
Bundles in Captivity: An Application of Superimposed Information1

Lois Delcambre†, David Maier†, Shawn Bowers†, Mathew Weaver†, Longxing
Deng†, Paul Gorman‡, Joan Ash‡, Mary Lavelle‡, and Jason A. Lyman‡

†Oregon Graduate Institute
{lmd, maier, shawn, mweaver, longxing}@cse.ogi.edu

‡Oregon Health Sciences University
{gormanp, ash, lavellem, lymanja}@ohsu.edu

1 This work is supported, in part, by the National Science Foundation, Grant Number II-98-17492 as part of the Digital Libraries Initiative II, funded by
NSF, DARPA, NLM, Library of Congress, NEH and NASA.

Abstract

What do you do to make sense of a mass of informa-
tion on a given topic? Paradoxically, you likely add yet
more information to the pile: annotations, underlining,
bookmarks, cross-references. We want to build digital
information systems for managing such added or super-
imposed information and support applications that create
and manipulate it.

We find that requirements for a superimposed infor-
mation system can be quite different from those for a tra-
ditional database management system: a lightweight im-
plementation, multi-model information structures,
“schema-later” data entry, interacting with data that is
“outside the box” (controlled by other applications), and
support, rather than removal, of redundancy.

We report here on SLIMPad, a superimposed applica-
tion, which was inspired by the “bundling” of information
elements from disparate sources we observed in a medical
setting. We propose an architecture for superimposed
applications and information management. Our prototype
components to implement the architecture give flexibility
in structuring superimposed information, and also encap-
sulate addressing, at a sub-document granularity, into a
variety of base information sources.

1. Superimposed information and superim-
posed applications: Our vision

Consider a concordance for the works of Shakespeare.
For a given term, we can find out every line (in a play)
where the term is used. A concordance is one example of
what we call superimposed information, where supple-
mental information is created to reference, highlight, and
extend information present elsewhere. Other examples of

superimposed information are citation indices and com-
mentaries. Superimposed information relies on an ad-
dressing scheme for information elements in the original
documents, often at a fine granularity, e.g., play-act-scene-
line. Typically we find such addressing schemes in place
only for important or widely used information sources in
the traditional print literature.

The ever-increasing number of electronic information
sources accessible to a worldwide audience provides an
unprecedented opportunity to consider generic mecha-
nisms for supporting superimposed applications. Such
applications allow one to create and exploit superimposed
information, in digital form, with those sources as a base
layer. Naturally there are associated challenges – the wide
range of information types, the many base-layer applica-
tions that manage information, accommodating variety of
information structures and models in the superimposed
layer, and building generic technology that can be de-
ployed in various superimposed applications.

Our view of superimposed information [6, 16] is
shown in Figure 1. The superimposed layer is conceptu-
ally and possibly physically distinct from the base infor-
mation sources, and may conform to a data model or other
information structure. The superimposed information may
contain marks to selected information elements in the base
layer, where a mark holds a suitable address for an ele-
ment. The base layer may include multiple, heterogeneous
sources. We require only that the base layer support a
local addressing scheme for information that it contains
and that it permits creation and resolution of marks.

Many superimposed applications already exist, e.g.,
that provide for annotation [23], shared bookmarks [14],
and constructing virtual documents [11]. And we see
models for information emerging that are inherently su-
perimposed including topic maps [3], RDF [12], and
XLink [7]. Our vision is a generic technology to manage

superimposed information and support the construction of
superimposed applications.

Superimposed
Layer

Base
Layer

Information
Source1

Information
Source2

Information
Sourcen

…

marks

Figure 1. Superimposed information with marks ref-
erencing the base-layer.

We propose an architecture for superimposed infor-
mation management, and a prototype application, SLIM-
Pad, built according to the architecture. SLIMPad (Su-
perimposed Layer Information Manager scratchPad) is
inspired by observational work in a hospital intensive care
unit on how clinicians select and use information. It sup-
ports freeform collections of information elements se-
lected from multiple base sources, with linkages back into
the original contexts of those elements. While the super-
imposed information model is quite simple, the represen-
tation, storage and management of superimposed infor-
mation inside SLIMPad is generic and able to accommo-
date a range of information structures.

In designing our architecture, and in constructing ini-
tial implementation of its components, we adhered to three
principles.

