
EE 520: Random Processes Fall 2021

Lecture 13
Random Processes

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 10.1.0 - 10.1.4, 10.2.0 - 10.2.2; Gubner: 10.1 - 10.4

1 Random Processes

To this point, we have considered only finite collections of RVs, either as RVs directly or as random vectors.
The remainder of the course will focus on the case where we have an infinite collection of RVs, which we call
a random process (RP).

Definition 1. A discrete time random process is a countable collection of RVs

{Xn ∈ R : n ∈ S} ,

where S is a countably infinite set. Typically, we take S = N (the natural numbers).

Example 1. Assume a sequence of bits is transmitted over a noisy channel and bits are flipped independently
with probability p, so that {Xn : n ∈ N} is a Ber(p) random process.

Definition 2. A continuous time random process is an uncountable collection of RVs

{Xt ∈ R : t ∈ T } ,

where T is an uncountable subset of R. Typically we take T = [0, τ ] or T = R.

Example 2. Let {Nt : t ∈ T } count the number of occurrences of some event of interest up to time t. This
is known as a counting process and is a continuous time RP.

1.1 Relation to Sample Space

Recall that a RV is a function from the sample space to R. For a RP, we really have a set {Xn(ω)}, and we
can view a RP in two ways:

1. Fix n, then view each Xn(ω) as a RV.

2. Fix ω, which gives the sequence X1(ω), X2(ω), . . . . This sequence is called a realization or sample path
of the RP.

The second view above is more common and aligns better with the notion of a realization of a RV.

Example 3. Let (Ω,F , P ) = ([0, 2π],B([0, 2π]),Unif([0, 2π])), where B(A) denotes the Borel sigma algebra
generated by the set A. Consider the RP

Xt(ω) = cos (2πf0t+ ω) .

Under View 1 above, we think of the RP in terms of the possible RVs Xt(ω) for a fixed time t. Under View
2, we think of possible sample paths that would result from different values of ω, as depicted in Fig. 1 below.
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Figure 1: Examples of two sample paths for different values of ω.

2 Characterization of RPs

For RVs and RVecs, we spent a great deal of time explicitly writing down distributions, from which we can
derive parameters such as the mean, variance, and covariance. We will discuss the analog for RPs next week.
For now, we will focus on the first (mean) and second-order (variance, covariance) statistics of RPs.

Definition 3. For a RP {Xt} (or Xn), the mean function is

mX(t) = E[Xt].

Definition 4. For a RP Xt, the correlation function or autocorrelation between two RVs Xt and Xs

is
RX(t, s) = E[XtXs].

Example 4. Let Xt = cos (2πft+ θ) where θ ∼ Unif ([−π, π]). Then

E[Xt] = E [cos (2πft+ θ)]

=

∫ π

−π

1

2π
cos (2πft+ θ) dθ

= 0,

where the last line follows since a cosine integrated over an entire period is zero. For correlation, we get

RX(t, s) = E [XtXs]

= E [cos (2πft+ θ) cos (2πfs+ θ)]

=
1

2
E [cos (2πf (t+ s) + 2θ) + cos (2πf(t− s))]

=
1

2
cos (2πf(t− s)) .

Some important properties of the correlation function are as follows.

1. Symmetry: RX(t, s) = RX(s, t)

2. Positive semidefiniteness: For any function α(t),∫ ∫
α(t)RX(t, s)α(s)dtds ≥ 0.

This generalizes the idea that correlation/covariance matrices are positive semidefinite.
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3. The Cauchy-Schwarz inequality for RPs states that

|RX(t, s)| = |E [XtXs]| ≤
√
E [X2

tX
2
s ] =

√
RX(t, t)RX(s, s).

Some other second-order quantities of interest are given below.

Definition 5. A RP with E
[
X2
t

]
= RX(t, t) <∞ is called a second-order process.

Definition 6. For a RP {Xt}, the covariance function between Xt and Xs is

CX(t, s) = E [(Xt − E[Xt]) (Xs − E[Xs])] .

Definition 7. For two RPs {Xt} and {Yt}, the cross-correlation function is

RXY (t, s) = E[XtYs].

Definition 8. For two RPs {Xt} and {Yt}, the cross-covariance function is

CXY (t, s) = E [(Xt − E[Xt]) (Ys − E[Ys])]

= RXY (t, s)−mX(t)mY (s).

3 Stationarity

Stationarity captures the notion that the statistics of a RP do not change over time. We typically consider
two definitions of stationarity (strict and wide), and the latter appears more frequently in practice.

Definition 9. A RP is nth-order strictly stationary if for any finite collection of n times t1, . . . , tn, all
joint probabilities do not depend on the time shift δt, i.e.,

P (Xt1 , Xt2 , . . . , Xtn ∈ B) = P (Xt1+δt, Xt2+δt, . . . , Xtn+δt ∈ B) .

