
Beyond programming

CS 199 Computer Science for Beginners
Spring 2009 – Lois Delcambre
Week

5/12/2009 1

Introduction

We’ve covered:
◦ Python data types
◦ Python expressions
◦ Python statements

We’ve written approximately 30
programs – that allow students to
practice the various data types,
expressions, and statements
It’s time to step back; talk about this …

5/12/2009 2

You’ve learned a lot of Python

Look at the reserved word list (p. 30)
How many of these have you learned?

if, elif, else – for control structures

5/12/2009 3

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

You’ve learned a lot of Python

def, return, import, from – used when you
define functions and import functions in
modules

5/12/2009 4

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

You’ve learned a lot of Python

Logical expressions that evaluate to true or
false

5/12/2009 5

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

You’ve learned a lot of Python

For loop and while loop:
break – jump out, past the loop
continue – jump to the bottom of this
loop and keep going
pass – “do nothing” - a placeholder

5/12/2009 6

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

You’ve learned a lot of Python

5/12/2009 7

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

print statement
del and in – used with iterables (list, set,

tuple)

Python statements (documentation)

6. Simple statements
◦ 6.1. Expression statements
◦ 6.2. Assignment statements
◦ 6.3. The assert statement
◦ 6.4. The pass statement
◦ 6.5. The del statement
◦ 6.6. The print statement
◦ 6.7. The return statement
◦ 6.8. The yield statement
◦ 6.9. The raise statement
◦ 6.10. The break statement
◦ 6.11. The continue statement
◦ 6.12. The import statement
◦ 6.13. The global statement
◦ 6.14. The exec statement

7. Compound statements
◦ 7.1. The if statement
◦ 7.2. The while statement
◦ 7.3. The for statement
◦ 7.4. The try statement
◦ 7.5. The with statement
◦ 7.6. Function definitions
◦ 7.7. Class definitions
8. Top-level components
◦ 8.1. Complete Python

programs
◦ 8.2. File input
◦ 8.3. Interactive input
◦ 8.4. Expression input

5/12/2009 8

You’ve used modules
A module is a file:
◦ with your program in it
◦ with a function definition in it
◦ with a set of (often related) functions in it
You can:
◦ run a module (using Run in IDLE)
◦ import a module
You’ve seen:
◦ The string and math modules
◦ There are dozens (hundreds?) of others

5/12/2009 9

Many programming languages have
the statements that you’ve learned

Java has:
◦ assignment statements
◦ for loops
◦ while loops
◦ do/while loops
◦ break
◦ if, else
◦ print
◦ return

5/12/2009 10

We haven’t talked about classes and objects
(object-oriented programming or oop)

Object-oriented programming is one
paradigm for programming
Procedural programming is another
paradigm for programming (we have been
using Python in a procedural way; we
write one Python statement after
another)
Functional programming is another
paradigm – where everything is a function
(no loop; no assignment statements)

5/12/2009 11

How is a program used?

It might be run… for a long time …
unchanged. Have you heard about the Y2K
problem?
It might be part of something larger – that
evolves over time.
It might be used by others, exactly as it is
written – if you put it in a module.
It might be used and modified by others,
e.g., in an open source setting.

5/12/2009 12

Therefore … we need it to be:
It might be run… for a long time …
unchanged. Have you heard about the Y2K
problem? Correct – for all inputs
It might be part of something larger – that
evolves over time. Testable(again & again)
It might be used by others, exactly as it is
written – if you put it in a module.
Readable & Understandable
It might be used and modified by others, e.g.,
in an open source setting.
Readable & Understandable

5/12/2009 13

How do we know a program is
correct – for all inputs?

In general, we can’t …
Alan Turing proved in 1936 that it is not
possible to write a program that can take
as input: a program and an input and
decide whether or not the program will
finish or will run forever.
This is called the “halting problem”.
Thus, we say it is “undecidable”

5/12/2009 14

Halting problem (cont.)

So … don’t expect to generate a bunch of
code … and then expect some automatic
procedure to figure out whether it’s
correct.
(A general purpose automatic procedure
can’t even figure out whether or not a
program will finish or not.)
“Shortest lie in computer science: ‘it
works.’”

5/12/2009 15

What about testing?
Very important.
You should be systematic in your testing.
Figure out your “boundary conditions”
the smallest/largest input that your
program should work for. Then test:
◦ The smallest input
◦ A range of typical/normal inputs; variations
◦ The largest input
◦ An input smaller than the smallest
◦ An input larger than the largest

5/12/2009 16

Testing (cont.)