Keep it lightweight: In most of the applications we’ve
studied or contemplated, the superimposed information is
a thin layer over more extensive information sources in
the base layer. The application using the superimposed
information might exist as an extension or plug-in to an
existing application. Requiring a heavy-duty data man-
ager, with a large code footprint, to manage the superim-
posed information is undesirable.

Keep it flexible: We have observed a wide range in
data models for superimposed information. Thus we want
an information management capability that isn’t wired to a
single data model. SLIM thus contains data-model-
definition capability, in addition to the normal schema-
definition capability of a data manager.

Minimize assumptions about the base layer: At least
initially, we want to work with as many different kinds of
base layer sources as possible. Accordingly, we make few
assumptions about the capabilities of the managers of the
base sources. In particular, we do not assume they are full-
fledged database systems. Rather, we assume only that a
base source can supply the address of a currently selected
information element, and that it can return to that element

given the address. While these capabilities may seem
hopelessly limited, we have built a useful application on
top of them. Further, this very narrow interface to the base
layer has made our architecture readily extensible and has
hidden variations in base layer managers from the rest of
the system, greatly aiding concurrent development of our
technology.

2. Bundles in the wild: What we’ve observed

In our field observations of expert clinicians caring for
patients in critical care units, bundles appear to be a
widely used means of managing information to support
diverse, complex, often simultaneous tasks [8]. We define
a bundle as a grouping of information selected, collected,
elaborated, and structured by a clinician during problem
solving. A bundle might be jottings on the back of an en-
velope, items organized on a blank sheet of paper with
headings and groupings, or entries on a printed card.

Regardless of the media, bundles are freeform; both the
content and the structure are created by and for the clini-
cian. Figure 2 shows several examples of bundles in the
wild, i.e., bundles that we have observed in our work. At
top, we see two bundles that have been written on avail-
able scraps of paper (an unopened gauze pad and paper
towel). On the upper left we see (underneath the pad) a
more structured bundle called a flowsheet, where the
status of an intensive-care patient is tracked over time.
Bundles often contain (selected) information that is avail-
able elsewhere. Bundles may also capture information that
will be recorded elsewhere later. The bottom of Figure 2
shows one row (corresponding to one patient) of a resi-
dent’s worksheet, prepared in advance of making patient
rounds, and updated during rounds. The first column
identifies the patient, the second lists significant problems,
the third contains selected lab results and vital signs, and
the last is a to-do list. The multiple rows on the worksheet
illustrate another observation: bundles can be grouped
into larger bundles.

Bundles may be especially useful in settings, such as
intensive care, with high uncertainty, low predictability
and potentially grave outcomes, where time and attention
are constrained, and where interdisciplinary teamwork is
essential. Reports of observations from other, analogous
domains such as air traffic control suggest that bundle use
may be common outside the medical area [9, 10, 15].

We believe there is benefit in creating bundles
(through the active processing of information to improve
understanding), in reusing bundles (by triggering memory)
and in sharing bundles to establish collectively main-
tained, situated awareness. The selection of bundle con-
tent itself adds value by excluding information that’s not
considered important to the current context.

3. SLIMPad: What we’ve built

To test our superimposed information architecture, we
built a superimposed application to represent bundles
digitally. While we didn’t expect to completely duplicate
the flexibility of paper, we hoped to gain offsetting ad-
vantages from the digital format. As noted, bundles in the
wild often contain information present in other sources.
While redundancy in information systems may be undesir-
able in general, redundancy in bundles can be useful. The
selection and rearrangement of information in a bundle
can reveal patterns not readily apparent with the informa-
tion in situ. A bundle can also serve as a quick reminder
of the most significant pieces of information in a given
situation. Redundancy is a problem, however, if it intro-
duces errors during transcription. Thus we decided to link
information elements that come from digital sources to
their location in those sources, to minimize inconsistency.
Using these links, we can re-establish context for a se-
lected item, and navigate to nearby information.

Based on our field observations, we decided that bun-
dles should be constructed manually rather than by using
rules or views. We had observed that bundle content and
organization is highly variable across people and situa-
tions. A particular bit of information might be essential in

one patient’s case yet irrelevant for another. Also, manual
construction involves active processing of information,
thus generates awareness of it, and provides evidence to
others of that awareness.

For the information model and user interface to digital
bundles, we wanted simple models, to make the applica-
tion flexible, easily understood, and unlikely to exclude a
piece of information the user wants to add. We do not
prescribe any particular content in a digital bundle. And
we permit users to add information elements without prior
definition of their meaning or their grouping into bundles.
That is, we present more the “information-first” flavor of
a word processor or spreadsheet, rather than the “schema-
first” approach of a database. We allow flexibility for
placement of information elements and bundles in two
dimensions. The juxtaposition of scraps and bundles con-
tains implicit semantic information that we neither want to
constrain or lose.