Definition 10. A RP is called strictly stationary if it is nth-order strictly stationary for all finite n ∈ N.

Example 5. Let Xt = Z for all time t. Then {Xt} is a strictly stationary RP.

In general, strict stationarity is too strong of an assumption to use, and it is very difficult to prove that
it holds for interesting RPs. We instead focus mainly on wide-sense stationary (WSS) RPs.

Definition 11. A RP {Xt} is wide-sense stationary (WSS) if

(i) E[Xt] = E[Xs] for all s, t (i.e., the mean does not change over time)

(ii) E[XtXs] depends on t, s only through their difference t− s.

For WSS RPs, we often write RX(t, s) as a univariate function of the difference τ = t− s, i.e., we write
RX(τ).

Example 6. Our previous example Xt = cos (2πft+ θ) is WSS, since we showed that

RX(t, s) =
1

2
cos (2πf(t− s)) ,

which depends on t and s only through their difference.
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4 WSS RPs Through LTI Systems

In signal processing, we often consider what happens when we pass a WSS process (which we think of as
a signal) through a linear time-invariant (LTI) system (e.g., a filter). As with the deterministic signals we
study in a typical course on discrete-time signal processing, WSS signals are often more convenient to analyze
in the Fourier domain.

Definition 12. The power spectral density (PSD) of a WSS process is the Fourier transform of the
correlation function

SX(f) =

∫ ∞
−∞

RX(τ)e−j2πfτdτ.

We can also invert the PSD to find the autocorrelation

RX(τ) =

∫ ∞
−∞

SX(f)ej2πfτdf.

Theorem 1. Any real, symmetric power spectral density RX(τ) satisfies

1. RX(0) ≥ |RX(τ)|

2. SX(f) is real and symmetric

3. SX(f) ≥ 0

Parts of the proof may appear on the homework. Now consider a LTI system defined by the impulse
response h(t). Analyzing in the time domain, we have

Yt =

∫ ∞
−∞

h(τ)Xt−τdτ.

The resulting mean function is

mY (t) = E[Yt]

=

∫ ∞
−∞

h(τ)E[Xt−τ ]dτ

= mX(t)

∫ ∞
−∞

h(τ)dτ,

where mX(t) = mX does not depend on t, since {Xt} is WSS. The correlation function is

RY (t, s) = E[YtYs]

= E
[∫ ∞
−∞

∫ ∞
−∞

h(τ)Xt−τh(θ)Xs−θdθdτ

]
=

∫ ∞
−∞

∫ ∞
−∞

h(τ)h(θ)E [Xt−τXs−θ] dθdτ

=

∫ ∞
−∞

h(τ)

∫ ∞
−∞

h(θ)RX ((t− s)− (τ − θ)) dθdτ, (1)

which depends on t, s only through their difference. Hence {Yt} is a WSS RP.

Definition 13. Let {Xt} and {Yt} be two WSS RPs. If the cross-correlation RXY (t, s) depends on t, s only
through their difference, we say {Xt} and {Yt} are jointly WSS.
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Consider passing the RP Xt through the LTI system defined by h(t), yielding the output process

Yt =

∫ ∞
−∞

h(θ)Xt−θdθ.

Their cross-correlation becomes

E [XtYs] = E
[
Xt

∫ ∞
−∞

h(θ)Xs−θdθ

]
=

∫ ∞
−∞

h(θ)E [XtXs−θ] dθ

=

∫ ∞
−∞

h(θ)RX(t− s+ θ)dθ.

Letting τ = t− s, we can write

RXY (τ) =

∫ ∞
−∞

h(θ)RX(τ + θ)dθ.

Substituting the above into Eq. (1), we see that

RY (τ) =

∫ ∞
−∞

h(β)RXY (τ − β)dβ,

i.e., RY is the convolution of h and RXY . This motivates examining these objects in the frequency domain.

Definition 14. For the LTI system with impulse response h(t), the transfer function is

H(f) =

∫ ∞
−∞

h(τ)e−j2πfτdτ.

Definition 15. The cross-power spectral density (CPSD) of two jointly WSS RPs is the Fourier trans-
form of the cross-correlation function

SXY (f) =

∫ ∞
−∞

RXY (τ)e−j2πfτdτ.

Given the cross-correlation function above, we can evaluate the CPSD of {Xt} and {Yt}, which also gives
us the PSD of {Yt}

SXY (f) = H∗(f)SX(f),

where H∗(f) denotes the complex conjugate of H(f). Further, we have

SY (f) = H(f)SXY (f)

= |H(f)|2 SX(f).
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