EE 520: Random Processes Fall 2020

Lecture 10
Estimation of Random Variables

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 9.1.0 - 9.1.6, 8.2.2; Gubner: 8.4 - 8.6

In Lecture 5, we saw how the likelihood and posterior distributions can be used to decide between two
hypotheses, resulting in the maximum likelihood (ML) and maximum a posteriori (MAP) detection rules.
In the machine learning world, deciding between a finite number of hypotheses is known as classification.
What if we instead wish to estimate an actual parameter (called regression in the machine learning world)
instead of deciding among a few possible options?

Example 1. The canonical example of estimation is the case where we observe a noisy random variable
Y, = X + Z;, where X is a parameter of interest, and Z; is zero-mean noise.

1 Minimum Mean-Squared Error (MMSE) Estimation

One approach to estimation is to minimize the mean-squared error (MSE) between the estimate and the
true value, i.e., to minimize

MSE(X) = E {(X - X) 1 .

First, what is random in the above expression? Since we are estimating the RV X, we know that piece
is random. Note also that if our observations are at all useful, X will be a function of the Y;’s, so the
expectation above is a joint expectation.

1.1 MMSE Estimation With No Observations

Suppose we wish to estimate X without obtaining any observations Y;. What is the best choice? In this
case, the expectation when computing the MSE is only over X, so we can compute

E[(X—Xﬂ

E [(X — E[X] +E[X] - X)Q]

A 2 A
E {(X - ]E[X}) } +E [(E[X] - X)Q} +2E [(X - E[X]) (E[X] — X)] .
Note that X and E[X] are both deterministic, so the last term above becomes
2 (X - E[X]) E[E[X] - X] = 2 (X - E[X]) (E[X] — E[X]) = 0.
Therefore, we see the following extremely important breakdown of MSE

MSE(X) = (X - IE[X])2 +E {(X - E[X]ﬂ .

bias squared variance

In other words, the MSE can be decomposed into the sum of squared bias and variance. In machine learning,
we spend a great deal of time developing estimators that balance these two terms. In estimation theory, we
have no control over the variance, so the X that minimizes the above is

X =E[X]. (1)
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1.2 MMSE Estimation With Observations

Now suppose we observe the RV Y and want to incorporate this information. To do this, we first establish
a broader fact known as the orthogonality principle.

Theorem 1 (Orthogonality Principle). Let X = g(Y) be an estimator of X. If
ERY) (X —g(Y))] =0

for all functions h, then
E[(X - g(V)’] <E[(X - (V)]

ie., g(Y) is the MMSE estimator.
Proof. We again use the “add and subtract” trick to rewrite the MSE
Exy [(X=h(V)’] = Exy [(X—g(¥)+g(¥) = h(V))’]
= Exy |[(X —g(¥)’] +Exy [(9(Y) = h(Y))’] = 2Exy [(X = g(1)) (h(Y) = g(¥V))].

Since h(Y') — g(Y) is a function of Y, the final term above is zero by assumption of the theorem. This gives

Exy [(X =h()7] = Exy [(X = g(V)’] + Exy [(9(¥) — h(¥))’]

Exy [(X - Q(Y))z}

Y

as desired, since the square of anything is nonnegative. O

To gain some intuition for this theorem, we can think of X and Y as vectors in R?. In this case, we're
trying to find the closest vector to X that lies in the direction of Y. In this case, we want to “project” X
on to the span of Y, so the residual X — g(Y") should be orthogonal to Y and any function of Y.

With the orthogonality principle in mind, we now present a function g(Y’) that satisfies the orthogonality
principle and is therefore the MMSE estimator.

Theorem 2. Let g(Y) =E[X | Y]. Then for all functions h,
E[n(Y) (X —g(Y))] = 0.
Proof. Using the law of total probability,
Exy [M(Y) (X —g(Y))] = Ey [Exy [b(Y)(X —g(Y))]

Exjy [h(Y) (X = g(Y)] fv (y)dy

hMY) (Exy [X | Y =yl —g(v)) fy(y)dy

——

= hY) (Exy [X | Y =y] —Expy [X | Y =y]) fy(y)dy

I
)
T

Combining the above with the orthogonality principle, we see that

Xyumse=E[X | Y]. (2)
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1.3 Linear MMSE Estimation

Sometimes finding E[X | Y] is too difficult, since it may require knowing the joint distribution of X and Y,
which I've mentioned can be impractical. One way to overcome this difficulty is to limit ourselves to simple
estimators. One such restriction is to require that X be a linear (actually affine) function of Y, i.e.,

X=aY +0

for some constants a,b € R. Let ux = E[X] and py = E[Y]. To find a linear estimator, we plug this form
of X into the MSE equation to see that

E{(X—Xﬂ = E[(X - (v +1))?]
E[(X =t = aY = py) + (e — apy b))’

E[(X—MX—G(Y—W)ﬂ + (pta — apy =) +2 (e — apy — D) E[X — px — a(Y — py)].

Note that
E[X —px —a(Y —py)] = E[X — px] — aE[Y — py] =0,

SO

E [(X—X)Q] =E {(X—MX —a(Y — py)?| + (e — apy — b)2.

Our goal now is to minimize the above over a and b. We begin by minimizing b, which we can do by making
the second term zero, resulting in

b=pux —apy.
To find a, let X = X — pux and Y =Y — py. We wish to minimize (over a)
E[(X -a¥)"] =E[X*+ V2 - 2XY].
We can ignore the first term since it does not depend on a, so we wish to solve
min a’E [Y?] — 24E [XY].
Differentiating and setting to zero, we see that

. E[XY] ~ cov(X,Y)
E [vV?]  var(Y)

Putting this all together gives the linear MMSE estimator

cov(X,Y)

var(Y) (Y - N’Y) + mx. (3)

XLMMSE =

2 Minimum Absolute Error (MAE) Estimation

There is no reason to be restricted to the MSE as a cost function for our estimator. Another obvious function
to consider is the absolute error . .
AE(X) _ ‘X—X‘.

As you showed on Homework 3, the optimal MAE estimator is the median of the resulting distribution

Xumap = megian fxiy (] y). (4)
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3 Maximum Likelihood (ML) Estimation

The ML estimator is probably the most used and has some nice properties that are discussed in future
courses. It is defined as

Xyrr = arg max frix(y | z). (5)

4 Maximum a Posteriori (MAP) Estimation

Just as with detection, we can define the MAP estimator, which is the same as ML if we have uniform priors
on X.

Xyrap = arg max Ixiy(z|y) = arg;naxfyp((y | z) fx (). (6)
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