
EE 520: Random Processes Fall 2021

Lecture 14
Filtering Random Processes

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 10.2.3 - 10.2.4; Gubner: 10.5 - 10.8
We continue our discussion of wide-sense stationary (WSS) random processes (RPs) with some additional

properties as well as two filters that are used to perform detection and estimation in RPs.

1 Power Spectral Density for WSS Random Processes

Recall from Lecture 13 that a RP {Xt} is WSS if

1. E[Xt] = E[Xs] for all s, t (i.e., the mean does not change over time)

2. E[XtXs] depends on t, s only through their difference t− s.

For WSS processes, we write the correlation function as RX(τ). We often work with the Fourier transform
(FT) of RX(τ), which is called the power spectral density (PSD)

SX(f) =

∫ ∞
−∞

RX(τ)e−j2πfτdτ.

As motivation for the PSD, note that the energy in a waveform or function may be defined as
∫∞
−∞ |x(t)|2 dt

when this quantity is finite. For signals with infinite power, we consider the average energy

lim
T→∞

1

2T

∫ T

−T
|x(t)|2 dt.

These (hopefully familiar) quantities can also be analyzed for RPs.

1.1 Power in a Process

Consider a WSS process {Xt}. Note that∫ ∞
−∞
|Xt|2 dt and lim

T→∞

1

2T

∫ T

−T
|Xt|2 dt

are both random quantities, so when we talk about the power in a process we quantify the expected average
power.

Definition 1. For a WSS process {Xt}, the expected average power is

PX = E
[
X2
t

]
= RX(0) =

∫ ∞
−∞

SX(f)df.

Note that the last term above is simply the Fourier transform of RX evaluated at τ = 0. Further, we see
that the power in the process can be found by integrating the PSD across all frequencies.
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Example 1. Find the power in the frequency band W1 ≤ |f | ≤W2 for the WSS process {Xt}.
We can model the power in this frequency band as passing {Xt} through an LTI system with unit gain

over the frequency range W1 ≤ |f | ≤W2, i.e., we define the filter to have transfer function

H(f) =

{
1, W1 ≤ |f | ≤W2

0, otherwise.

Letting {Yt} denote the output RP (which is still WSS), we can then compute the power as

PY =

∫ ∞
−∞

SY (f)df

=

∫ ∞
−∞
|H(f)|2 SX(f)df

=

∫ −W1

−W2

SX(f)df +

∫ W2

W1

SX(f)df

= 2

∫ W2

W1

SX(f)df,

where the last line follows by the symmetry of SX .

1.2 White Noise

A process with constant power across all frequencies is called white noise. In this case, we have

RX(τ) = σ2δ(τ)
F←→ SX(f) = σ2, ∀f.

Note that this is a useful mathematical idealization, and the power actually does fall off for high frequencies
in practice for all real-world signals. This model causes a few problems:

1. RX(0) = σ2δ(0) is undefined

2. PX =
∫∞
−∞ σ2dx =∞.

In problems, we sometimes write the noise level σ2 = N0/2, which is common notation in analysis of
communication systems.

2 The Matched Filter

Suppose we’re running a radar system, where we transmit a deterministic signal v(t) and measure a noisy
return

Rt =

{
Xt, no aircraft present (case 0)

v(t) +Xt, aircraft present (case 1),

where Xt is a zero-mean WSS process with PSD SX(f). We want to design a filter to help decide whether
we’re in case 0 or 1 above. Let the output of this system after passing through the filter h(t) be v0(t) + Yt.
As with our primers on estimation and detection theory, we must first decide what our objective function is.
In this case, we choose to maximize the signal-to-noise ratio (SNR)

SNR =
v0(t0)2

E
[
Y 2
t0

]
=

v0(t0)2

PY
.
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To reiterate, v0(t0) is the output signal after filtering in the case where an aircraft is present (case 1). To
maximize the SNR, we use the trick of finding an upper bound via the Cauchy-Schwarz inequality and then
designing a filter that achieves this upper bound. First examine the two terms separately.

PY =

∫ ∞
−∞

SY (f)df =

∫ ∞
−∞
|H(f)|2 SX(f)df

v0(t0) =

∫ ∞
−∞

V0(f)ej2πft0df

=

∫ ∞
−∞

H(f)V (f)ej2πft0df

=

∫ ∞
−∞

H(f)
√
SX(f)

V (f)√
SX(f)

ej2πft0df

=

∫ ∞
−∞

H(f)
√
SX(f)︸ ︷︷ ︸

g1(f)

[
V (f)∗e−j2πft0√

SX(f)

]∗
︸ ︷︷ ︸

g2(f)

df,

where a∗ denotes the complex conjugate of a. Note that the above is the functional form of an inner product
between the “vectors” g1(f) and g2(f). We now apply the Cauchy-Schwarz inequality to the above to see
that

|v0(t)|2 ≤
∫ ∞
−∞
|H(f)|2 SX(f)df︸ ︷︷ ︸

PY

∫ ∞
−∞

|V (f)|2

SX(f)
df︸ ︷︷ ︸

B

.

