Lecture 16

Markov Chains

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 11.1.1-11.2.5; Gubner: 12.1-12.5

1 Markov Chains

Continuing our study of classes of RPs that are generally useful, we will spend the last few lectures discussing processes with the Markov property.
Definition 1. Markov property: Conditioned on the present, the future is independent of the past. Formally, for a sequence of integer-valued RVs X_{0}, X_{1}, \ldots, we have

$$
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)
$$

Definition 2. A sequence of integer-valued RVs that satisfy the Markov property is called a Markov chain (MC).

Example 1. Problem 5 of Homework 1 and Problem 1 of Homework 2 both describe Markov chains. In each case, the probability of passing to a given state depends only on the current state and not how the system arrived at that state.
Example 2. This process is known as a random walk. Let $X_{0} \in \mathbb{Z}$ be a RV and let Z_{i} be a sequence of i.i.d. RVs with

$$
P_{Z}(z)= \begin{cases}1, & \text { with probability } \alpha \\ 0, & \text { with probability } 1-\alpha-\beta \\ -1, & \text { with probability } \beta\end{cases}
$$

Then $X_{n}=X_{n-1}+Z_{n}$ is a Markov chain. To see this, note that

$$
\begin{aligned}
X_{1} & =X_{0}+Z_{1} \\
X_{2} & =X_{1}+Z_{2}=X_{0}+Z_{1}+Z_{2} \\
\vdots & \\
X_{n} & =X_{n-1}+Z_{n}=X_{0}+Z_{1}+Z_{2}+\cdots+Z_{n}
\end{aligned}
$$

so Z_{n+1} and X_{0}, \ldots, X_{n} are independent. Therefore

$$
\begin{aligned}
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right) & =P\left(X_{n}+Z_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right) \\
& =P\left(Z_{n+1}=i_{n+1}-i_{n} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right) \\
& =P\left(Z_{n+1}=i_{n+1}-i_{n}\right)
\end{aligned}
$$

where the last line follows by independence of Z_{n+1} and X_{0}, \ldots, X_{n}. The above depends only on i_{n} and i_{n+1}. To show the random walk is Markov, we need one more tool.

Lemma 1. Given any event A and two integer-valued RVs X and Y, if $P(A \mid X=i, Y=j)=h(i)$, then

$$
P(A \mid X=i, Y=j)=P(A \mid X=i)
$$

Proof. We want to show that $h(i)=P(A \mid X=i)$. Write

$$
\begin{aligned}
P(A \cap\{X=i\}) & =\sum_{j} P(A \cap\{X=i\} \mid Y=j) P(Y=j) \\
& =\sum_{j} P(A \mid X=i, Y=j) P(X=i \mid Y=j) P(Y=j) \\
& =\sum_{j} h(i) P(X=i \mid Y=j) P(Y=j) \\
& =h(i) P(X=i)
\end{aligned}
$$

The above implies that

$$
h(i)=\frac{P(A \cap\{X=i\}}{P(X=i)}=P(A \mid X=i)
$$

Now let $A=\left\{X_{n+1}=i_{n+1}\right\}, X=\left\{X_{n}=i_{n}\right\}$, and $Y=\left\{X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}$ and apply the above lemma to see that

$$
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)=h\left(i_{n}\right)
$$

and therefore

$$
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)
$$

which shows that the random walk is Markov as desired.
Fact 1. The Markov property for a joint PDF is given below

$$
P\left(X_{n+m}=j_{m}, \ldots, X_{n+1}=j_{1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+m}=j_{m}, \ldots, X_{n+1}=j_{1} \mid X_{n}=i_{n}\right)
$$

2 State Space Models

Below we define some terminology that is used when analyzing MCs.
Definition 3. The set of possible values the RVs X_{n} can take is called the state space of the MC.
Definition 4. The conditional probabilities $P\left(X_{n+1}=j \mid X_{n}=i\right)$ are called the transition probabilities.
Definition 5. When the values of the transition probabilities do not depend on the time n, we say they are stationary or that the MC is time homogeneous. In this case, we write

$$
p_{i j}=P\left(X_{n+1}=j \mid X_{n}=i\right)
$$

Stationary MCs are accompanied by a state transition diagram and a transition matrix P whose (i, j) th entry is $p_{i j}$.

