2), the average emissions rates 
T (per vehicle, per mile) for vehicles 

inside a queue with average speed �� can be estimated as: 

 
T � 
 n�� �'@M]7g
M]7gW �' �� o � %& � %' �'@M]7g

M]7gW �' �� � %( �'@M]7g
M]7gW �* ��

 (13) 

with parameters �, �, � , %&, %', %(, and ). The emissions for vehicles outside the queue is the 
same as 
���. Neglecting the transitions in/out of the queue, by a parallel process as the 
development of (12) we can estimate the emissions when a bottleneck occurs as  
 
���� � l · 
T � �1 = l� · 
��� (14) 
If we estimate the excess queue transition emissions for a vehicle entering and exiting the queue 
as 
7 in mass per vehicle encountering the queue, then the average emissions rate after 
breakdown (per vehicle, per mile) becomes 

 
���� � l · 
T � �1 = l� · 
��� � Z
S · 
7 (15) 

The equations for 
���� and ����� are linear functions of 
��� and t���, and so themselves 
increasing convex. 

We can estimate the size of 
7 using an assumption of constant deceleration/acceleration 
for vehicles encountering the queue. Let the emissions rates (per vehicle-mile) with constant 
acceleration � and constant deceleration q be 
W and 
r, respectively, and free-flow emissions be 
8. Then the excess emissions in mass per vehicle during the transitions are 

  
7 � M][@MQ[
(r P
r = 
8R � MQ[@M][

(W P
W = 
8R.  (16) 

Long (2000) discusses various acceleration characteristics of vehicles, and sites NCHRP report 
270 for average accelerations around 2 mph/sec in the 30-60mph speed range (Olson et al. 1984). 
Assuming this value for both transition accelerations and decelerations, we modeled constant 
accelerations and decelerations in the 30-60mph speed range using the project-level 
methodology of the MOVES 2010 emissions model (U.S. Environmental Protection Agency 
2009b), with the same fleet and other characteristics as above from Bigazzi and Figliozzi (2011). 
MOVES outputs for CO2 generated, on average, 
W � 0.957 kg/veh-mi and 
r � 0.156 kg/veh-
mi. Using 
8 � 0.404 kg/veh-mi at 60mph free-flow speed (see Table 1), these lead to 
  
7 � 2.12 u 10@vP�8( = ��(R  (17) 
with speeds in mph and 
7 in kg/veh. For free-flow speed of 60mph and queued speeds in the 10-
40mph range, this results in an equivalent emissions distance penalty of q9 � 9w

9Q � 0.10 to 

0.18 miles (the distance at free-flow speed that produces the same amount of excess emissions 
as those produced by the queue transition).  
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Modified Cost Functions. Utilizing the probabilistic function ?��� we generate the revised 
travel rate function 

�j��� � ?��� · ����� � P1 = ?���R · ���� 
 � ���� � ?���l 2 '

M] = ����3 (18) 

Similarly, the revised average emissions rate function is  

 
j��� � ?��� · 
���� � P1 = ?���R · 
��� 

 � 
��� � ?��� 2l �
T = 
���� � Z
S 
73 (19) 

The fuel consumption estimate can also be revised as per (3) using 
j��� for 
���. For net social 
benefits considering probabilistic flow breakdown we then have 
 ;<|��� � :�� = 67�|����� = 6>
|����� (20) 
where 6> � 69 � 68 0⁄ .    

 

Value of Reliability 

The value of reliability (or cost of unreliability) with respect to traffic flow instability is defined 
as the decrease in social benefit due to stochastic freeway capacity. In units of $ per hour of 
analysis,  
  }~��� � 67����j��� = ����� � 6>���
j��� = 
���� 
 � ��l?��� �67 2 '

M] = ����3 � 6> 2
T = 
��� � Z
mS 
73� (21) 

This can be put into units of $/veh-mi by dividing by � and �. So the value of reliability (related 
to stochastic capcity) can be estimated as a function of � with parameters of section length, the 
cost coefficients (except :), the breakdown probability function, the bottleneck parameters, the 
BPR parameters, the emissions formulation parameters, and the queue transition emissions. 
 