Combining the above, we see that

SNR =
|v0(t)|2

PY
≤ PYB

PY
= B,

so we want to set h such that equality holds in the above statement. This occurs when the vectors g1(f)
and g2(f) are aligned, i.e., when

H(f)
√
SX(f) = α

V (f)∗e−j2πft0√
SX(f)

.

Rearranging the above, we arrive at the transfer function for the matched filter

H(f) = α
V (f)∗e−j2πft0

SX(f)
, (1)

where α ∈ R is set based on power/hardware considerations in practice (we typically take α to be the value
that simplifies notation the most in this course).

Example 2. Let SX(f) = N0/2 (white noise). Take α = N0/2 as well to give

H(f) = V (f)∗e−j2πft0 .

In the time domain, assuming the transmitted signal v(t) is real, this becomes

h(t) = v(t0 − t),

which is a flipped version of the transmitted signal.



Lecture 14: Filtering Random Processes 4

3 The Wiener Filter

The matched filter considers the detection/classification problem where we transmit a known signal. Now
assume we want to estimate some unknown RP {Vt} from a related/measured RP {Ut}. Assume that Vt
and Ut are zero-mean, jointly WSS, and we know SV (f), SU (f), and SUV (f). The Wiener filter seeks to

find the LMMSE estimate of Vt, i.e., to find the linear estimate V̂t that minimizes E
[∣∣∣Vt − V̂t∣∣∣2]. Since V̂t

is linear, it has the form

V̂t =

∫ ∞
−∞

h(t− τ)Uτdτ =

∫ ∞
−∞

h(θ)Ut−θdθ.

As with MMSE estimation of RVs and RVecs, we will use the orthogonality principle. In the RP/functional
case, the orthogonality principle states that h(t) is optimal if and only if

E
[(
Vt − V̂t

)∫ ∞
−∞

h̃(θ)Ut−θdθ

]
= 0

for every filter h̃. In particular, replacing h̃ by h − h̃ and letting Ṽt denote the output estimate from the
filter h̃, we see that

E
[(
Vt − V̂t

)(
V̂t − Ṽt

)]
= 0.

We will not prove this version of the orthogonality principle, but we will use it to design h.

0 = E
[(
Vt − V̂t

)∫ ∞
−∞

h̃(θ)Ut−θdθ

]
= E

[∫ ∞
−∞

h̃(θ)
(
Vt − V̂t

)
Ut−θdθ

]
=

∫ ∞
−∞

h̃(θ)E
[(
Vt − V̂t

)
Ut−θ

]
dθ

=

∫ ∞
−∞

h̃(θ)E
[
RV U (θ)−RV̂ U (θ)

]
dθ.

Taking h̃ = RV U (θ)−RV̂ U (θ), the above becomes∫ ∞
−∞

∣∣RV U (θ)−RV̂ U (θ)
∣∣2 dθ = 0,

so we want to set RV̂ U = RV U . Since we are passing Ut through an LTI system, we have

RV U (τ) = RUV (−τ) =

∫ ∞
−∞

h(θ)RU (τ − θ)dθ = RV̂ U (τ).

In the Fourier domain, this implies
SV U (f) = H(f)SU (f).

Solving the above for H(f), we get the transfer function for the Wiener filter

H(f) =
SV U (f)

SU (f)
.

Recall our solution to LMMSE estimation of RVs was

X̂ =
E[XY ]

E[Y 2]
Y.

Hence, the LMMSE estimator has a similar form for RPs, but this similarity appears in the Fourier domain,
since “linear” operations happen via filters.
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4 Properties of WSS RPs

We include here a number of useful properties of WSS RPs, some of which were also given in Lecture 13.

1. RXY (τ) = RY X(−τ)

2. RX(0) ≥ |RX(τ)| for all τ

3. RX(τ) is periodic with period T if and only if Xt is periodic with period T

4. If RX(T ) = RX(0) for some T , then RX(τ) is period with period T and so is Xt (with probability 1)

5. RX(τ) is real

6. RX(τ) is even, i.e., RX(τ) = RX(−τ)

7. RX(τ) is positive semidefinite

8. SX(f) is real

9. SX(f) is even

10. SX(f) ≥ 0 for all f
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