Example 3. Consider the MC with four states $0,1,2,3$. Draw the state diagram for the transition probability matrix

$$
P=\left[\begin{array}{cccc}
4 / 6 & 1 / 6 & 1 / 6 & 0 \\
0 & 1 & 0 & 0 \\
4 / 6 & 1 / 6 & 0 & 1 / 6 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note that each row of a transition matrix must sum to 1 , since it denotes the total probability of transitioning to any other state. When we write P as a matrix, we are implicitly assuming there are a finite number of states, but this does not have to be the case.

Definition 6. If $p_{i i}=0$, we call state i reflecting. If $p_{i i}=1$, we call state i absorbing.
The transition probabilities above describe the behavior of a single step of the process. We can also generalize this to m steps.

Definition 7. The m-step transition probability $p_{i j}^{(m)}$ is the probability of reaching state j from state i after m steps

$$
p_{i j}^{(m)}=P\left(X_{m}=j \mid X_{0}=i\right)
$$

In particular, we can write $p_{i j}=p_{i j}^{(1)}$. Suppose we wish to find $p_{i j}^{(n+m)}$. It turns out the m-step transition probabilities satisfy the following equation.

Definition 8. The m-step transition probabilities are characterized by the Chapman-Kolmogorov equation

$$
p_{i j}^{(n+m)}=\sum_{k} p_{i k}^{(n)} p_{k j}^{(m)},
$$

or in its matrix form

$$
P^{(n+m)}=P^{n+m}
$$

The above allows us to calculate the distribution over the states at a given time. Note that

$$
\underbrace{P\left(X_{n}=j\right)}_{\rho_{j}^{(n)}}=\sum_{i} \underbrace{P\left(X_{n}=j \mid X_{0}=i\right)}_{p_{i j}^{(n)}} \underbrace{P\left(X_{0}=i\right)}_{\nu_{i}}
$$

Breaking our usual assumption that all vectors are columns, let ν be the row vector of probabilities over the states at time 0 , and let $\rho^{(n)}$ be the distribution over all states at time n. Then

$$
\rho^{(n)}=\nu P^{n}
$$

3 Stationary Distributions

A natural question is to ask whether things settle if we run the experiment long enough, i.e., does the distribution over states converge?

Definition 9. Let $\pi \in \mathbb{R}^{N}$ be a valid distribution over the N states in a stationary MC, and suppose that

$$
\pi=\pi P, \quad \sum_{j=1}^{N} \pi_{j}=1, \quad \pi_{j} \geq 0, \forall j
$$

Then π is called the stationary or equilibrium distribution of the MC.
Note that the equation $\pi=\pi P$ implies that π is a left eigenvector of P with corresponding eigenvalue 1. When dealing with an infinite number of states, we cannot write down the transition matrix and instead use the form

$$
\pi_{j}=\sum_{k} p_{k j}
$$

Example 4. Consider the MC defined by the transition matrix

$$
P=\left[\begin{array}{ccc}
0 & 1 / 4 & 3 / 4 \\
0 & 1 / 2 & 1 / 2 \\
2 / 5 & 2 / 5 & 1 / 5
\end{array}\right]
$$

The stationary distribution then satisfies

$$
\pi_{0}=\pi_{0} p_{00}+\pi_{1} p_{10}+\pi_{2} p_{20}=\frac{2}{5} \pi_{2}
$$

and

$$
\pi_{1}=\frac{1}{4} \pi_{0}+\frac{1}{2} \pi_{1}+\frac{2}{5} \pi_{2}
$$

Combining these two equations shows that

$$
\pi_{1}=\pi_{2}
$$

Since π is a distribution, we also have that

$$
\pi_{0}+\pi_{1}+\pi_{2}=1
$$

Solving this system of equations, we find the stationary distribution to be

$$
\pi=\left[\begin{array}{lll}
1 / 6 & 5 / 12 & 5 / 12
\end{array}\right]
$$

Another question we may ask is when a stationary distribution exists. We typically only consider chains where it does exist, but even if it does, the stationary distribution may not be unique.

Definition 10. If for every pair of states $i \neq j$ there is a path from i to j and from j to i, we say the MC is irreducible.

Fact 2. If a chain is irreducible, then it has a unique stationary distribution.