CASE STUDY 

We now present a case study application using archived loop detector data from OR-217, a 
congested freeway corridor in the Portland, Oregon metropolitan region. The parameter values 
for use in the above equations and their sources are shown in Table 2. Much of the data come 
from PORTAL, a transportation data archive at Portland State University: 
http://portal.its.pdx.edu. The freeway stochastic capacity data come from Saberi and Figliozzi 
(2010), who recently analyzed traffic characteristics on this corridor utilizing PORTAL data.   

From (6), we can estimate E to make the likelihood of breakdown at nominal capacity a 

certain value ?�,  ?���� � ?� using E � �� 2�) �1 1 = ?�� �3@' ��
. For a median value of ?� �

0.5, E&.v � 1.0286��, for ?� � 0.90, E&.� � 0.9379��. Here we assume the nominal capacity 
(used in the BPR equation) equates to a 90% likelihood of flow breakdown, ?� � 0.90.  We 
initially assume travel benefits : � $0.50 per vehicle-mile. Theta, a function of the breakdown 
flow parameters (∆, δ, vw,and vw’) and segment length l – see (11), is calculated from the 
parameters in Table 2 as 0.27; the corresponding maximum queue length is 4.8miles. 
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Table 2. Parameters used in the case study 

Parameter Value Units Source 
l 7 mi roadway 
∆ 1 hours approximated from PORTAL data 
δ 0.8 - approximated from PORTAL data 
FFS 60 mph approximated from PORTAL data 
a 0.15 - (Saberi and Figliozzi 2010) 
b 7 - (Saberi and Figliozzi 2010) 
�� 2200 vphpl (Saberi and Figliozzi 2010) 
vb  26 mph (Saberi and Figliozzi 2010) 
vw -12 mph (Lu and Skabardonis 2007; Castillo and Benítez 1995) 
vw’ 12 mph assumed to be the same as vw � 13 - (Brilon, Geistefeldt, and Regler 2005) 
� 2063 vphpl Makes �� the 90th percentile from (6), see above 
et Eq’n (17) kg/veh MOVES2010 modeling (see above) 
ct 15 $/veh-hr assumed from (Schrank and Lomax 2009) 
ce 0.02 $/kg CO2 assuming US$20/tonne CO2, from EU ETC 

cf 3 $/gal assumed from (Schrank and Lomax 2009) 
F 10 kgCO2/gal (U.S. Environmental Protection Agency 2009a) 
� 0.50 $/veh-mi assumed 

Net Benefits, Optimal Flow, and the Value of Reliability 

The results of applying the parameters in Table 2 to calculate net benefits as embodied in (20) 
are shown below. The cost components, total costs, benefits, and net benefits are illustrated in 
Figure 4. The total costs are dominated by travel time costs, and emissions costs are negligible. 
All cost components increase more rapidly as the flow approaches capacity and the likelihood of 
flow breakdown increases. The optimal flow here to maximize net benefits is 1,658vphpl (75% 
of ��).  

 
Figure 4. Case study cost and benefit curves 
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The parameter with the highest uncertainty is :, which would require some knowledge of 
the trips and travelers to estimate accurately. This parameter impacts both net benefits and the 
optimal flow rate. Given this uncertainty, it is interesting (and perhaps most useful) to look at 
how optimal flows vary with :. To this end Figure 5 illustrates the impacts of varying : on 
optimal flow. Figure 5 also shows the impacts of the probabilistic breakdown formulation with 
two different optimal flow curves – with and without considering ?���.  

 
Figure 5. Impact of considering probabilistic breakdown on optimal flows 

Here we see that there is an initial per-mile benefit threshold, below which auto travel is 
not worthwhile. For : just above this threshold, optimal flows quickly rise to the lower 
probabilities of breakdown flow, around 1,400 vphpl (which equates to ?�1400� � 0.01). As : 
increases, higher flows are optimal because the value of additional trips outweighs the increased 
marginal costs for all vehicles. Optimal flows increase more slowly with : when using the 
probabilistic formulation, which considers the possibility of flow breakdown below capacity. 
Using stochastic costs a doubling of the benefits of travel from $0.40 to $0.80/veh-mi results in 
an optimal flow increase of only about 30%, while the deterministic curve increases to capacity 
(more than 45%). Lower optimal flows reduce the likelihood of flow breakdown at the sacrifice 
of additional throughput; up to : � $0.80/veh-mi the optimal flow is still below ?��� � 0.27. 
The optimal flow difference between the curves in Figure 5 shows that reducing ?��� is a key 
factor to increasing optimal traffic flow volumes.  

