

Introduction to Databases

Lecture 1, September 28/29, 2005

Instructor: Lois Delcambre ldm@cs.pdx.edu James Terwilliger jterwill@cs.pdx.edu

Grader: Xiaoliang Zhang
xzhang@cs.pdx.edu

Class e-mail list:
cs386@cecs.pdx.edu

URGENT! In order to join the mail list, please visit the following web page and register:

<https://webmail.cecs.pdx.edu/mailman/listinfo.cgi/cs386>

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 1

Class web page (single page for CS386 and CS586)

Syllabus available at:

available at: www.cs.pdx.edu/~lmd/cs386-586

Contains complete class schedule including reading assignments, assignments, suggested answers for completed assignments, handouts for lectures, and so forth.

New information appears frequently, so reload the page
Handouts of slides will be posted on the web page
sometime before class – usually at least 24 hours ahead.

General structure of the class and the grading is set but the details may be modified, if necessary.

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 2

Overview of the Syllabus

- **Eight Assignments (40%):**
Eight weekly assignments, each worth 5% of your grade.
Work by yourself or work with a partner.
- **Six Quizzes .. lowest quiz grade dropped (10%):**
Each quiz (except for the one that is dropped) counts for 2% of your grade. In class, almost every week. Work by yourself.
Ask questions only of the instructor or quiz monitor.
NO MAKEUPS FOR QUIZZES!
- **Midterm Exam (25%) OPEN BOOK (closed notes):**
In class; work by yourself. Ask questions only of the instructor or exam monitor.
- **Final Exam (25%) OPEN BOOK (closed notes):**
In class, work by yourself. Ask questions only of the instructor or exam monitor.

Communication Mechanisms

- **Communication from students:**
 - E-mail to instructors, graders, class mail list
 - Ask questions in class
 - Ask questions after class
- **Communication to students:**
 - Model answers sometimes posted on the web page.
 - Questions with answer (deemed of general interest) are sent to the cs386@cs.pdx.edu e-mail list.
- **In person and telephone meetings by request.**

Homework Submission & Grading

I have plans to use an automated, web-based system for you to submit your homework.

And, if it all works as designed, you should be able to see your grades on assignments as soon as grading is finished.

Details are not ready yet as to how to use the system. Stay tuned. The specific instructions will be posted on the web and sent by e-mail.

Overview

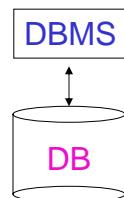
The next few slides provide a very simple, high-level overview of

databases and **database management systems**.

Then we'll talk about the nature of computer science ... to guide the course.