The SLIM scratchPad (SLIMPad) allows users to cre-
ate structured, digital, bundles. Although SLIMPad is not
intended to support any specific, observed medical task, it
has allowed us to explore technology for superimposed
information in parallel with the observational work. Many
bundles in the wild have a scratchpad-like feel and ap-
pearance. SLIMPad provides this same look and feel, in a

Figure 2. Selected bundles from the Intensive Care Unit.

computerized tool. SLIMPad’s information model is
shown in Figure 3, represented in UML [22].

The model consists of four main entities. The top-level
object is a SLIMPad, which designates a root bundle.
Each Bundle has a label and position, and can contain any
number of Scraps or Bundles. A Scrap (i.e., information
element) has a label and a MarkHandle object. A Mark-
Handle has a mark identifier, which refers to a Mark ob-
ject inside the Mark Manager. The Mark Manager is a
component of our architecture responsible for interacting
with base applications. The bottom of Figure 3 shows the
information model of the MarkManager. A Mark contains
the address to the marked information element, in what-
ever form required by the base source. There is one sub-
class of Mark for each type of base information supported.

SlimPad

padName : String

Bundle

bundleName : String
bundlePos : Coordinate
bundleHeight : Number
bundleWidth : Number

0..1 1..1

root
Bundle

Scrap

scrapName : String
scrapPos : Coordinate

bundleContent
1..1

0..*

MarkHandle

markId : String

nestedBundle
0..1

0..*

scrapMark
1..*

1..1

Mark

markId : String

Each Mark
Handle references
a Mark through a
unique mark id

Excel Mark XMLMark…

Each mark contains one
or more attributes that
comprise an address of
the appropriate type.

Objects used by
the Mark
Manager

Objects used by
the SLIMPad
Application

Figure 3. The Bundle-Scrap data model.

The SLIMPad application provides an interface be-
tween the user and data in this model. Each visual entity
the user sees on the screen corresponds to an object in the
data model. Figure 4 shows the SLIMPad application be-
ing used on a medical example, inspired by the resident’s
worksheet in Figure 2. The largest window, titled
‘Rounds’, is the visual representation of a SLIMPad ob-
ject. In this case, the user has created a bundle, titled

‘John Smith’. The bundle contains three scraps and an-
other bundle. The top two scraps represent medications
for the patient. The mark associated with each scrap refers
to the corresponding medication in a complete medication
list (here, a Microsoft Excel document). By clicking on
the scrap, the mark is de-referenced and the original in-
formation source, the medication list, is displayed with the
appropriate medication highlighted, as shown in the upper
right of Figure 4. Note that a scrap’s label and its mark’s
content may differ.

The ‘Electrolyte’ bundle contains a set of scraps that
come from a lab report, represented in an XML document.
Each of these scraps can be double-clicked, which opens
the lab report and highlights the appropriate section of the
XML document. The “gridlet” in this bundle is simply a
graphic element with scraps placed near it.

To create a new scrap, the user selects an information
element using a base-layer application (such as Excel) that
has been modified to support the creation of marks. Once
the user has created a mark, it can be placed onto the
SLIMPad, creating a scrap that can be named and moved
around. By creating the mark and attaching it to a scrap,
the user creates a digital “sticky-note,” which comes with
a digital “wire” that leads back to the information in the
original data source. Note that it is the user who deter-
mines the physical layout of the scraps and the bundles.
For example, each number in the ‘Electrolyte’ bundle has
a specific meaning to a medical professional, which can
be deduced from their arrangement relative to each other.
The SLIMPad data model does not impose structure – but
allows the user to create structure.

SLIMPad currently supports marks into Microsoft Ex-
cel spreadsheets, Word documents, and PowerPoint
presentations; XML documents; Adobe PDF docu-
ments; and HTML pages. The SLIMPad application is our
first that supports digital bundles, with an intentionally
simple model. We are also investigating digital bundles in
a more general context where the model may be more
complex, e.g., with more structure, with multiple marks
per scrap, with explicit links between scraps.

4. Generic technology for superimposed in-
formation: How we build it

Figure 5 shows our architecture for managing superim-
posed information. A superimposed application (e.g.,
SLIMPad) interacts with base-layer applications and the
generic management components. The generic compo-
nents serve two main purposes: manage marks to base-
layer data and manage the application’s superimposed
information (e.g., bundles and scraps).

