Lecture 11
Random Vectors and Matrices
Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 6.1.1, 6.1.5; Gubner: 8.1-8.3
So far in this course, we have largely focused on collections of 1-3 RVs. When we have more than two but finitely many RVs, we collect them into vectors, which we call random vectors (RVecs). Before discussion properties of RVecs, we will first go through a brief review of linear algebra.

## 1 Matrix Operations

We write a matrix $A \in \mathbb{R}^{m \times n}$ as

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] .
$$

Definition 1. The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is the $n \times m$ matrix $A^{T} \in \mathbb{R}^{n \times m}$ whose $(i, j)$ th entry is the $(j, i)$ th entry of $A$.

Example 1. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 3 \\
1 & 2
\end{array}\right] .
$$

Then

$$
A^{T}=\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 3 & 1
\end{array}\right] .
$$

Definition 2. We say that $A$ is symmetric if $A=A^{T}$.
Some properties of the transpose operation are as follows.

1. $\left(A^{T}\right)^{T}=A$
2. $(A+B)^{T}=A^{T}+B^{T}$
3. $(A B)^{T}=B^{T} A^{T}$ if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$ (otherwise $B^{T} A^{T}$ is not a valid operation)

### 1.1 Vector-Vector Multiplication

By convention, we assume any vector $x \in \mathbb{R}^{n}$ is a column vectors, i.e.,

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

We are interested in several multiplication operations between matrices and vectors.

Definition 3. The dot product or inner product between two vectors $x, y \in \mathbb{R}^{n}$ is

$$
\langle x, y\rangle=x^{T} y=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i}
$$

Definition 4. The outer product between two vectors $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$ is

$$
x y^{T}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \ldots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \ldots & x_{2} y_{n} \\
\vdots & & & \\
x_{m} y_{1} & x_{m} y_{2} & \ldots & x_{m} y_{n}
\end{array}\right]
$$

Note that the inner product $x^{T} y$ is a scalar, while the outer product $x y^{T}$ is a matrix of size $m \times n$.

### 1.2 Matrix-Vector Multiplication

We sometimes make use of Matlab notation when referring to elements of matrices. In this case, we use $A_{:, j}$ or $A_{: j}$ to denote the $j$ th column of $A$ and $A_{j,: ~ o r ~} A_{j}$ : to denote the $j$ th row of $A$.

Let $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$. We can think of matrix-vector multiplication in two ways. In the first, we view each element of the product $A x$ as an inner product between the corresponding row of $A$ and the vector $x$

$$
A x=\left[\begin{array}{c}
A_{1,:} x \\
A_{2,:} \\
\vdots \\
A_{m,:} x
\end{array}\right]
$$

Alternatively, we can consider the product $A x$ as a sum of scaled columns of $A$

$$
A x=A_{:, 1} x_{1}+A_{:, 2} x_{2}+\cdots+A_{:, n} x_{n}
$$

Deciding which view is most useful is a skill that is acquired over time, and I encourage you to begin by always writing both views when working on a problem.

### 1.3 Matrix-Matrix Multiplication

The standard definition of matrix-matrix multiplication defines the $(i, j)$ th element of the product $A B$ as

$$
(A B)_{i, j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. This is not an intuitive definition, so we instead consider two alternative views.
View 1: Inner product/Gram matrix. In this view, we think of $A$ as a collection of row vectors and $B$ as a collection of column vectors. Then $A B$ is the matrix of inner products between the rows of $A$ and the columns of $B$

$$
A B=\left[\begin{array}{c}
A_{1,:} \\
A_{2,:} \\
\vdots \\
A_{m,:}
\end{array}\right]\left[\begin{array}{llll}
B_{:, 1} & B_{:, 2} & \ldots & B_{:, n}
\end{array}\right]=\left[\begin{array}{ccc}
A_{1,:} B_{:, 1} & \ldots & A_{1,:} B_{:, n} \\
\vdots & & \\
A_{m,:} B_{:, 1} & \ldots & A_{m,:} B_{:, n}
\end{array}\right]
$$

When we take $B=A$, the matrix of inner products is called the Gram matrix.

View 2: Outer product/sample covariance matrix. In the second view, we think of $A$ in terms of its columns and $B$ in terms of its rows. In this case, the product $A B$ is a sum of outer products

$$
A B=\left[\begin{array}{llll}
A_{:, 1} & A_{:, 2} & \ldots & A_{:, k}
\end{array}\right]\left[\begin{array}{c}
B_{1,:} \\
B_{2,:} \\
\vdots \\
B_{k,:}
\end{array}\right]=\sum_{i=1}^{k} A_{:, i} B_{i,:}
$$

We will see later that this relates to the sample covariance matrix of random vectors.

### 1.4 More Matrix Properties

Definition 5. The trace of a square matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal elements

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Some facts and properties of the trace are below.

1. The trace is linear, i.e., $\operatorname{tr}(\alpha A+\beta B)=\alpha \operatorname{tr}(A)+\beta \operatorname{tr}(B)$ for scalars $\alpha, \beta$.
2. The trace is invariant to cyclic permutations but not all permutations, i.e.,

$$
\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A) \neq \operatorname{tr}(B A C)
$$

3. $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$
4. The trace of a scalar is simply the scalar itself.

Definition 6. A square matrix $A \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that $A A^{-1}=A^{-1} A=I$, where $I$ is the $n \times n$ identity matrix.

Definition 7. A square, symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite (PSD) if

$$
x^{T} A x \geq 0 \forall x \in \mathbb{R}^{n}
$$

and is positive definite (PD) if

$$
x^{T} A x>0 \forall x \in \mathbb{R}^{n}, x \neq 0
$$

Fact 1. A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $A$ is PD .
We will sometimes be interested in the eigenvalues/eigenvectors of a matrix. These have a nice opaque definition that you probably learned poorly once. We're more interested in the eigenvalue decomposition, which exists under certain conditions.