As the optimal flow rates approach the roadway capacity where breakdown is nearly 
certain, there is a “Capacity Point” for : at which, despite the increased costs of queued 
conditions, the value of travel supersedes flow restrictions. This occurs at around $0.70/veh-mile 
considering deterministic costs and $1.06/veh-mile considering stochastic costs. The “Capacity 
Point” considering probabilistic breakdown is 50% greater than for deterministic conditions – 
indicating that trip values must be much higher in order to warrant high volumes if we consider 
traffic instability below the capacity threshold. For probabilistic breakdown there is a sudden 
change in the optimal flow curve as traffic flows near capacity that reflects the flattening of the 
Weibull distribution near capacity flows (see Figure 2).  
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The value of reliability (or cost of unreliability), here computed by (21), increases with ?��� as we approach the roadway capacity. The marginal social value of reliability increases 
from essentially zero at flows below 1500vphpl to about $0.08/veh-mi at flows just below 
capacity. This value of reliability is about 16% of total estimated stochastic costs (per vehicle-
mile) near capacity for the study corridor. The value of reliability is alternatively expressed as 
$0.56 per vehicle throughput on the segment, since it is negligibly sensitive to segment length. 
As a reminder, this is only the unreliability due to stochastic capacity, not due to crashes or other 
incidents.  

Finally, Figure 6 presents optimal flows versus : when considering different 
combinations of cost components. While emissions costs are negligible (at present valuations), 
the impacts of considering fuel costs are substantial. For example, the “Capacity Point” for total 
costs is about 20% higher than when neglecting fuel costs. In the other dimension, at : � $0.80/veh-mi the optimal flow is about 5% lower when considering fuel costs as compared to 
neglecting them. 

 
Figure 6. Optimal flow versus �, with different cost components  
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Elasticities of net benefits, optimal flows, and the value of reliability to changes in various 
parameters were calculated, as presented in Table 3. The elasticity is the percent change in the 
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be expected from the importance of flow breakdown likelihood illustrated in Figure 5. The value 
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of reliability is most impacted by bottleneck characteristics such as δ and vb, as well as the 
breakdown probability scale parameter E. 
 
Table 3. Elasticities of net benefits, optimal flow, and the value of reliability to parameters 

Parameter Net Benefit 
Elasticity 

Optimal Flow 
Elasticity 

Value of Reliability 
Elasticity 

L 1.00 0.06 0.00 

∆ -0.05 -0.07 0.90 

δ -0.09 -0.13 1.66 

FFS 2.00 0.17 0.83 

a -0.04 -0.03 -0.11 

b 0.08 0.03 0.00 

�� 0.32 0.20 0.76 

vb 0.08 0.11 -1.67 

vw -0.03 -0.04 0.47 

vw’ -0.03 -0.04 0.47 

� 0.12 0.10 0.00 

� 0.55 0.71 -2.50 

et 0.00 0.00 -0.02 

� -0.05 -0.07 0.90 

ct -2.00 -0.28 0.83 

ce -0.07 0.00 0.01 

cf -1.00 -0.10 0.13 

� 3.33 0.38 0.00 

 

Urban Area Comparisons 

Our final analysis looks at how city size and density can impact optimal traffic flows. To do this 
we gather macroscopic characteristics of peak-period freeway volumes in different cities from 
the data tables of the Texas Transportation Institute’s 2009 Urban Mobility Report (UMR) 
(Schrank and Lomax 2009). The urban areas selected are the most and least “traveler-dense” 
urban areas in the three top size categories: “Medium” (0.5-1 million people), “Large” (1-3 
million), and “Very Large” (>3 million). Traveler density is assessed as the number of peak 
period travelers per square mile, easily extractable from the UMR data tables.  

From the UMR data tables we can estimate average peak-period trip distance on major 
facilities by dividing total peak period freeway and arterial vehicle-miles traveled (VMT) by the 
number of peak period travelers. Since the number of travelers will exceed the number of 
vehicles, this is a low-end approach to estimating miles per person, per day. We also use the 
UMR data to calculate average congested peak period freeway volumes, in vehicles per hour per 
lane (vphpl), by assuming the portion congested (in VMT and lane-miles) is equivalent on 
freeways and arterials, and an even directional split. For each Urban Area the UMR provides 
estimates of freeway and arterial VMT and lane-miles, fractions of VMT and lane-miles 
congested, and number of “rush hours”- assumed to be congested. By assuming even 
distributions this is a conservative approach to volume estimates. These assumptions provide an 



13 
 

admittedly rough approximation, but one which can be used to illustrate the differences among 
urban areas. 