Superimposed
Application

Superimposed
Information Management

Mark Management

Base
Application(s)

Generic Components

Base Information

Application
Data

Marks

Figure 5. Overview of our superimposed application
architecture.

4.1. Base Application

A base application can be any one that acts as an inter-
face to base-layer information, such as a word processor, a
web browser or a database system. A superimposed appli-
cation can interact with one or more base applications

using three basic approaches. These approaches are de-
fined by how the user views and interacts with the super-
imposed application and the base application (see Figure
6).

With simultaneous viewing, a user accesses superim-
posed and base-layer applications at the same time. Usu-
ally, there are two windows active on the computer screen:
one for the superimposed application and one for the base
application. A user interacts with either window as de-
sired. With enhanced base-layer viewing, the functionality
of a base application is enhanced to manage superimposed
information. Third Voice [23] is such an example, which
enhances web browsers by allowing the user to create and
view annotations in the same browser window as the Web
page. With independent viewing, the base application is
hidden. A user sees only the superimposed application,
which may expose the functionality of the base applica-
tion, usually in a limited way. The base application can
work in the background to extract base information ele-
ments for the superimposed layer, or it can work as an in-
place viewer for base information.

SLIMPad is designed to support simultaneous view-
ing,. In normal operation, the user juxtaposes the SLIM-
Pad window and base document viewer(s) to interact with
base and superimposed information simultaneously, as
shown in Figure 4. SLIMPad can support independent

Figure 4. SLIMPad screenshot showing two marks: one to Excel and one to XML.

viewing by having marks on the SLIMPad resolve to dis-
play the content of the marked element in place.

Superimposed
Application

Base
Applicationuser

Simultaneous Viewing

Enhanced Base-Layer Viewing

Base
Application

user

Added
Superimposed
Functionality

Independent Viewing

Superimposed
Application

Base
Application

user

borrows
functionality

Figure 6. Three viewing styles for superimposed ap-
plications.

4.2. Mark Management

A fundamental objective of digital superimposed in-
formation is maintaining a link to the base-layer informa-
tion. The Mark Manager is the framework for creating
and managing these links – called marks. A mark module
works with each base-layer application to create and re-
solve marks. Figure 7 shows the general approach of mark
management (within the SLIMPad implementation).

A mark is stored and maintained in the superimposed
information layer, but references information in the base
layer. The information contained in a mark includes an
address specific to the base-layer information. Each type
of base-layer information has its own type of mark, repre-
sented as a subclass of Mark, as shown in Figure 3. Figure
8 shows the internal structure of two mark types.

A Microsoft Excel mark addresses information stored
in an Excel workbook. This type of mark refers to a cell or
range of cells within the workbook, using row and column

positions. An XML mark references an element within an
XML file. A new type of base-layer information is added
by creating a new mark type. Since the specific addressing
scheme of the base-layer information is encapsulated
within the mark, the Mark Manager can generically store
and retrieve all marks.

Excel Spreadsheets

Mark ManagementSLIMPad

Mark Manager

PDF files

Web Pages

Adobe
Acrobat

Internet
Explorer

MS
Excel

HTML Module

Excel Module

PDF Module

PDF Mark

HTML Mark

Excel Mark

......

Figure 7. Architecture for mark management (as im-
plemented in SLIMPad).

Microsoft Excel Mark XML Mark

markId : String
fileName: String
sheetName: String
range: String

markId : String
fileName : String
xmlPath : String

Figure 8. Excel mark and XML mark.

A mark is created by a base-layer application interact-
ing with a mark module. A mark is specific to a certain
type of base-layer information and a mark module is spe-
cific to a certain base-layer application. For example, an
XML mark references XML data – but there may be mul-
tiple applications used to view the XML data. A mark
module, specific to a base-layer application, enables the
creation of marks by receiving information from that ap-
plication and using it to create a mark. An Excel mark is
created when Microsoft Excel gives the Excel mark mod-
ule information containing the current selection within the
current workbook. The Excel mark module then uses this
information to create an Excel mark. A mark module re-
solves a mark by driving the base-layer application to the
information element designated by the mark. The Excel
mark module uses the address in an Excel mark object to

tell Microsoft Excel to open the file, activate the work-
sheet, and select the appropriate range.

