
EE 520: Random Processes Fall 2020

Lecture 16
Markov Chains

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 11.1.1 - 11.2.5; Gubner: 12.1 - 12.5

1 Markov Chains

Continuing our study of classes of RPs that are generally useful, we will spend the last few lectures discussing
processes with the Markov property.

Definition 1. Markov property: Conditioned on the present, the future is independent of the past.
Formally, for a sequence of integer-valued RVs X0, X1, . . . , we have

P (Xn+1 = in+1 | Xn = in, Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = in+1 | Xn = in) .

Definition 2. A sequence of integer-valued RVs that satisfy the Markov property is called a Markov chain
(MC).

Example 1. Problem 5 of Homework 1 and Problem 1 of Homework 2 both describe Markov chains. In
each case, the probability of passing to a given state depends only on the current state and not how the
system arrived at that state.

Example 2. This process is known as a random walk. Let X0 ∈ Z be a RV and let Zi be a sequence of i.i.d.
RVs with

PZ(z) =


1, with probability α

0, with probability 1− α− β
−1, with probability β.

Then Xn = Xn−1 + Zn is a Markov chain. To see this, note that

X1 = X0 + Z1

X2 = X1 + Z2 = X0 + Z1 + Z2

...

Xn = Xn−1 + Zn = X0 + Z1 + Z2 + · · ·+ Zn,

so Zn+1 and X0, . . . , Xn are independent. Therefore

P (Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P (Xn + Zn+1 = in+1 | Xn = in, . . . , X0 = i0)

= P (Zn+1 = in+1 − in | Xn = in, . . . , X0 = i0)

= P (Zn+1 = in+1 − in) ,

where the last line follows by independence of Zn+1 and X0, . . . , Xn. The above depends only on in and
in+1. To show the random walk is Markov, we need one more tool.

Lemma 1. Given any event A and two integer-valued RVs X and Y , if P (A|X = i, Y = j) = h(i), then

P (A | X = i, Y = j) = P (A | X = i).
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Proof. We want to show that h(i) = P (A|X = i). Write

P (A ∩ {X = i}) =
∑
j

P (A ∩ {X = i} | Y = j)P (Y = j)

=
∑
j

P (A | X = i, Y = j)P (X = i | Y = j)P (Y = j)

=
∑
j

h(i)P (X = i | Y = j)P (Y = j)

= h(i)P (X = i).

The above implies that

h(i) =
P (A ∩ {X = i}
P (X = i)

= P (A | X = i).

Now let A = {Xn+1 = in+1}, X = {Xn = in}, and Y = {Xn−1 = in−1, . . . , X0 = i0} and apply the above
lemma to see that

P (Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = h(in)

and therefore
P (Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P (Xn+1 = in+1 | Xn = in) ,

which shows that the random walk is Markov as desired.

Fact 1. The Markov property for a joint PDF is given below

P (Xn+m = jm, . . . , Xn+1 = j1 | Xn = in, . . . , X0 = i0) = P (Xn+m = jm, . . . , Xn+1 = j1 | Xn = in) .

2 State Space Models

Below we define some terminology that is used when analyzing MCs.

Definition 3. The set of possible values the RVs Xn can take is called the state space of the MC.

Definition 4. The conditional probabilities P (Xn+1 = j|Xn = i) are called the transition probabilities.

Definition 5. When the values of the transition probabilities do not depend on the time n, we say they are
stationary or that the MC is time homogeneous. In this case, we write

pij = P (Xn+1 = j | Xn = i) .

Stationary MCs are accompanied by a state transition diagram and a transition matrix P whose
(i, j)th entry is pij .

Example 3. Consider the MC with four states 0, 1, 2, 3. Draw the state diagram for the transition probability
matrix

P =


4/6 1/6 1/6 0
0 1 0 0

4/6 1/6 0 1/6
0 0 0 1

 .
Note that each row of a transition matrix must sum to 1, since it denotes the total probability of

transitioning to any other state. When we write P as a matrix, we are implicitly assuming there are a finite
number of states, but this does not have to be the case.
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Definition 6. If pii = 0, we call state i reflecting. If pii = 1, we call state i absorbing.

The transition probabilities above describe the behavior of a single step of the process. We can also
generalize this to m steps.

Definition 7. The m-step transition probability p
(m)
ij is the probability of reaching state j from state i after

m steps

p
(m)
ij = P (Xm = j | X0 = i) .

In particular, we can write pij = p
(1)
ij . Suppose we wish to find p

(n+m)
ij . It turns out the m-step transition

probabilities satisfy the following equation.

Definition 8. The m-step transition probabilities are characterized by the Chapman-Kolmogorov equa-
tion

p
(n+m)
ij =

∑
k

p
(n)
ik p

(m)
kj ,

or in its matrix form
P (n+m) = Pn+m.

The above allows us to calculate the distribution over the states at a given time. Note that

P (Xn = j)︸ ︷︷ ︸
ρ
(n)
j

=
∑
i

P (Xn = j | X0 = i)︸ ︷︷ ︸
p
(n)
ij

P (X0 = i)︸ ︷︷ ︸
νi

.

Breaking our usual assumption that all vectors are columns, let ν be the row vector of probabilities over the
states at time 0, and let ρ(n) be the distribution over all states at time n. Then

ρ(n) = νPn.

3 Stationary Distributions

A natural question is to ask whether things settle if we run the experiment long enough, i.e., does the
distribution over states converge?

Definition 9. Let π ∈ RN be a valid distribution over the N states in a stationary MC, and suppose that

π = πP,

N∑
j=1

πj = 1, πj ≥ 0, ∀j.

Then π is called the stationary or equilibrium distribution of the MC.

Note that the equation π = πP implies that π is a left eigenvector of P with corresponding eigenvalue
1. When dealing with an infinite number of states, we cannot write down the transition matrix and instead
use the form

πj =
∑
k

pkj .

Example 4. Consider the MC defined by the transition matrix

P =

 0 1/4 3/4
0 1/2 1/2

2/5 2/5 1/5

 .
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The stationary distribution then satisfies

π0 = π0p00 + π1p10 + π2p20 =
2

5
π2

and

π1 =
1

4
π0 +

1

2
π1 +

2

5
π2.

Combining these two equations shows that
π1 = π2.

Since π is a distribution, we also have that

π0 + π1 + π2 = 1.

Solving this system of equations, we find the stationary distribution to be

π =
[
1/6 5/12 5/12

]
.

Another question we may ask is when a stationary distribution exists. We typically only consider chains
where it does exist, but even if it does, the stationary distribution may not be unique.

Definition 10. If for every pair of states i 6= j there is a path from i to j and from j to i, we say the MC
is irreducible.

Fact 2. If a chain is irreducible, then it has a unique stationary distribution.
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