Theorem 1 (Spectral Theorem). If $A \in \mathbb{R}^{n \times n}$ is symmetric, then the following hold.

- The eigenvalues of $A$ are all real.
- The eigenvectors of $A$ form an orthonormal basis for $\mathbb{R}^{n}$, i.e., the matrix $V=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ is such that $V^{T} V=V V^{T}=I$.
- $A$ admits an eigenvalue decomposition

$$
A=V \Lambda V^{T}
$$

where $\Lambda$ is the diagonal matrix of the eigenvalues of $A$.

Moreover, if $A$ is PSD, then the eigenvalues of $A$ are also non-negative.
Definition 8. The Euclidean or 2-norm of a vector $x \in \mathbb{R}^{n}$ is defined as

$$
\|x\|_{2}=\sqrt{x^{T} x}=\sqrt{\operatorname{tr}\left(x x^{T}\right)}
$$

Note that the norm is a notion of length, so it is non-negative.
Definition 9. The Cauchy-Schwarz inequality for vectors states that

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

while for RVs (which form a vector space), we saw previously that

$$
|\mathbb{E}[U V]| \leq \sqrt{\mathbb{E}\left[U^{2}\right] \mathbb{E}\left[V^{2}\right]}
$$

The RV version of this inequality follows from the first, since the inner product in the vector space of RVs is $\langle U, V\rangle=\mathbb{E}[U V]$.

## 2 Random Vectors and Matrices

Definition 10. A vector/matrix whose entries are RVs is called a random vector/random matrix.
Definition 11. The expectation of a $R V e c \quad X \in \mathbb{R}^{n}$, also known as the mean vector, is

$$
\mathbb{E}[X]=\left[\begin{array}{c}
\mathbb{E}\left[X_{1}\right] \\
\mathbb{E}\left[X_{2}\right] \\
\vdots \\
\mathbb{E}\left[X_{n}\right]
\end{array}\right]
$$

The expectation of a random matrix is similarly defined.
Now that we have random variables, vectors, and matrices, you need to be careful about the size of $X$. I will not use special notation to indicate vectors or matrices.
Fact 2. Let $X \in \mathbb{R}^{n \times m}$ be a random matrix, $A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{m \times q}$, and $G \in \mathbb{R}^{p \times q}$ be fixed. Then

$$
\mathbb{E}[A X B+G]=A \mathbb{E}[X] B+G
$$

Definition 12. The correlation matrix of a RVec $X \in \mathbb{R}^{n}$ is

$$
R_{X}=\mathbb{E}\left[X X^{T}\right]=\mathbb{E}\left[\begin{array}{ccc}
X_{1}^{2} & \ldots & X_{1} X_{N} \\
\vdots & & \\
X_{N} X_{1} & \cdots & X_{n}^{2}
\end{array}\right]
$$

Fact 3. Any correlation matrix $R$ is symmetric and PSD.
Proof. Symmetry is obvious from the definition (try proving that $X X^{T}$ is symmetric yourself). Let $a \in \mathbb{R}^{n}$ be fixed but arbitrary. Then

$$
\begin{aligned}
a^{T} R_{X} a & =a^{T} \mathbb{E}\left[X X^{T}\right] a \\
& =\mathbb{E}\left[a^{T} X X^{T} a\right] \\
& =\mathbb{E}\left[\left\|a^{T} X\right\|^{2}\right] \geq 0
\end{aligned}
$$

where the last line follows since norms are non-negative.

Definition 13. The covariance matrix of a $R V e c \quad X \in \mathbb{R}^{n}$ is

$$
\begin{aligned}
C_{X} & =\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{T}\right] \\
& =\mathbb{E}\left[X X^{T}\right]-(\mathbb{E}[X])(\mathbb{E}[X])^{T}
\end{aligned}
$$

Definition 14. The cross-correlation matrix of a RVec $X \in \mathbb{R}^{n}$ is

$$
R_{X Y}=\mathbb{E}\left[X Y^{T}\right]
$$

and the cross-covariance matrix is

$$
C_{X Y}=\mathbb{E}\left[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])^{T}\right]
$$

While $R_{X}$ is always PSD, we note that $R_{X Y}$ may not be. In particular, $X$ and $Y$ may have different sizes, making $R_{X Y}$ not a square matrix. Looking back at the definition, we see that positive semidefiniteness is only a property of square, symmetric matrices.

### 2.1 Decorrelation of Random Vectors

Let $X \in \mathbb{R}^{n}$ have $\mathbb{E}[X]=0$ and covariance $C_{X}$. We can "decorrelate" the elements of $X$ by making their covariances zero, i.e., we want to find some $Y=f(X)$ such that

$$
\mathbb{E}\left[Y_{i}^{2}\right]=\sigma_{i}^{2} \text { and } \mathbb{E}\left[Y_{i} Y_{j}\right]=0 \forall i, j
$$

To find such an $f$, note that $C_{X}$ is PSD (same proof as for $R_{X}$ ), so we can write

$$
C_{X}=V \Lambda V^{T} \Longleftrightarrow \Lambda=V^{T} C_{X} V
$$

Hence, taking $Y=V^{T} X$ gives

$$
\begin{aligned}
\mathbb{E}\left[Y Y^{T}\right] & =\mathbb{E}\left[\left(V^{T} X\right)\left(V^{T} X\right)^{T}\right] \\
& =\mathbb{E}\left[V^{T} X X^{T} V\right] \\
& =V^{T} \mathbb{E}\left[X X^{T}\right] V \\
& =V^{T} C_{X} V=\Lambda
\end{aligned}
$$

which is a diagonal matrix as desired.