 
Table 4. Urban areas’ average characteristics 

Urban 

Area 
Population 

Peak 

Traveler 

Density 

Lane-mi 

Congested 

Peak 

Trip 

Distance 

Peak 

Freeway 

Volume 

 
(1,000's) (per mi2) (%) (mi) (vphpl) 

Atlanta 4,440 771 58 19.5 1,570 

Los Angeles 12,800 3,087 61 19.2 2,098 

Raleigh-

Durham 
1,025 671 53 20.6 1,089 

Las Vegas 1,405 2,539 53 16.4 1,700 

Nashville 995 725 43 23.8 1,061 

Honolulu 705 2,771 51 12.2 1,174 

 
Table 4 shows the six urban areas analyzed along with their population, peak-period 

traveler density, percent of lane-miles congested, average peak-period trip distance, and average 
congested peak-period freeway volume – all extracted or calculated from the UMR data tables 
for 2007. We next use these data to calculate the per-traveler dollar values of daily peak period 
trips that would warrant capacity flows and optimize existing average peak period freeway flows 
– each for both deterministic and stochastic conditions. For l in each urban area (the effective 
fraction of roadway in queued conditions after flow breakdown) we assume a value equal to the 
percent of lane-miles congested during the peak period (Table 4), and for vb we assume a value 
of 35mph (from the UMR methodology – see Appendix A of the UMR (Schrank and Lomax 
2009)). The other parameters for cost coefficients, ����, 
���, and ?��� are assumed to be the 
same as above for the case study (bottleneck parameters do not apply since we are using l).  

 
Table 5. Comparison of travel values across urban areas  

 β Values ($ per veh-mi) Trip Values ($ per peak period traveler) 

Urban Area 
To warrant 

capacity flow 

To optimize existing 

avg peak period 

freeway flows 

To warrant 

capacity flow 

To optimize existing 

avg peak period 

freeway flows 

 
Det. Sto. Det. Sto. Det. Sto. Det. Sto. 

Atlanta $0.70 $1.10 $0.41 $0.46 $13.68 $21.49 $8.01 $8.99 

Los Angeles $0.70 $1.13 $0.60 $1.12 $13.43 $21.68 $11.51 $21.49 

Raleigh-

Durham 
$0.70 $1.06 $0.38 $0.38 $14.44 $21.87 $7.84 $7.84 

Las Vegas $0.70 $1.06 $0.43 $0.54 $11.46 $17.35 $7.04 $8.84 

Nashville $0.70 $0.98 $0.38 $0.38 $16.67 $23.33 $9.05 $9.05 

Honolulu $0.70 $1.04 $0.38 $0.38 $8.52 $12.66 $4.62 $4.62 
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The necessary : to warrant capacity flow in each urban area is then computed as above 
for Figure 5, and the average trip value to warrant capacity flow calculated using : and the 
average peak-period trip distances. Results are shown in Table 5 and Figure 7. The values for l 
and vb here are higher than in the case study, which have opposite (and off-setting) effects on : 
at the “Capacity Point”.  

 
Figure 7. Comparison of peak period trip values that warrant capacity flows  

Similarly, the : at which observed flows are optimal can be calculated (again as from 
Figure 5), and converted to travel values using average peak-period trip distances. Table 5 and 
Figure 8 show the results for each city for both deterministic and stochastic conditions. These 
trip values can be interpreted as the ‘break-even’ trip values, above which increasing freeway 
flows are still warranted, but below which the observed flows are inefficiently high.  

 
Figure 8. Comparison of peak period trip values that optimize existing freeway volumes 
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Less dense urban areas require higher trip values to warrant capacity flow since the trip 
lengths tend to be longer (which lowers value per mile). Conversely, for a given peak-period trip 
value denser areas will have higher optimal flow rates because the : value is larger. This is 
particularly true for mid-sized urban areas, since the larger the population the less of a difference 
in trip distance is observed for areas with different traveler densities.  