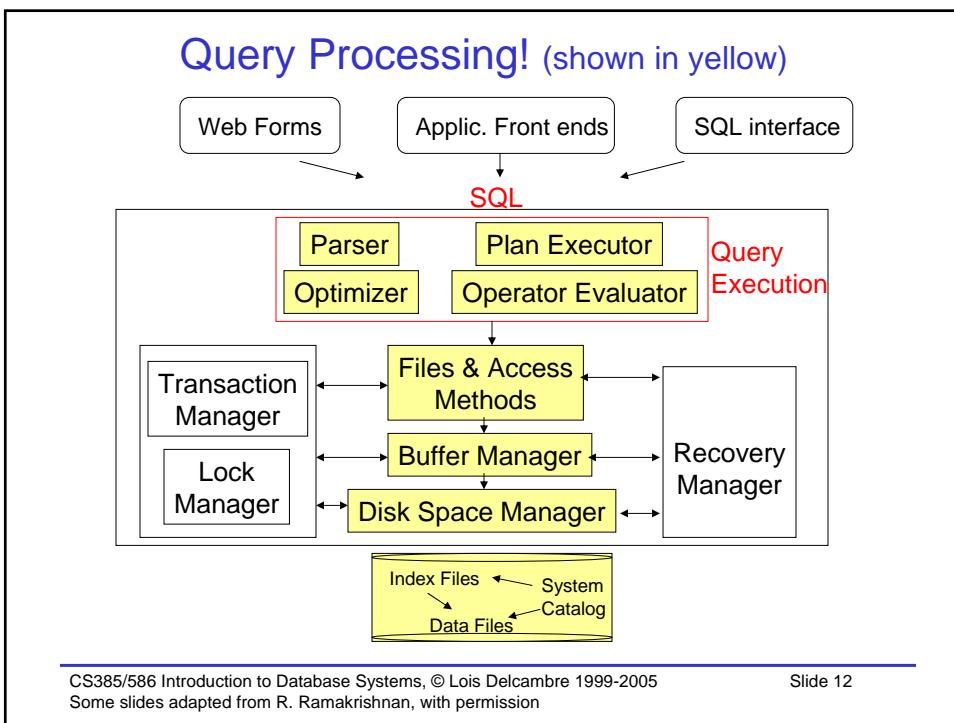
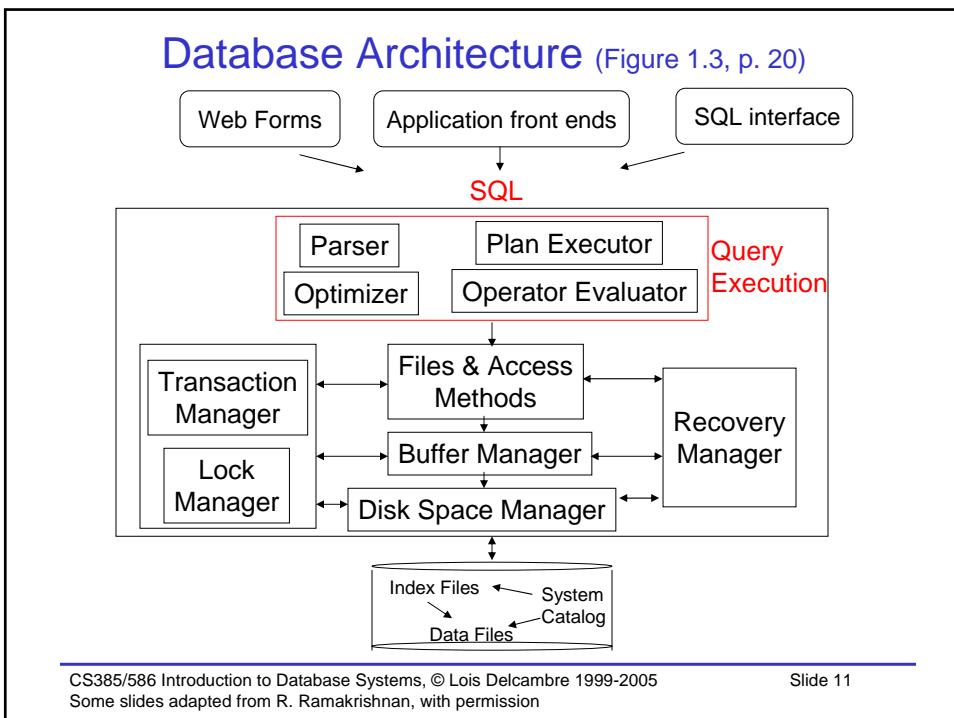
Main lecture introduces relational DBs and SQL.

Why study databases?


- Because data is valuable:
 - often more valuable than the software
e.g., bank account records, tax records, ...
 - it must be protected - no matter what happens
whether we have machine crashes, disk crashes, hurricanes/floods, ...
 - It can be combined and summarized in many ways – to serve many different purposes

Why study databases?

- Because the database field has made a number of contributions to basic computer science:
 - because of its focus on data...and disks...
 - because of the formalization of concepts
- Because DBMS software is highly successful as a commercial technology (Oracle, Informix, MS Access...)
- Because DB research is highly active



What's a DB?

