EE 520: Random Processes

Fall 2020

Lecture 10 Estimation of Random Variables

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 9.1.0 - 9.1.6, 8.2.2; Gubner: 8.4 - 8.6

In Lecture 5, we saw how the likelihood and posterior distributions can be used to decide between two hypotheses, resulting in the maximum likelihood (ML) and maximum a posteriori (MAP) detection rules. In the machine learning world, deciding between a finite number of hypotheses is known as *classification*. What if we instead wish to estimate an actual parameter (called *regression* in the machine learning world) instead of deciding among a few possible options?

Example 1. The canonical example of estimation is the case where we observe a noisy random variable $Y_i = X + Z_i$, where X is a parameter of interest, and Z_i is zero-mean noise.

1 Minimum Mean-Squared Error (MMSE) Estimation

One approach to estimation is to minimize the mean-squared error (MSE) between the estimate and the true value, i.e., to minimize

$$\mathrm{MSE}(\hat{X}) = \mathbb{E}\left[\left(\hat{X} - X\right)^2\right].$$

First, what is random in the above expression? Since we are estimating the RV X, we know that piece is random. Note also that if our observations are at all useful, \hat{X} will be a function of the Y_i 's, so the expectation above is a joint expectation.

1.1 MMSE Estimation With No Observations

Suppose we wish to estimate X without obtaining any observations Y_i . What is the best choice? In this case, the expectation when computing the MSE is only over X, so we can compute

$$\mathbb{E}\left[\left(\hat{X} - X\right)^{2}\right] = \mathbb{E}\left[\left(\hat{X} - \mathbb{E}[X] + \mathbb{E}[X] - X\right)^{2}\right]$$
$$= \mathbb{E}\left[\left(\hat{X} - \mathbb{E}[X]\right)^{2}\right] + \mathbb{E}\left[\left(\mathbb{E}[X] - X\right)^{2}\right] + 2\mathbb{E}\left[\left(\hat{X} - \mathbb{E}[X]\right)\left(\mathbb{E}[X] - X\right)\right].$$

Note that \hat{X} and $\mathbb{E}[X]$ are both deterministic, so the last term above becomes

$$2\left(\hat{X} - \mathbb{E}[X]\right) \mathbb{E}\left[\mathbb{E}[X] - X\right] = 2\left(\hat{X} - \mathbb{E}[X]\right)\left(\mathbb{E}[X] - \mathbb{E}[X]\right) = 0.$$

Therefore, we see the following extremely important breakdown of MSE

$$MSE(\hat{X}) = \underbrace{\left(\hat{X} - \mathbb{E}[X]\right)^2}_{\text{bias squared}} + \underbrace{\mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right]}_{\text{variance}}.$$

In other words, the MSE can be decomposed into the sum of squared bias and variance. In machine learning, we spend a great deal of time developing estimators that balance these two terms. In estimation theory, we have no control over the variance, so the \hat{X} that minimizes the above is

$$\hat{X} = \mathbb{E}[X]. \tag{1}$$

1.2 MMSE Estimation With Observations

Now suppose we observe the RV Y and want to incorporate this information. To do this, we first establish a broader fact known as the *orthogonality principle*.

Theorem 1 (Orthogonality Principle). Let $\hat{X} = g(Y)$ be an estimator of X. If

$$\mathbb{E}\left[h(Y)\left(X-g(Y)\right)\right]=0$$

for all functions h, then

$$\mathbb{E}\left[\left(X - g(Y)\right)^2\right] \le \mathbb{E}\left[\left(X - h(Y)\right)^2\right],$$

i.e., g(Y) is the MMSE estimator.

Proof. We again use the "add and subtract" trick to rewrite the MSE

$$\mathbb{E}_{XY} \left[(X - h(Y))^2 \right] = \mathbb{E}_{XY} \left[(X - g(Y) + g(Y) - h(Y))^2 \right] \\ = \mathbb{E}_{XY} \left[(X - g(Y))^2 \right] + \mathbb{E}_{XY} \left[(g(Y) - h(Y))^2 \right] - 2\mathbb{E}_{XY} \left[(X - g(Y)) \left(h(Y) - g(Y) \right) \right].$$

Since h(Y) - g(Y) is a function of Y, the final term above is zero by assumption of the theorem. This gives

$$\mathbb{E}_{XY}\left[\left(X-h(Y)\right)^2\right] = \mathbb{E}_{XY}\left[\left(X-g(Y)\right)^2\right] + \mathbb{E}_{XY}\left[\left(g(Y)-h(Y)\right)^2\right]$$
$$\geq \mathbb{E}_{XY}\left[\left(X-g(Y)\right)^2\right]$$

as desired, since the square of anything is nonnegative.

To gain some intuition for this theorem, we can think of X and Y as vectors in \mathbb{R}^2 . In this case, we're trying to find the closest vector to X that lies in the direction of Y. In this case, we want to "project" X on to the span of Y, so the residual X - g(Y) should be orthogonal to Y and any function of Y.