Dense but smaller-sized urban areas have the lowest required trip value to optimize 
existing flows (Honolulu) since trips are short and congestion is light. Higher existing volumes 
increase marginal costs, and so increase the required trip values – particularly as flows approach 
capacity and the probability of breakdown increases. The denser Large and Very Large urban 
areas have markedly higher volumes than lower density areas of the same size (since travel is 
less spatially distributed), which increases the marginal costs of travel and can offset shorter trip 
lengths. Despite higher volumes, Las Vegas has comparable break-even trip values to the less 
dense urban areas because the average trip length is shorter. Finally, urban areas with low peak 
volumes (below 1,200 vphpl) have no observable difference between probabilistic and 
deterministic conditions, while those very near capacity (e.g. Los Angeles) are greatly affected 
by the uncertainty of breakdown conditions. The high likelihood of traffic flow breakdown 
combined with long trip lengths makes the break-even trip value for existing conditions in Los 
Angeles double that of any other urban area when considering stochastic capacity. 

As stated above, these comparisons by urban area based on a set of loose assumptions. To 
see the sensitivity of these results, we varied these assumptions and the key parameters as 
indicated by Table 3. Using the Portland case study values for l and vb (both of which are lower) 
has no large impact on the results. Decreasing l reduces stochastic costs at capacity and for high-
volume areas, but decreasing vb has the opposite (and here offsetting) effect. This suggests that 
these results are consistent with varying thresholds of congestion.  

Increasing the roadway capacity (or scale parameter of the probability of breakdown 
function) reduces the stochastic costs for high-volume areas since they are less exposed to 
congestion or flow breakdown. On the other hand, assuming less homogenous flow distribution 
increases the costs for higher-volume urban areas. For example, assuming a 60/40 directional 
split increases the stochastic costs for Las Vegas and Atlanta by around 80%; the cost increase 
for Los Angeles is muffled since a 60/40 directional split puts the congested volumes over the 
assumed capacity, violating the model assumptions. Varying other parameters such as free-flow 
speed and cost coefficients has little to no effect on the comparison among urban areas.  

The ratio of stochastic to deterministic costs for each urban area similarly increases with 
parameters that increase congestion penalties. For observed volumes the stochastic/deterministic 
cost ratio ranges from 1.0 for low-volume areas to 1.9 for Los Angeles. This ratio tends to 
increase with higher volumes (which themselves increase with traveler density).  

Given the uncertainty in parameter estimation, the above results comparing urban areas 
are presented as conservative estimates, with the caveat that they are highly sensitive to 
assumptions about l, vb, and the directional split. The estimates are conservative in that they will 
tend to underestimate trip distances, peak volumes, and stochastic costs, as explained above. 
While the absolute cost estimates are highly sensitive to the assumptions, the same general trends 
in the results hold (though possibly magnified) for varying parameter values. 

 

CONCLUSIONS 

In this paper we model the costs and benefits of freeway traffic flows with stochastic freeway 
capacity. We apply this model to a congested freeway corridor in Portland, Oregon using real-
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world archived traffic data. Case study results show that unreliability decreases optimal traffic 
flow volume – and increases travel value that is required to warrant flow at capacity. Travel time 
is the dominant cost, followed by fuel costs; emissions costs are negligibly small at present 
valuations. Over a wide range of trip values, optimal flow remains at levels with a low 
probability of breakdown – indicating the importance of the breakdown probability function. A 
sensitivity analysis indicates that net social benefits and optimal flow are most sensitive to the 
travel time cost coefficient, the travel benefit coefficient, the free-flow speed, and the probability 
of breakdown. The value of reliability is most sensitive to the breakdown flow characteristics 
and the probability of breakdown function. 

Comparing macroscopic peak-period traffic characteristics among urban areas of varying 
size and density, results indicate that lower density areas require higher trip values to warrant 
flow near capacity since average trip distances are longer. The large and dense urban areas have 
markedly higher flows which increase the marginal costs of travel and can offset shorter trip 
lengths when estimating net benefits. These results indicate that there is a trade-off between trip 
length and traffic intensity in urban areas with different density. The urban comparisons are 
conservative with respect to cost estimates and highly sensitive to several key assumptions. Still, 
the trends of the results hold across varying parameter values. 
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