
EE 520: Random Processes Fall 2020

Lecture 11
Random Vectors and Matrices

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 6.1.1, 6.1.5; Gubner: 8.1 - 8.3
So far in this course, we have largely focused on collections of 1-3 RVs. When we have more than two but

finitely many RVs, we collect them into vectors, which we call random vectors (RVecs). Before discussion
properties of RVecs, we will first go through a brief review of linear algebra.

1 Matrix Operations

We write a matrix A ∈ Rm×n as

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

am1 am2 . . . amn

 .
Definition 1. The transpose of a matrix A ∈ Rm×n is the n×m matrix AT ∈ Rn×m whose (i, j)th entry
is the (j, i)th entry of A.

Example 1. Let

A =

1 0
2 3
1 2

 .
Then

AT =

[
1 2 1
0 3 1

]
.

Definition 2. We say that A is symmetric if A = AT .

Some properties of the transpose operation are as follows.

1.
(
AT
)T

= A

2. (A+B)T = AT +BT

3. (AB)T = BTAT if A ∈ Rm×n and B ∈ Rn×m (otherwise BTAT is not a valid operation)

1.1 Vector-Vector Multiplication

By convention, we assume any vector x ∈ Rn is a column vectors, i.e.,

x =


x1
x2
...
xn

 .
We are interested in several multiplication operations between matrices and vectors.
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Definition 3. The dot product or inner product between two vectors x, y ∈ Rn is

〈x, y〉 = xT y =
[
x1 x2 . . . xn

]

y1
y2
...
yn

 =

n∑
i=1

xiyi.

Definition 4. The outer product between two vectors x ∈ Rm and y ∈ Rn is

xyT =


x1
x2
...
xm

 [y1 y2 . . . yn
]

=


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
xmy1 xmy2 . . . xmyn

 .
Note that the inner product xT y is a scalar, while the outer product xyT is a matrix of size m× n.

1.2 Matrix-Vector Multiplication

We sometimes make use of Matlab notation when referring to elements of matrices. In this case, we use A:,j

or A:j to denote the jth column of A and Aj,: or Aj: to denote the jth row of A.
Let A ∈ Rm×n and x ∈ Rn. We can think of matrix-vector multiplication in two ways. In the first, we

view each element of the product Ax as an inner product between the corresponding row of A and the vector
x

Ax =


A1,:x
A2,:x

...
Am,:x


Alternatively, we can consider the product Ax as a sum of scaled columns of A

Ax = A:,1x1 +A:,2x2 + · · ·+A:,nxn.

Deciding which view is most useful is a skill that is acquired over time, and I encourage you to begin by
always writing both views when working on a problem.

1.3 Matrix-Matrix Multiplication

The standard definition of matrix-matrix multiplication defines the (i, j)th element of the product AB as

(AB)i,j =

n∑
k=1

AikBkj ,

where A ∈ Rm×n and B ∈ Rn×p. This is not an intuitive definition, so we instead consider two alternative
views.
View 1: Inner product/Gram matrix. In this view, we think of A as a collection of row vectors and B as
a collection of column vectors. Then AB is the matrix of inner products between the rows of A and the
columns of B

AB =


A1,:

A2,:

...
Am,:

 [B:,1 B:,2 . . . B:,n

]
=

A1,:B:,1 . . . A1,:B:,n

...
Am,:B:,1 . . . Am,:B:,n

 .
When we take B = A, the matrix of inner products is called the Gram matrix.
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View 2: Outer product/sample covariance matrix. In the second view, we think of A in terms of its columns
and B in terms of its rows. In this case, the product AB is a sum of outer products

AB =
[
A:,1 A:,2 . . . A:,k

]

B1,:

B2,:

...
Bk,:

 =

k∑
i=1

A:,iBi,:.

We will see later that this relates to the sample covariance matrix of random vectors.

1.4 More Matrix Properties

Definition 5. The trace of a square matrix A ∈ Rn×n is the sum of its diagonal elements

tr(A) =
n∑

i=1

aii.

Some facts and properties of the trace are below.

1. The trace is linear, i.e., tr (αA+ βB) = αtr(A) + βtr(B) for scalars α, β.

2. The trace is invariant to cyclic permutations but not all permutations, i.e.,

tr(ABC) = tr(CAB) = tr(BCA) 6= tr(BAC).