“Testing can never completely identify all
the defects within software.”
Som software is released for use before it
is bug-free (in many cases).
Some software is life-critical so proper
testing is really important.
[Note that for some programs – it is
possible to prove, mathematically, that
they meet their specification.]

5/12/2009 17

So … how should we develop
software? How do we begin?

It is generally a bad idea to write one big
program (i.e., one big function called
main()) that does everything. Why?
Given what we know so far in Python,
how can we decompose a program into
smaller pieces (where each piece could
be written AND tested) separately? That
is, what language feature should we use?

5/12/2009 18

So … how should we develop
software? How do we begin?

It is generally a bad idea to write one big
program that does everything. Why?
◦ People don’t want to read long programs
◦ Longer programs are (usually) more complex

because some variables may be used in more
than one place; thus some parts of the program
may depend on others.

Given what we know so far in Python,
…what language feature should we use?
◦ Functions! Each function can be written and

tested. It doesn’t “see” variables except those
that are input and those that it returns.

5/12/2009 19

So, how do we decide which
functions to write?

Top-down design
◦ Break the big program into a series of small

ones. (Assume, for the moment, that you – or
someone else – will be able to write the
functions that you need.)

5/12/2009 20

Example of top-down design

Over years of playing racquetball, Denny
has noticed a strange quirk in the game.
He often competes with players who are
just a little bit better than he is. In the
process, he always seems to lose the vast
majority of matches.
Susie suggests that they can write a
computer program to figure out if it’s just
the nature of the game (or not).

5/12/2009 21

Racquetball
To start the game, one of the players puts the ball

into play—by serving. The players then alternate
hitting the ball to keep it in play in a rally. The rally
ends when one of the players fails to hit a legal shot.
The player who misses the shot loses the rally.

If the server wins the rally, the server earns one
point. Players can only score points during their
service.

If the server does NOT win the rally then NO
point is awarded and service passes to the other
player.

The first player to reach 15 points wins the game, in
the amateur version of scoring. Book uses this.

5/12/2009 22

Specification of a
Racquetball Simulation Program
Input
The program first prompts for and gets the service probabilities of the two

players (called “Player A” and “Player B”). Then the program prompts for
and gets the number of games to be simulated.

Output
The program will provide a series of initial prompts such as the

following:
What is the prob. player A wins a serve?
What is the prob. player B wins a serve?
How many games to simulate?
The program will print out a nicely formatted report showing the

number of games simulated and the number of wins and winning
percentage for each player. Here is an example:

Games Simulated: 500
Wins for A: 268 (53.6%)
Wins for B: 232 (46.4%)
Notes: All inputs are assumed to be legal numeric values, no error

or validity checking is required.
In each simulated game, player A serves first.

5/12/2009 23

How do we figure out who
wins/loses a serve?

We know the probability that player A
wins his/her serve. We know the
probability that player B wins his/her
serve.
We need to “flip a coin”.
We need to use a random number
generator. (Also called a pseudo random
number generator.) It returns a value
between 0 and 1.

5/12/2009 24

Python has a random module

5/12/2009 25

random() returns a floating point number between 0 and 1
>>> import random as r
>>> r.random()
0.40664291180330725
>>> r.random()
0.73249446651324879

randrange(start, stop, step) returns an integer in the requested range

To determine whether player A wins
the rally, when they serve:
if <player wins serve>:

score = score + 1

This can be coded in Python like this:

if random() < prob for player A:
score = score + 1

5/12/2009 26

def printIntro():
print "This program simulates a game of racquetball between two"
print ’players called "A" and "B". The abilities of each player is’
print "indicated by a probability (a number between 0 and 1) that"
print "the player wins the point when serving. Player A always"
print "has the first serve."

Top-down design: get started
Print an Introduction
Get the inputs: probA, probB, n
Simulate n games of racquetball using probA and
probB

Print a report on the wins for playerA and playerB
def main():
printInstructions()
probA, probB, n = getInputs()
winsA, winsB = simNGames(n, probA, probB)
printSummary(winsA, winsB)

5/12/2009 27

Notice, at this point,

You may not know how to write each of
these functions. Imagine that you will …
You are choosing the inputs and outputs
for each function. This is a very important
step! You are defining the interface for
the function. (Also, called the signature.)
You can write the functions:
def printSummary(a, b):

pass

5/12/2009 28

Structure chart –
for what we have so far

5/12/2009 29

At this point, you might code the functions that you understand … or
(instead) focus on the ones you DON’T know how to write. You can
continue doing top-down design. Which ones do you know how to write?