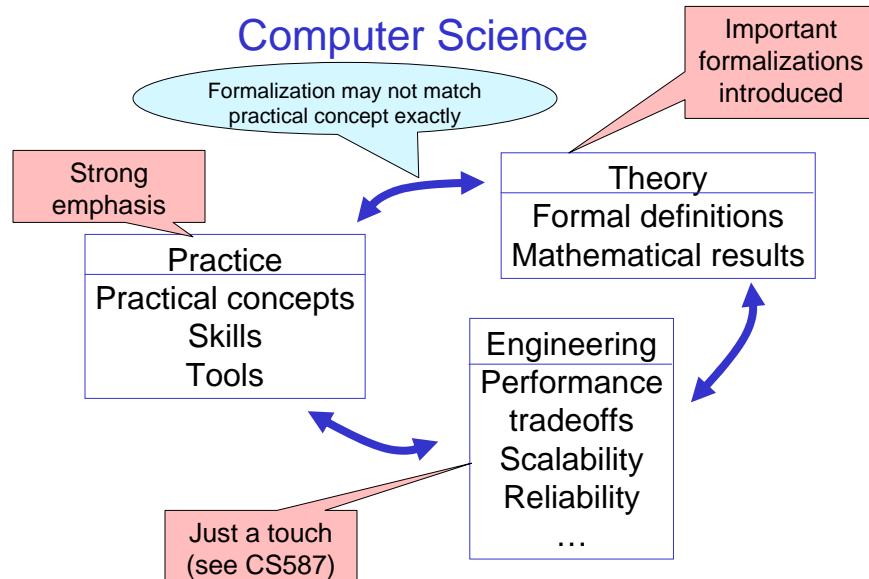
- **database** (DB)- a collection of persistent data
- **database management system (DBMS)** - a software system that supports the definition, population, and query of a database.

What kind of data can we put in a database?

- **When data is regularly structured:**
 - bank account records all follow the same structure
 - we can exploit this regular structure - to retrieve data in useful ways (that is, we can use a query language)

What is computer science?

All computer science students must learn to integrate **theory** and **practice**, to recognize the importance of **abstraction**, and to appreciate the value of **good engineering design**.


Final Report of the Joint ACM/IEEE-CS Task Force on Computing Curricula 2001 for Computer Science - a joint undertaking of the Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM).

This volume outlines a set of recommendations for undergraduate programs in computer science.

<http://www.computer.org/education/cc2001/final/index.htm>

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 13

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 14

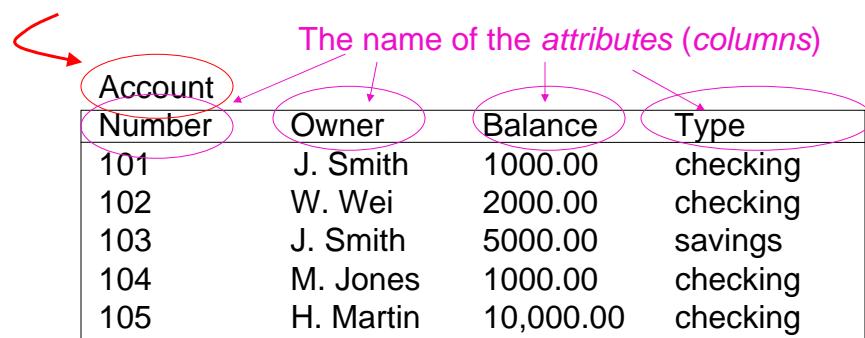
Tonight's Lecture

- Introduce:
 - Database terminology
 - Difference between schema and data
 - SQL query language
 - Relational data model

from a practical point of view (only, for tonight)!

Introduction to Relational Databases

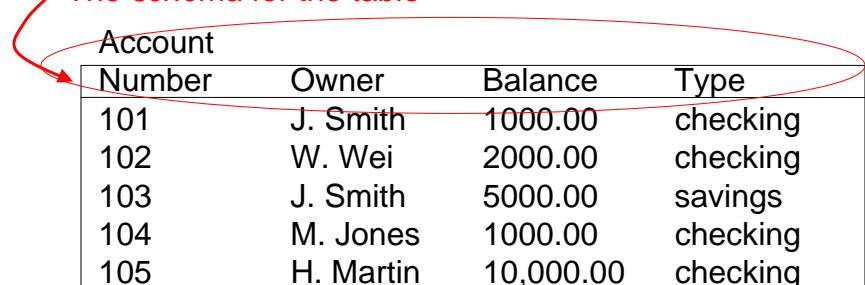
Account


Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Imagine that this table has been defined to help keep track of bank accounts.

Introduction to Relational Databases

The *name* of the table


The *name of the attributes (columns)*

Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Introduction to Relational Databases

The *schema* for the table

Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

The **schema** sets the structure of the table. You can think of the schema as the *definition* of the table. (Note, the schema specifies more information than what is shown.)

Terminology for Relational Databases

Account

Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Each entry in the table is called a **row** or a **tuple**.
Sometimes an entry in the table is called a record.
The **instance** is the current set of rows (or tuples).

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 19

Introduction to Relational Databases

An *instance* of the table...

the current contents or data in the table.