To support new base-layer applications, new mark
modules need to be introduced. This process includes en-
hancing the base-layer application to support the creation
of marks and to react appropriately when asked to resolve
a mark.

Mark management hides the details of the different
kinds of base-layer information and base-layer applica-
tions from the superimposed application. From the su-
perimposed application’s viewpoint, a base information
element is addressed by a mark, regardless of its type.
This transparency simplifies the development of superim-
posed applications. The architecture is also easy to ex-
tend; new kinds of base information have been introduced
without disturbing existing superimposed applications.

4.3. Superimposed information management:
The SLIMStore

There are a number of existing superimposed models
each of which differ in their structural characteristics (e.g.,
RDF, Topic Maps, XLink). Additionally, as superimposed
applications are developed, the need for more specialized
models will increase, SLIMPad’s Bundle-Scrap model
being one such example. Because of this variety, we
choose to be flexible at the data-model level by providing
storage of superimposed information for various models.
Here we summarize our representation scheme for model-
based superimposed information (described elsewhere [4])
and we say how the representation is used in SLIMPad.

The generic representation scheme for superimposed
information is based on the metamodel, which can de-
scribe multiple superimposed-models. The metamodel
consists of a basic set of abstractions to define model con-
structs and relationships (called connectors). For example,
in the relational model, tables, attributes, keys and do-
mains are constructs. The notion that tables contain attrib-
utes and attributes can be foreign or primary keys are im-
plicit connections among the constructs defined by the
model. Likewise, classes, attributes, and objects are con-
structs in an object-oriented model, in which there are
implied connections between classes and attributes as well
as classes and objects. The metamodel makes explicit the
constructs of the model, their structural definitions, and
their connections. Our goal is to create a metamodel that
contains the universal set of modeling primitives used by
models to define structure. Currently, the metamodel
contains only a subset of primitives: constructs, which
define a unit of structure; literal constructs for primitive
type definitions; mark constructs for delineating marks;
connectors, which describe basic relationships; confor-
mance connectors for schema-instance relationships; and
generalization connectors for specialization relationships.

We represent the metamodel elements using RDF
Schema [5]. Superimposed model, schema, and instance
data is represented using RDF triples (a triple is composed
of a property, a resource, and a value).

There are a number of benefits to the generic repre-
sentation. First, we can describe superimposed informa-
tion from various models uniformly using RDF triples.
Also, since RDF defines a serialization-syntax (in XML),
we can use the representation for interoperability between
superimposed applications. We can leverage the generic
representation directly, by defining mappings between
superimposed models, including model-to-model, schema-
to-schema and even schema-to-model mappings [4].

4.4. The application-specific Data Manipulation
Interface (DMI)

Although superimposed applications can use the ge-
neric representation directly to store and manipulate data,
that would significantly complicate the development of a
superimposed application. We describe an approach that
lets an application manipulate data in its desired format,
while storing the data using our generic representation
(Figure 9). The superimposed application interacts with
application data, which for SLIMPad are read-only ob-
jects that represent the Bundle-Scrap model of Figure 3,
plus an application-specific Data Manipulation Interface
(DMI). The DMI contains the allowable operations on the
application’s model. For example, SLIMPad can create,
update, remove, store, and load objects (e.g., Bundles and
Scraps) using its DMI.

 Superimposed Information Management

Superimposed
Application

Application
Data

Application
Specific

DMI

Triple
Manager

Generic
Representation

(Triples)

creates and
manages

Figure 9. The superimposed layer information-
management (SLIM) architecture.

When SLIMPad needs to create a Bundle, it calls the
Create_Bundle operation in the DMI, which creates a
Bundle object for SLIMPad plus the triples to represent a
new Bundle. By restricting manipulation of data through
the DMI, we store the triples without intervention from
the superimposed application.

To manage triples, we use the TRIM (Triple Manager)
sub-component, which handles basic operations over the
triple representation. Through TRIM, the DMI can create,
remove, persist (through XML files), query, and create
simple views over the underlying triples. Query is
specified by selection, where one or more of the triple
fields is fixed, and the result is a set of triples. A view is
specified by selecting a resource (such as a Bundle id),
where all triples that can be reached from this resource are
returned (e.g., all triples representing nested Bundles
within the given Bundle along with their Scraps).