Now, consider each function
We know how to write printIntro. Here’s one way:

def printIntro():

print "This program simulates a game of racquetball between two"

print ’players called "A" and "B". The abilities of each player is’

print "indicated by a probability (a number between 0 and 1) that"

print "the player wins the point when serving. Player A always"

print "has the first serve."

5/12/2009 30

What about getInputs()?
We know how to write this as well:

def getInputs():

RETURNS the three simulation parameters probA, probB
and n

a = input("What is the prob. player A wins a serve? ")

b = input("What is the prob. player B wins a serve? ")

n = input("How many games to simulate? ")

return a, b, n

5/12/2009 31

What about simNGames

(This is the hard one; what shall we do?)
Here’s some pseudocode:
Initialize winsA and winsB to 0
loop n times
simulate a game
if playerA wins

Add one to winsA
else

Add one to winsB

5/12/2009 32

Code for simNGames
def simNGames(n, probA, probB):

Simulates n games and returns winsA and winsB

winsA = 0

winsB = 0

for i in range(n):

scoreA, scoreB = simOneGame(probA, probB)

We did it again; we invented/imagined a function called
simOneGame (it needs to know the probability that
player A wins his/her serve and the probability that
player B wins his/her serve).

5/12/2009 33

Accumulate wins, based on
simOneGame
def simNGames(n, probA, probB):

winsA = winsB = 0

for i in range(n):

scoreA, scoreB = simOneGame(probA, probB)

if scoreA > scoreB:

winsA = winsA + 1

else:

winsB = winsB + 1

return winsA, winsB

5/12/2009 34

Updated Structure Diagram

5/12/2009 35

Continue … top-down design

How do we write simOneGame?
Pseudocode:
Initialize scores to 0

Set serving to "A"

Loop while game is not over:

Simulate one serve of whichever player is serving

update the status of the game

Return scores

5/12/2009 36

Getting started simOneGame
def simOneGame(probA, probB):

scoreA = 0
scoreB = 0
serving = "A"
while <condition>:

What is the condition? We need to keep this
function running until the game is over. We can
invent a function for that:

5/12/2009 37

gameOver returns a Boolean
def simOneGame(probA, probB):

scoreA = 0
scoreB = 0
serving = "A"
while not gameOver(scoreA, scoreB):

5/12/2009 38

New structure chart

5/12/2009 39

Complete simOneGame

5/12/2009 40

Another function: gameOver

5/12/2009 41

We also need to write the function printSummary; but that’s easy.
See pages 280-282 for the complete program, in your book.

Pseudocode

Python code

Analysis and Design

Some jobs require that you ONLY do
design.
Some jobs require that you ONLY gather
requirements (analysis).
Some jobs require that you ONLY test
software.
Some jobs require that you do all of
these.
(Not everyone writes code all day long.)

5/12/2009 42

	Beyond programming
	Introduction
	You’ve learned a lot of Python
	You’ve learned a lot of Python
	You’ve learned a lot of Python
	You’ve learned a lot of Python
	You’ve learned a lot of Python
	Python statements (documentation)
	You’ve used modules
	Many programming languages have the statements that you’ve learned
	We haven’t talked about classes and objects (object-oriented programming or oop)
	How is a program used?
	Therefore … we need it to be:
	How do we know a program is correct – for all inputs?
	Halting problem (cont.)
	What about testing?
	Testing (cont.)
	So … how should we develop software? How do we begin?
	So … how should we develop software? How do we begin?
	So, how do we decide which functions to write?
	Example of top-down design
	Racquetball
	Specification of a �Racquetball Simulation Program
	How do we figure out who wins/loses a serve?
	Python has a random module
	To determine whether player A wins the rally, when they serve:
	Top-down design: get started
	Notice, at this point,
	Structure chart – �for what we have so far
	 Now, consider each function
	What about getInputs()?
	What about simNGames
	Code for simNGames
	Accumulate wins, based on simOneGame
	Updated Structure Diagram
	Continue … top-down design
	Getting started simOneGame
	gameOver returns a Boolean
	New structure chart
	Complete simOneGame
	Another function: gameOver
	Analysis and Design