Account

Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 20

Introduction to Relational Databases

Another *instance* of the table
(two rows added, one (103) deleted)

Account				
Number	Owner	Balance	Type	
101	J. Smith	1,000.00	checking	
102	W. Wei	2,000.00	checking	
104	M. Jones	1,000.00	checking	
105	H. Martin	10,000.00	checking	
107	W. Yu	7,500.00	savings	
109	R. Jones	432.55	checking	

Terminology for Relational Databases

The *intension* of the table

Account

Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

The *extension* of the table. Also called the *extent*.

Terminology for Relational Databases

Degree or arity of a table is the number of attributes

Cardinality of this instance is 5 (because there are 5 rows)

Degree of this relation (or table) is 4 because there are 4 attributes

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking

Cardinality of a table = the number of rows in the current instance

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 23

Relational Database Example (cont.)

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking

Deposit	Account	Transaction-id	Date	Amount
	102	1	10/22/00	500.00
	102	2	10/29/00	200.00
	104	3	10/29/00	1000.00
	105	4	11/2/00	10,000.00

Check	Account	Check-number	Date	Amount
	101	924	10/23/00	125.00
	101	925	10/24/00	23.98

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 24

Relational Database Example (cont.)

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking

Deposit	Account	Transaction-id	Date	Amount
	102	1	10/22/00	500.00
	102	2	10/29/00	200.00
	104	3	10/29/00	1000.00
	105	4	11/2/00	10,000.00

Check	Account	Check-number	Date	Amount
	101	924	10/23/98	125.00
	101	925	10/24/98	23.98

Each table has a key.... where the values must be unique.

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 25

Relational Database Example (cont.)

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking

Deposit	Account	Transaction-id	Date	Amount
	102	1	10/22/00	500.00
	102	2	10/29/00	200.00
	104	3	10/29/00	1000.00
	105	4	11/2/00	10,000.00

Check	Account	Check-number	Date	Amount
	101	924	10/23/98	125.00
	101	925	10/24/98	23.98

Key may consist of one attribute or two (or more) attributes.

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 26

Relational Database Example (cont.)

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Deposit	Account	Transaction-id	Date	Amount
102	1	10/22/00	500.00	
102	2	10/29/00	200.00	
104	3	10/29/00	1000.00	
105	4	11/2/00	10,000.00	
106	5	12/5/00	555.00	

Is this legal?

If not, how do we prevent it from happening?

Relational Database Example (cont.)

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Deposit	Account	Transaction-id	Date	Amount
102	1	10/22/00	500.00	
102	2	10/29/00	200.00	
104	3	10/29/00	1000.00	
105	4	11/2/00	10,000.00	
106	5	12/5/00	555.00	

We say that **Deposit.Account** is a *foreign key* that references **Account.Number**. If the DBMS enforces this constraint we say we have **referential integrity**.

Relational Database Example (cont.)

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking
Check	Account	Check-number	Date	Amount
	101	924	10/23/98	125.00
	101	925	10/24/98	23.98

Are there any foreign keys in the Check table?

Yes, Check.Account is a foreign key that references Account.Number.

Foreign keys may or may not be part of the key for the table

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking
Deposit	Account	Transaction-id	Date	Amount
	102	1	10/22/00	500.00
	102	2	10/29/00	200.00
	104	3	10/29/00	1000.00
	105	4	11/2/00	10,000.00
Check	Account	Check-number	Date	Amount
	101	924	10/23/98	125.00
	101	925	10/24/98	23.98

Deposit.Account
is **not** part
of key for
Deposit.

Check.Account
is part of
key for
Check.

Keys for a Table

Consider the following sample data from a table:

1	Jones	28	\$50,000.00

Can you tell what the key for this table is?

Keys for a Table

Consider the following sample data from a table:

1	Jones	28	\$50,000
2	Smith	28	\$60,000

Can you tell what the key for this table is?

Keys for a Table

One possibility:

Person Table with Id as the key

<u>Id</u>	Name	Age	Salary
1	Jones	28	\$50,000
2	Smith	28	\$60,000

Keys, Table Names, Attribute Names

Tell us what the table is

Another possibility:

Sales Commission Table, by client company, per day

Salesperson	<u>Company</u>	<u>Day</u>	Commission
1	Jones	28	\$50,000
2	Smith	28	\$60,000

Relational Database Domains for Attributes

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
...				