3. tr(A) = tr(AT )

4. The trace of a scalar is simply the scalar itself.

Definition 6. A square matrix A ∈ Rn×n is invertible if there exists a matrix A−1 ∈ Rn×n such that
AA−1 = A−1A = I, where I is the n× n identity matrix.

Definition 7. A square, symmetric matrix A ∈ Rn×n is positive semidefinite (PSD) if

xTAx ≥ 0 ∀x ∈ Rn

and is positive definite (PD) if
xTAx > 0 ∀x ∈ Rn, x 6= 0.

Fact 1. A matrix A ∈ Rn×n is invertible if and only if A is PD.

We will sometimes be interested in the eigenvalues/eigenvectors of a matrix. These have a nice opaque
definition that you probably learned poorly once. We’re more interested in the eigenvalue decomposition,
which exists under certain conditions.

Theorem 1 (Spectral Theorem). If A ∈ Rn×n is symmetric, then the following hold.

• The eigenvalues of A are all real.

• The eigenvectors of A form an orthonormal basis for Rn, i.e., the matrix V =
[
v1 v2 . . . vn

]
is

such that V TV = V V T = I.

• A admits an eigenvalue decomposition
A = V ΛV T ,

where Λ is the diagonal matrix of the eigenvalues of A.
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Moreover, if A is PSD, then the eigenvalues of A are also non-negative.

Definition 8. The Euclidean or 2-norm of a vector x ∈ Rn is defined as

‖x‖2 =
√
xTx =

√
tr(xxT ).

Note that the norm is a notion of length, so it is non-negative.

Definition 9. The Cauchy-Schwarz inequality for vectors states that

|〈x, y〉| ≤ ‖x‖ ‖y‖ ,

while for RVs (which form a vector space), we saw previously that

|E [UV ]| ≤
√
E [U2]E [V 2].

The RV version of this inequality follows from the first, since the inner product in the vector space of RVs
is 〈U, V 〉 = E[UV ].

2 Random Vectors and Matrices

Definition 10. A vector/matrix whose entries are RVs is called a random vector/random matrix.

Definition 11. The expectation of a RVec X ∈ Rn, also known as the mean vector, is

E[X] =


E [X1]
E [X2]

...
E [Xn]

 .
The expectation of a random matrix is similarly defined.

Now that we have random variables, vectors, and matrices, you need to be careful about the size of X.
I will not use special notation to indicate vectors or matrices.

Fact 2. Let X ∈ Rn×m be a random matrix, A ∈ Rp×n, B ∈ Rm×q, and G ∈ Rp×q be fixed. Then

E [AXB +G] = AE[X]B +G.

Definition 12. The correlation matrix of a RVec X ∈ Rn is

RX = E
[
XXT

]
= E

 X2
1 . . . X1XN

...
XNX1 . . . X2

n

 .
Fact 3. Any correlation matrix R is symmetric and PSD.

Proof. Symmetry is obvious from the definition (try proving that XXT is symmetric yourself). Let a ∈ Rn

be fixed but arbitrary. Then

aTRXa = aTE
[
XXT

]
a

= E
[
aTXXTa

]
= E

[∥∥aTX∥∥2] ≥ 0,

where the last line follows since norms are non-negative.
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Definition 13. The covariance matrix of a RVec X ∈ Rn is

CX = E
[
(X − E[X]) (X − E[X])

T
]

= E
[
XXT

]
− (E[X]) (E[X])

T
.

Definition 14. The cross-correlation matrix of a RVec X ∈ Rn is

RXY = E
[
XY T

]
and the cross-covariance matrix is

CXY = E
[
(X − E[X]) (Y − E[Y ])

T
]
.

While RX is always PSD, we note that RXY may not be. In particular, X and Y may have different
sizes, making RXY not a square matrix. Looking back at the definition, we see that positive semidefiniteness
is only a property of square, symmetric matrices.

2.1 Decorrelation of Random Vectors

Let X ∈ Rn have E[X] = 0 and covariance CX . We can “decorrelate” the elements of X by making their
covariances zero, i.e., we want to find some Y = f(X) such that

E
[
Y 2
i

]
= σ2

i and E [YiYj ] = 0 ∀i, j.

To find such an f , note that CX is PSD (same proof as for RX), so we can write

CX = V ΛV T ⇐⇒ Λ = V TCXV.

Hence, taking Y = V TX gives

E
[
Y Y T

]
= E

[(
V TX

) (
V TX

)T ]
= E

[
V TXXTV

]
= V TE

[
XXT

]
V

= V TCXV = Λ,

which is a diagonal matrix as desired.
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