Figure 10 shows the internal data structures that are
used by SLIMPad’s DMI along with a portion of the DMI
itself. The class structure is identical to the Bundle-Scrap
model of SLIMPad, except the classes are writable (i.e.,
the DMI can set their attributes). For the SLIMPad
application, we specfiy application data as a set of
interfaces, where each construct in the model becomes a
separate interface. The classes in Figure 10 implement
each corresponding application data interface. Only the
interfaces are presented to SLIMPad, which allows the
DMI to guarantee consistency between the triple
representation and the application data.

For SLIMPad, we generated the application data
structures and DMI manually, based on the application
model. We are working towards automatically generating
specialized DMIs from data models (specified in either
UML or as triples) [24].

5. Related Work

In a previous paper [6], several dimensions are used to
compare different models of superimposed information.
Here, we summarize the dimensions, use them to compare
the Bundle-Scrap model to other superimposed models
(from the earlier paper), and compare SLIMPad and our
architecture to other approaches.

We describe superimposed information-space via three
primary dimensions: the relationship between the base and
superimposed layers; the addressability of marks; and the
structural complexity of the superimposed model. The
Bundle-Scrap model stands out in that it is open to various
base layers and can address information granularities pro-
vided by base-layer applications. However, the model is
not as complex as other models in terms of its ability to
type marks, information elements, and links between in-
formation elements.

SLIMPad’s capabilities differ from similar applications
that support digital annotation. Annotation capabilities are
typically part of a larger document editing or viewing
system, such as Adobe Acrobat and Microsoft Word
Comments. Complete systems also exist to provide
shared-access to annotations over the Web [21, 23] and to
annotate heterogeneous information sources [13, 20].

SLIM_SlimPad

padName : String

SLIM_Bundle

bundleName : String
bundlePos : Coordinate
bundleHeight : Number
bundleWidth : Number

0..1 1..1

root
Bundle

SLIM_Scrap

scrapName : String
scrapPos : Coordinate

bundleContent1..1

0..*

SLIM_MarkHandle

markId : String

nestedBundle
0..1

0..*

scrapMark

1..*1..1

setPadName
setRootBundle

setBundleName
setBundlePos
…
addNestedBundle

setScrapName
…
setScrapMark

setMarkId

SlimPadDMI

store : TrimManager

Create_SlimPad(padName, rootBundle) : SlimPad
Create_Bundle(bundleName, …) : Bundle
…
Update_padName(SlimPad, newPadName)
Update_rootBundle(SlimPad, newRootBundle)
…
Delete_SlimPad(SlimPad)
Delete_Bundle(Bundle)
…
save(fileName)
load(fileName) : SlimPad

Figure 10. The objects used by the SLIMPad DMI.

In most annotation systems, users manipulate, create,
and view annotations in-situ (annotations are available
only while the document is being displayed). SLIMPad
makes information available apart from the base docu-
ments themselves, but makes those documents available
for context when requested. Additionally, SLIMPad’s
design is influenced by its use in very specific situations:
by experts who wish to organize highly relevant informa-
tion selections (e.g., to develop a medical hypothesis in an
ICU). Bundles often contain excerpts or values from the
original documents to provide emphasis and channel

awareness. (Some initial feedback from clinicians indi-
cates annotations on scraps would be useful.)

Some systems store annotations separately from the
documents they annotate. In ComMentor [21], users can
ask for specific types of annotations created within a time
range and use the returned annotations to navigate the
corresponding web pages. SLIMPad is similar in that a
separate structure can be used to access a base of under-
lying documents. However, SLIMPad’s Bundle-Scrap
model provides a richer abstraction than the annotation
model of ComMentor. SLIMPad is also capable of mark-
ing a wider range of base layers than just HTML. Micro-
soft Comments, in which users can go to the next or pre-
vious annotation in a single document, and the Knowledge
Weasel [13] also allow navigation through annotations.

Most annotation systems provide point and span marks
for a specific place or a region in a document, respec-
tively. Multivalent Documents (MVD) [20] use the struc-
ture of documents for addressing while accommodating a
wide range of document types. This approach contrasts to
annotation systems that use x and y coordinates within a
viewer, or use document structure but for a single type of
document (e.g., Web pages only). By using the inherent
structure of documents, MVD can provide more complex
types of marks such as NoteMarks, which combine several
kinds of annotations together to serve as an index.

SLIMPad’s approach for marking information sources
is more generic than MVD. Instead of being document-
centric, we choose to be application-centric, which means
we can leverage the application’s addressing mechanisms
to provide various granularities. Our approach to marking
documents and MVD are complementary in that we could
incorporate MVD’s viewer as a supported application.