For every attribute of every table, **the schema specifies allowable values**. For example,

Number must be a 3-digit number
Owner must be a 30-character string
Type must be “checking” or “savings”

The allowable values for an attribute is called the **domain** of the attribute.

Specification of a Relational Schema

- Select the tables, with a **name for each table**.
- Select **attributes for each table** and give the **domain for each attribute**.
- Specify the **key(s)** for each table.
- Specify all appropriate **foreign keys**.

There
can be
more than
one key
for a
table.

Another Example Database (Keys are underlined. Each table has one key.)

Teacher (Number, Name, Office, E-mail)

Course (Number, Name, Description)

Class-Offering (Quarter, Course, Section, Teacher, TimeDays)

Student (Number, Name, Major, Advisor)

Completed (Student, Course, Quarter, Section, Grade)

Example Database (cont.) (with some foreign keys shown informally, with arrows)

Teacher (Number, Name, Office, E-mail)

Course (Number, Name, Description)

Taught-By (Quarter, Course, Section, Teacher, TimeDays)

Student (Number, Name, Major, Advisor)

Completed (Student, Course, Quarter, Section, Grade)

What foreign keys are present in the Completed table?

Example Database (cont.)

(with foreign keys shown informally, with arrows)

Teacher (Number, Name, Office, E-mail)

Course (Number, Name, Description)

Taught-By (Quarter, Course, Section, Teacher, TimeDays)

Student (Number, Name, Major, Advisor)

Completed (Student, Course, Quarter, Section, Grade)

Foreign keys in the Completed table are shown above.

What are the limitations of this schema?

Teacher (Number, Name, Office, E-mail)

Course (Number, Name, Description)

Taught-By (Quarter, Course, Section, Teacher, TimeDays)

Student (Number, Name, Major, Advisor)

Completed (Student, Course, Quarter, Section, Grade)

Possible tables

Recipe (id, name, servings, prep-time)

Ingredient (id, name)

Possible tables

Recipe (id, name, servings, prep-time)

Ingredient (id, name)

But...one recipe uses lots of ingredients and
one ingredient can be used in lots of recipes..

What can we do?

Possible tables

Recipe (id, name, servings, prep-time, **ingred-id**)

Will this work?

Ingredient (id, name, **recipe-id**)

Will this work?

Should we do both of these?

Possible tables

Recipe (id, name, servings, prep-time)

Used-In (**recipe-id**, **ingredient-id**)

What's the key for this table?

Ingredient (id, name)

Possible tables

Recipe (id, name, servings, prep-time)

Used-In (recipe-id, ingredient-id, quantity)

What's the key for this table?

Ingredient (id, name)

In general, we always need to introduce a new table for a many-to-many relationship

Quick Exercise

- Work with a partner...
- Pick a small application and define 3 or 4 tables of your application. Be sure to include keys and foreign keys
- Create some sample data for your tables.
- Do you have a table with more than one key?
- Do you have a table where a foreign key in a table is the key for that table?

SQL – the language we use to talk to the Database Management System

SQL can be used for lots of purposes including:

To define tables -

```
CREATE TABLE Account
  (Number      integer NOT NULL,
   Owner       character,
   Balance     currency,
   Type        character,
   PRIMARY KEY (Number));
```

To query the database –

```
SELECT  *
FROM    Account
WHERE   Type = "checking ";
```

SQL (cont.)

To insert rows into a table:

```
INSERT INTO Account
  VALUES (106, " H. Martinez ", 10,000, " savings ");
```

and so forth

SQL is a standard...

and there have been a series of SQL standards:
1986, 1989, 1992 (SQL2), 1999 (SQL3), ...

But DBMS products differ in how much of the standard
they support ... and how many extra features they
have.

Database Schema (first version)

ACCOUNT	<u>Number</u>	Owner	Balance	Type
---------	---------------	-------	---------	------

DEPOSIT	Account	<u>Transaction-id</u>	Date	Amount
---------	---------	-----------------------	------	--------

CHECK	Account	<u>Check-number</u>	Date	Amount
-------	---------	---------------------	------	--------

Database Schema (second version)

What are the foreign keys here?

