
EE 520: Random Processes Fall 2021

Lecture 12
Gaussian Random Vectors

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 6.1.1, 6.1.5; Gubner: 9.1 - 9.5
Last week we organized finite collections of random variables into vectors, called random vectors. In this

lecture, we focus on the specific case where the elements of the random vectors are Gaussian.

1 The Multivariate Normal Distribution

Recall the univariate Gaussian PDF
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Further, for n independent Gaussian RVs, the joint PDF is
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In the above, since the Xi’s are independent, their covariance matrix is diagonal, i.e.,
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Define the vectors X = [X1 X2 . . . Xn]T ∈ Rn and µ = [µ1 µ2 . . . µn]T ∈ Rn. Then we have
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With this in mind, we can begin writing the PDF (1) in matrix form. First note that

exp
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)
= exp
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2
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To write the term (2π)−n/2
(
σ2
1σ

2
2 . . . σ

2
n

)−1/2
more compactly, we use the following two facts.

Fact 1. Let A ∈ Rn×n with eigenvalues λ1, . . . , λn. Then det(A) =
∏n
i=1 λi.

Fact 2. Let A ∈ Rn×n be a diagonal matrix. Then the eigenvalues of A are the diagonal elements of A.
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Putting these facts together, we see that

n∏
i=1

σ2
i = det(CX).

We can therefore write the joint PDF of Gaussian RVs in matrix-vector notation as

fX(x) = (2π)
−n/2

det (CX)
−1/2

exp

(
−1

2
(x− µ)TC−1X (x− µ)

)
, (2)

where we note that the variables X and x are vectors of length n. We have shown that the above provides a
compact form of the PDF for independent Gaussian RVs. It turns out that the above is the correct PDF for
dependent Gaussian RVs under a few assumptions. First, we require that CX be invertible (since the PDF
requires taking an inverse). Second, we require the RVec X to satisfy the following.

Definition 1. A random vector X = [X1 X2 . . . Xn]T is said to be Gaussian if

n∑
i=1

ciXi, ci ∈ R

is a scalar Gaussian RV. In other words, X is a Gaussian RVec if every linear combination of its elements is
a Gaussian RV. If X has mean vector µ and covariance C, we write X ∼ N (µ,C).

Example 1. If X1, . . . , Xn are independent Gaussian RVs, then the RVec X is a Gaussian RVec.

Example 2. Every subvector of a Gaussian RVec is also a Gaussian RVec.

Summarizing the above, if X = [X1 X2 . . . Xn]T is Gaussian and its covariance matrix CX is invertible,
then X has PDF defined by (2).

1.1 Affine Transformations

Let X ∼ N (µ,CX), A ∈ Rr×n, and b ∈ Rr. What is the distribution of Y = AX + b? First consider
Z = AX. For Z to be Gaussian, we need cTZ to be a scalar Gaussian RV for any c ∈ Rr. Note that

cTZ = cT (AX) = (cTA)X,

but cTA has size 1×n, and hence cTZ is a linear combination of the elements of X. Therefore Z is Gaussian
(since we defined X to be Gaussian). It is also easily checked that adding the constant cT b to Z gives another
Gaussian, and hence Y = AX + b is Gaussian. Next, we need to determine its mean and variance.

E[Y ] = E[AX + b] = AE[X] + b = Aµ+ b.

E[Y Y T ] = E
[
(AX + b) (AX + b)

T
]

= E
[
AXXTA+ 2AXbT + bbT

]
= ARXA

T + 2Aµb+ bbT .

To get CY , we subtract E[Y ]E[Y ]T from RY . Note that

E[Y ]E[Y ]T = (Aµ+ b) (Aµ+ b)
T

= AµµTAT + 2AµbT + bbT .
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Therefore

CY = ARXA
T + 2AµbT + bbT − (AµµTAT + 2AµbT + bbT )

= A
(
RX − µµT

)
AT

= ACXA
T .

Putting the above together, we see that

X ∼ N (µ,CX) =⇒ Y = AX + b ∼ N
(
Aµ+ b, ACXA

T
)
.

1.2 Uncorrelated Implies Independent

Jointly Gaussian RVs have the useful property that if they are uncorrelated, they are independent. Note
that in general (i.e., for other distributions) we only have the reverse implication. To show this, we use the
MGF of a Gaussian RVec.

Proposition 1. Let X ∼ N (µ,CX). Then the MGF of X is

MX(s) = E
[
es

TX
]

= exp

(
sTµ+

1

2
sTCXs

)
,

where the second equality follows by taking Y = sTX and applying the affine transformation formula above.

We now prove that uncorrelated Gaussian RVs are independent. Let X ∼ N (µ,CX) have uncorrelated
elements. Then

MX(s) = exp

(
n∑
i=1

siµi +
1

2
s2iσ

2
i

)

=

n∏
i=1

exp

(
siµi +

1

2
s2iσ

2
i

)

=

n∏
i=1

MXi
(si),

which is the MGF of n independent Gaussian RVs. Since the MGF corresponds uniquely to the PDF, we
conclude that the PDF of X is that of n independent Gaussian RVs.

1.3 Conditional Expectation and Probability

Recall our study of MMSE estimation, where we showed the orthogonality principle, i.e., that E[X|Y ] satisfies

E [h(Y )(X − E[X | Y ])] = 0

for all functions h(·). For random vectors, the same property holds in the following form

E
[
h(Y )T (X − E[X | Y ])

]
= 0,

where X,Y ∈ Rn are RVecs.

Proposition 2. Let X,Y be such that [X Y ]T is a Gaussian RVec. Then

E [X | Y = y] = A(Y − µy) + µx,

where A solves ACY = CXY .
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Proof. We show that the proposed solution satisfies the orthogonality principle. For simplicity, assume
µX = 0 and µY = 0. Now observe that the vector[

X −AY
Y

]
=

[
I −A
0 I

] [
X
Y

]
is Gaussian, since it is a linear transformation of the Gaussian vector [X Y ]T . Next, let’s look at the
correlation between the top and bottom entries.

E
[
(X −AY )Y T

]
= E

[
XY T

]
−AE

[
Y Y T

]
= CXY −ACY
= CXY − CXY = 0,

where the third line follows since A solves ACY = CXY . Hence (X − AY ) and Y are uncorrelated and
therefore independent. Therefore, for any function h(·)

E
[
h(Y )T (X −AY )

]
= E [h(Y )]

T E [X −AY ]

= E [h(Y )]
T

0 = 0,

which completes the proof.

In general, in the above case we have that

X | Y = y ∼ N
(
E[X | Y = y], CX|Y

)
where

CX|Y = CX −ACY X
and A solves ACY = CXY . This fact is utilized when computing the posterior distribution on predictions
when performing Gaussian process regression (a popular tool in machine learning).

http://www.gaussianprocess.org/gpml/
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