Our mark architecture is similar to Microsoft Monikers
[17]. Monikers allow components to obtain pointers to
their referenced objects, which applications can then use
directly. Both our architecture and Monikers provide ap-
plication-interpreted addresses. That is, addresses must be
resolved using the Moniker itself or a Mark Manager. The
difference between our architecture and Monikers is that
we use Mark Managers to resolve Marks instead of the
Mark itself, which allows for multiple ways to resolve
marks via different managers. For example, one manager
for Excel can display Excel Marks in context and another
act as an in-place viewer.

Composite document creation [11, 18] is an application
type related to SLIMPad. Mirage-III [18] is a digital li-
brary system that allows users to create virtual documents
(VDOCs) that contain span links to other documents.
When a VDOC is rendered, the span links are resolved
and the information they reference is displayed. The main
difference between SLIMPad and virtual documents is
that SLIMPad can contain information not present in the
underlying documents.

Finally, our goal in managing superimposed informa-
tion is to be flexible enough to handle a wide-range of
superimposed models. Explicitly representing and storing
model, schema, and instance, along with being flexible in
which is defined first, differs from most other approaches.
In common use, metadata storage systems only represent
two levels of information (i.e., the metadata schema and
the metadata itself) and the schema must be defined prior
to the metadata instance. The Meta Object Facility (MOF)
[19] with the XML Metadata Interchange (XMI) and the
Microsoft Repository [1, 2] with the Open Information
Model are two such examples.

6. Contributions and Current Work

We presented an architecture for applications based on
superimposed information, prototype implementations of
generic components of that architecture, and the SLIMPad
application built on top of them. The main components
are the Mark Manager, the SLIM Store and the superim-
posed application itself.

The Mark Manager isolates the SLIM Store and the
superimposed application from both the addressing modes
for base information sources and the native applications
that use that information. The Mark Manager has proven
readily extensible—the amount of modification to a base
application is small, plus the interface of marks to the rest
of the system remains fixed. For the SLIM Store, our de-
sign decision was towards maximum flexibility, with data
model as well as schema being selectable and explicitly
represented. The trade-off for this flexibility was space
efficiency of the data and the cost of interpreting manipu-
lations on SLIM Store data. However, this tradeoff seems
justified, as we expect the volume of superimposed infor-
mation to be a fraction of the base data. To shield the su-
perimposed application itself from this multi-level ap-
proach, we provide an object-oriented DMI customized to
the particular schema of the superimposed application.
Our overall assessment is that the architecture “works”: It
allowed parallel development and extension of the Mark
Manager, SLIM Store, and SLIMPad. We expect to test it
further in other superimposed information applications.

We also described the construction of SLIMPad, a
particular superimposed application built according to the
architecture with our generic components. SLIMPad sup-
ports creation of and access to digital “bundles” of
“scraps” of information that are connected to information
elements in base sources. SLIMPad represents something
of an extreme point in information system design. Much
of the semantics it captures is implicit—the application
doesn’t attach any special meaning to labels on bundles
and scraps, nor their nesting and juxtaposition. Thus
SLIMPad is limited in operations or services it can pro-
vide on the information it manages. On the other hand,

SLIMPad is minimally constraining on its users: There is
no “schema-first” requirement, there are no required fields
to fill in and no typing constraints. Yet our initial feed-
back from potential users of a SLIMPad-like application
in the medical domain is that it provides useful function-
ality: selection and regrouping of information elements,
plus the ability to re-establish context for the selections.

In terms of on-going work on the architecture, we are
considering additional behavior on marks that would be
available to superimposed application builders, such as
“extract content” and “display in place.” Such an exten-
sion will require new mark modules for an existing mark
type. With the SLIM Store, we have been investigating the
automatic generation of customized data manipulation
interfaces from high-level specification, using techniques
from domain-specific languages. We are also considering
augmenting such interfaces with query capabilities, in
addition to the current navigational access. In applications
of our SLIM Store technology beyond SLIMPad, some
data sets are quite large and we are developing alternative
implementation mechanisms. We are also developing ca-
pabilities for cross-schema and even cross-model mapping
of superimposed information.

For the SLIMPad application itself, there are exten-
sions contemplated to its information model that corre-
spond to real world manipulations of bundled information.
These include annotations on scraps, linking among scraps
and templates for bundles. Our current direction is to use
SLIMPad as the basis for a task-specific tool prototype in
the medical domain that we can test with clinicians. A
likely task area is supporting the transfer of “current
situation” awareness for hospital patients when one doctor
is taking over rounds for another, such as on weekends.