ACCOUNT	<u>Number</u>	<u>Owner</u>	<u>CustID</u>	Balance	Type
---------	---------------	--------------	---------------	---------	------

DEPOSIT	Account	<u>Transaction-id</u>	Date	Amount
---------	---------	-----------------------	------	--------

CHECK	Account	<u>Check-number</u>	Date	Amount
-------	---------	---------------------	------	--------

ATMWITHDRAWAL	<u>TransactionID</u>	<u>CustId</u>	<u>AcctNo</u>	<u>Amount</u>	<u>WithdrawDate</u>
---------------	----------------------	---------------	---------------	---------------	---------------------

CUSTOMER	<u>ID</u>	Name	Phone	Address
----------	-----------	------	-------	---------

ATMWithdrawal table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
2	1	102	\$150.00	11/10/2000 13:15:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00
5	2	100	\$200.00	11/8/2000 14:14:00

```
SELECT AcctNo, Amount
FROM ATMWithdrawal
WHERE Amount < 50;
```

ATMWithdrawal table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
2	1	102	\$150.00	11/10/2000 13:15:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00
5	2	100	\$200.00	11/8/2000 14:14:00

```
SELECT AcctNo, Amount
FROM ATMWithdrawal
WHERE Amount < 50;
```


This is the WHERE clause.

The WHERE clause is evaluated for each row in the table.

ATMWithdrawal table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
2	1	102	\$150.00	11/10/2000 13:15:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00
5	2	100	\$200.00	11/8/2000 14:14:00

Is the amount field of this row less than \$50? YES!

Amount < 50

Intermediate Query Answer table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00

ATMWithdrawal table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
2	1	102	\$150.00	11/10/2000 13:15:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00
5	2	100	\$200.00	11/8/2000 14:14:00

Is the amount field of this record less than \$50? NO!

Amount < 50

Ignore this record!

Intermediate Query Answer table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00

ATMWithdrawal table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
2	1	102	\$150.00	11/10/2000 13:15:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00
5	2	100	\$200.00	11/8/2000 14:14:00

Is the amount field of this record less than \$50? **YES!**

Amount < 50

Intermediate Query Answer table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
3	2	101	\$40.00	11/1/2000 10:05:00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005

Slide 55

Some slides adapted from R. Ramakrishnan, with permission

ATMWithdrawal table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
2	1	102	\$150.00	11/10/2000 13:15:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00
5	2	100	\$200.00	11/8/2000 14:14:00

Is the amount field of this record less than \$50? **YES!**

Amount < 50

Intermediate Query Answer table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005

Slide 56

Some slides adapted from R. Ramakrishnan, with permission

ATMWithdrawal table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
2	1	102	\$150.00	11/10/2000 13:15:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00
5	2	100	\$200.00	11/8/2000 14:14:00

Is the amount field of this record less than \$50? **NO!**

Amount < 50

Ignore this record!

Intermediate Query Answer table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005

Slide 57

Some slides adapted from R. Ramakrishnan, with permission

Intermediate Query Answer table

TransactionID	CustId	AcctNo	Amount	WithdrawDate
1	1	102	\$25.00	11/1/2000 9:45:00
3	2	101	\$40.00	11/1/2000 10:05:00
4	2	100	\$40.00	11/1/2000 10:07:00

SELECT AcctNo, Amount
 FROM ATMWithdrawal
 WHERE Amount < 50;

Consider the attributes listed in the SELECT clause.

Throw away attributes that are not listed.

Thus the final query answer is:

Final Query Answer table

AcctNo	Amount
102	\$25.00
101	\$40.00
100	\$40.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
 Some slides adapted from R. Ramakrishnan, with permission

Slide 58

Another SQL Query (using one table)

ATMWithdrawal					
TransactionId	CustId	AcctNo	Amount	WithdrawDate	
1	1	102	\$25.00	11/1/00 9:45:00 AM	
2	1	102	\$150.00	11/10/00 1:15:00 PM	
3	2	101	\$40.00	11/1/00 10:05:00 AM	
4	2	100	\$40.00	11/1/00 10:07:00 AM	
5	2	100	\$200.00	11/8/00 2:14:00 PM	

```
SELECT *
FROM ATMWithdrawal
WHERE TransactionId = 3;
```

The five rows are considered, one by one, to see if
TransactionId = 3 (to see if the WHERE clause evaluates to true).

SELECT *
FROM ATMWithdrawal
WHERE TransactionId = 3;

Note: "*" in
SELECT clause
means "all attributes"

ATMWithdrawal					
TransactionId	CustId	AcctNo	Amount	WithdrawDate	
1	1	102	\$25.00	11/1/00 9:45:00 AM	
2	1	102	\$150.00	11/10/00 1:15:00 PM	
3	2	101	\$40.00	11/1/00 10:05:00 AM	
4	2	100	\$40.00	11/1/00 10:07:00 AM	
5	2	100	\$200.00	11/8/00 2:14:00 PM	

Query Answer is:

TransactionId	CustId	AcctNo	Amount	WithdrawDate
3	2	101	\$40.00	11/1/00 10:05:00 AM

Example Query

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

```
SELECT      *
FROM        Account
WHERE       Type = "checking";
```

Example Query with Answer

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

```
SELECT      *
FROM        Account
WHERE       Type = "checking";
```

	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking

Another Query

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

```
SELECT      *
FROM        Account
WHERE       Type = "savings";
```

...with its Query Answer

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

```
SELECT      *
FROM        Account
WHERE       Type = "savings";
```

	Number	Owner	Balance	Type
	103	J. Smith	5000.00	savings

Yet Another Query (what's different?)

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

```
SELECT Owner
  FROM Account
 WHERE Type = "checking";
```

...the query answer

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

```
SELECT Owner
  FROM Account
 WHERE Type = "checking";
```

	Owner
J. Smith	
W. Wei	
M. Jones	
H. Martin	

Example (Stupid) Query

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

```
SELECT      *
FROM        Account
WHERE       Type = "checking" AND
           Type = "savings";
```

Example (Stupid) Query with Answer

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Query
answer is
empty. But
that's ok/valid.

```
SELECT      *
FROM        Account
WHERE       Type = "checking" AND
           Type = "savings";
```

	Number	Owner	Balance	Type

So... why is this a "stupid" query?

How an SQL query is evaluated

Third, the SELECT clause tells us which attributes to keep in the query answer.

```
SELECT AcctNo, Amount  
FROM ATMWithdrawal  
WHERE Amount < 50;
```

First, the FROM clause tells us the input tables.

Second, the WHERE clause is evaluated for all possible combinations from the input tables.

Quick Exercise

Using the tables you defined earlier, with the data you provided ...

write several SQL queries (each addressing just one table)

and

indicate what the query answer is

SQL query using two tables

```
SELECT      A.Name, A.Balance
FROM        Account A, Deposit D
WHERE       D.Account = A.Number and A.Balance > 1000;
```

How does this work?
Which rows, from which tables,
are evaluated in the WHERE clause?
What about this one:

```
SELECT      *
FROM        Account A, Deposit D;
```

SQL query using two tables

```
SELECT      A.Name, A.Balance
FROM        Account A, Deposit D
WHERE       D.Account = A.Number and A.Balance > 1000;
```

“A” is a correlation name for **Account**
and
“D” is a correlation name for **Deposit**.

Correlation names are like local variables – they hold one
tuple or row from the corresponding table.
You choose correlation names when you write the query.

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

```
SELECT      A.Name, A.Balance
FROM        Account A, Deposit D
WHERE       D.Account = A.Number and A.Balance > 1000;
```

We must check every combination of one row from Customer with one row from CheckingAccount!

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 73

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

No! Throw it away.

```
WHERE      D.Account = A.Number and A.Balance > 1000;
```

notice the attributes

Number	Owner	Balance	Type	Account	T-id	Date	Amount

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 74

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

No! Throw it away.

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 75

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

No! Throw it away.

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 76

Account

Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit

Account T-id	Date	Amount
102	10/22/00	500.00
102	10/29/00	200.00
104	10/29/00	1000.00
105	11/2/00	10,000.00

No! Throw it away.

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account T-id	Date	Amount

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 77

Account

Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit

Account T-id	Date	Amount
102	10/22/00	500.00
102	10/29/00	200.00
104	10/29/00	1000.00
105	11/2/00	10,000.00

Yes! Place in query answer.

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account T-id	Date	Amount
102	W. Wei	2000.00	checking	102	10/22/00	500.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 78

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

Yes! Place in query answer.

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 79

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

No! Throw it away.

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 80

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

No! Throw it away.

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 81

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 82

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

No! Throw it away.

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 83

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

No! Throw it away.

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 84

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

No! Throw it away. Why?