7. Acknowledgement

We gratefully acknowledge Phil Bernstein’s help in
herding this paper into shape.

8. References

[1] P.A. Bernstein, et al. Microsoft Repository Version 2 and
the Open Information Model. Information Systems 24(2),
pp. 71-98, 1999.

[2] P.A. Bernstein, T. Bergstraesser, Meta-Data support for
data transformations using Microsoft Repository. IEEE
Data Eng. Bulletin 22(1), pp. 9-14, March 1999.

[3] M. Biezunski, M. Bryan, S. Newcomb, eds. ISO/IEC
13250, Topic Maps, http://www.ornl.gov/sgml/sc34/-
document/0058.htm.

[4] S. Bowers and L. Delcambre. Representing and transform-
ing model-based information. Euro. Conf. on Digital Li-
braries, Wkshp. on the Semantic Web, Lisbon, Sept. 2000.

[5] D. Brickley, R.V. Guha, eds. Resource Description Frame-
work Schema (RDFS), W3C Proposed Rec. 03-Mar-1999,
http://www.w3.org/TR/PR-rdf-schema/.

[6] L. Delcambre, D. Maier. Models for superimposed infor-
mation. Advances in Conceptual Modeling ER ’99, LNCS
1727, pp. 264-280, Paris, Nov. 1999.

[7] S. DeRose, E. Maler, D. Orchard, B. Trafford, eds. XML
Linking Language (XLINK), W3C Working Draft 21-Feb-
2000, http://www.w3.org/TR/2000/WD-xlink-20000221.

[8] P.N. Gorman, et al. Bundles in the wild: Tools for manag-
ing information to solve problems and maintain situation
awareness. Library Trends 49(2), pp. 266-289, Fall 2000.

[9] Edwin Hutchins. Cognition in the Wild. MIT Press, 1995.
[10] E. Hutchins and T. Klausen. Distributed cognition in an

airline cockpit. In Cognition and Communication at Work,
New York: Cambridge University Press, pp. 15-34, 1996.

[11] IBM ActiveNotebook.
http://www.alphaWorks.ibm.com/tech/activenotebook.

[12] O. Lassila and R.R. Swick, eds. Resource Description
Framework (RDF) Model and Syntax Specification, W3C
Rec. 22-Feb-1999, http://www.w3.org/TR/REC-rdf-syntax.

[13] D.T. Lawton, I.E. Smith. The Knowledge Weasel hyper-
media annotation system. Hypertext 1993 Proceedings, pp.
106-117, Seattle, Nov. 1993.

[14] W.-S. Li, et al. PowerBookmarks: A system for personaliz-
able web information organization, sharing, and manage-
ment. Proc. SIGMOD 1999, pp. 565-567.

[15] W.E. Mackay. Is paper safer? The role of flight strips in air
traffic control. ACM Transactions on Computer-Human
Interaction 6(4), pp. 311-340, 1999.

[16] D. Maier and L. Declambre. Superimposed information for
the Internet. WebDB’99, pp. 1-9, Philadelphia, June 1999.

[17] Microsoft Monikers. http://msdn.microsoft.com/library/-
psdk/com/monikers_1xpv.htm.

[18] S.H. Myaeng, et al. A digital library system for easy crea-
tion/manipulation of new documents from existing re-
sources. RIAO2000, Paris, Apr. 2000.

[19] Object Management Group. Meta Object Facility (MOF)
Spec. OMB Doc. ad/99-09-04. http://www.omg.org/cgi-
bin/doc?ad/99-09-04.

[20] T. Phelps and R. Wilensky. Multivalent annotations. Re-
search and Advanced Technology for Digital Libraries
(ECDL ’97), LNCS 1324, pp. 287-303, Pisa, Sept. 1997.

[21] M. Rosheisen, C. Mogensen, T. Winograd. Shared web
annotations as a platform for third-party value-added in-
formation providers. STAN-CS-TR-97-1582, Stanford In-
tegrated Digital Library Project, Nov. 1997.

[22] J. Rumbaugh, I. Jacobson, G. Booch. The Unified Model-
ing Language Reference Manual. Addison Wesley, 1999.

[23] ThirdVoice. http://www.thirdvoice.com.
[24] M, Weaver. SLIIM-ML. Oregon Graduate Institute internal

memorandum, Mar. 2000.
http://www.cse.ogi.edu/~mweaver/papers/slim-ml.pdf