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 85

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

No! Throw it away.

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 86

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

No! The first three fail.

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 87

Account			
Number	Owner	Balance	Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Yes! Place in query answer.

Deposit			
Account	T-id	Date	Amount
102	1	10/22/00	500.00
102	2	10/29/00	200.00
104	3	10/29/00	1000.00
105	4	11/2/00	10,000.00

WHERE D.Account = A.Number and A.Balance > 1000;

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00
105	H. Martin	10,000.00	checking	105	4	11/2/00	10,000.00

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 88

Intermediate result
(after processing the FROM & WHERE clauses)

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00
105	H. Martin	10,000.00	checking	105	4	11/2/00	10,000.00

SELECT A.Owner, A.Balance
 FROM Account A, Deposit D
 WHERE D.Account = A.Number and A.Balance > 1000;

Process the SELECT

Final query
 answer:
 (notice that
 W. Wei appears twice)

Owner	Balance
W. Wei	2000.00
W. Wei	2000.00
H. Martin	10,000.00

Intermediate result
(after processing the FROM & WHERE clauses)

Number	Owner	Balance	Type	Account	T-id	Date	Amount
102	W. Wei	2000.00	checking	102	1	10/22/00	500.00
102	W. Wei	2000.00	checking	102	2	10/29/00	200.00
105	H. Martin	10,000.00	checking	105	4	11/2/00	10,000.00

SELECT DISTINCT A.Owner, A.Balance
 FROM Account A, Deposit D
 WHERE D.Account = A.Number and A.Balance > 1000;

Process the SELECT

If we use the word
 DISTINCT, then
 duplicates are removed
 from the query answer.
 W. Wei only appears once.

Owner	Balance
W. Wei	2000.00
H. Martin	10,000.00

Another SQL query using two tables

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking
Deposit	Account	Transaction-id	Date	Amount
	102	1	10/22/00	500.00
	102	2	10/29/00	200.00
	104	3	10/29/00	1000.00
	105	4	11/2/00	10,000.00

```
SELECT A.Number, A.Owner
FROM Account AS A, Deposit AS D
WHERE A.Number = D.Account and D.Amount > 300;
```

How many rows will be in the query answer?

How many columns will be in the query answer?

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 91

SQL query using two tables(cont.)

Account	Number	Owner	Balance	Type
	101	J. Smith	1000.00	checking
	102	W. Wei	2000.00	checking
	103	J. Smith	5000.00	savings
	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking
Deposit	Account	Transaction-id	Date	Amount
	102	1	10/22/00	500.00
	102	2	10/29/00	200.00
	104	3	10/29/00	1000.00
	105	4	11/2/00	10,000.00

```
SELECT A.Number, A.Owner
FROM Account AS A, Deposit AS D
WHERE A.Number = D.Account and D.Amount > 300;
```

	Number	Owner
	102	W. Wei
	104	M. Jones
	105	H. Martin

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 92

Queries

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Notice that a query is expressed against the schema.

SELECT
FROM
WHERE
Type = "checking";

But the query runs or executes against the instance (the data).

Owner
J. Smith
W. Wei
M. Jones
H. Martin

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 93

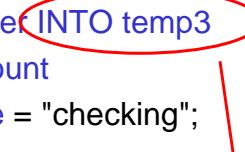
Comments on Queries

Account	Number	Owner	Balance	Type
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Notice that the answer to a query is always a table!
It doesn't always have a name (for the table).

The attribute names are deduced from the input tables (or supplied by the query author). It may or may not have any rows.

Owner
J. Smith
W. Wei
M. Jones
H. Martin


CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 94

Creating temporary tables using INTO

We can create a name for the query answer:

```
SELECT Owner INTO temp3  
FROM Account  
WHERE Type = "checking";
```


temp3	Owner
	J. Smith
	W. Wei
	M. Jones
	H. Martin

temp3 can be used as a table in subsequent queries!
REMEMBER TO DELETE YOUR TEMPORARY TABLES!!

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 95

Comments on Queries

Because **the answer to a relational query is always a table**

.....
we can use the answer from one query as input to another query.

This means that we can create arbitrarily complex queries!

We say that relational query languages are **closed** when they have this property.

CS385/586 Introduction to Database Systems, © Lois Delcambre 1999-2005
Some slides adapted from R. Ramakrishnan, with permission

Slide 96