With the orthogonality principle in mind, we now present a function g(Y) that satisfies the orthogonality principle and is therefore the MMSE estimator.

Theorem 2. Let $g(Y) = \mathbb{E}[X \mid Y]$. Then for all functions h,

$$\mathbb{E}\left[h(Y)\left(X - g(Y)\right)\right] = 0.$$

Proof. Using the law of total probability,

$$\begin{split} \mathbb{E}_{XY} \left[h(Y) \left(X - g(Y) \right) \right] &= \mathbb{E}_{Y} \left[\mathbb{E}_{X|Y} \left[h(Y) \left(X - g(Y) \right) \right] \right] \\ &= \int_{Y} \mathbb{E}_{X|Y} \left[h(Y) \left(X - g(Y) \right) \right] f_{Y}(y) dy \\ &= \int_{Y} h(Y) \left(\mathbb{E}_{X|Y} \left[X \mid Y = y \right] - g(y) \right) f_{Y}(y) dy \\ &= \int_{Y} h(Y) \left(\mathbb{E}_{X|Y} \left[X \mid Y = y \right] - \mathbb{E}_{X|Y} \left[X \mid Y = y \right] \right) f_{Y}(y) dy \\ &= 0. \end{split}$$

Combining the above with the orthogonality principle, we see that

$$\hat{X}_{MMSE} = \mathbb{E}\left[X \mid Y\right]. \tag{2}$$

1.3 Linear MMSE Estimation

Sometimes finding $\mathbb{E}[X \mid Y]$ is too difficult, since it may require knowing the joint distribution of X and Y, which I've mentioned can be impractical. One way to overcome this difficulty is to limit ourselves to simple estimators. One such restriction is to require that \hat{X} be a linear (actually affine) function of Y, i.e.,

$$\hat{X} = aY + b$$

for some constants $a, b \in \mathbb{R}$. Let $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$. To find a linear estimator, we plug this form of \hat{X} into the MSE equation to see that

$$\mathbb{E}\left[\left(\hat{X} - X\right)^{2}\right] = \mathbb{E}\left[\left(X - (aY + b)\right)^{2}\right]$$

= $\mathbb{E}\left[\left(X - \mu_{x} - a(Y - \mu_{Y}) + (\mu_{x} - a\mu_{Y} - b)\right)^{2}\right]$
= $\mathbb{E}\left[\left(X - \mu_{X} - a(Y - \mu_{Y})\right)^{2}\right] + (\mu_{x} - a\mu_{Y} - b)^{2} + 2(\mu_{x} - a\mu_{Y} - b)\mathbb{E}\left[X - \mu_{X} - a(Y - \mu_{Y})\right]$

Note that

$$\mathbb{E}\left[X - \mu_X - a(Y - \mu_Y)\right] = \mathbb{E}\left[X - \mu_X\right] - a\mathbb{E}\left[Y - \mu_Y\right] = 0,$$

 \mathbf{SO}

$$\mathbb{E}\left[\left(\hat{X}-X\right)^2\right] = \mathbb{E}\left[\left(X-\mu_X-a(Y-\mu_Y)\right)^2\right] + (\mu_x-a\mu_Y-b)^2$$

Our goal now is to minimize the above over a and b. We begin by minimizing b, which we can do by making the second term zero, resulting in

$$b = \mu_X - a\mu_Y.$$

To find a, let $\overline{X} = X - \mu_X$ and $\overline{Y} = Y - \mu_Y$. We wish to minimize (over a)

$$\mathbb{E}\left[\left(\bar{X}-a\bar{Y}\right)^2\right] = \mathbb{E}\left[\bar{X}^2 + a^2\bar{Y}^2 - 2a\bar{X}\bar{Y}\right].$$

We can ignore the first term since it does not depend on a, so we wish to solve

$$\min_{a} a^{2} \mathbb{E}\left[\bar{Y}^{2}\right] - 2a \mathbb{E}\left[\bar{X}\bar{Y}\right].$$

Differentiating and setting to zero, we see that

$$a = \frac{\mathbb{E}\left[\bar{X}\bar{Y}\right]}{\mathbb{E}\left[\bar{Y}^2\right]} = \frac{\operatorname{cov}(X,Y)}{\operatorname{var}(Y)}$$

Putting this all together gives the linear MMSE estimator

$$\hat{X}_{LMMSE} = \frac{\operatorname{cov}(X,Y)}{\operatorname{var}(Y)} \left(Y - \mu_Y\right) + \mu_X.$$
(3)

2 Minimum Absolute Error (MAE) Estimation

There is no reason to be restricted to the MSE as a cost function for our estimator. Another obvious function to consider is the absolute error

$$\operatorname{AE}\left(\hat{X}\right) = \left|\hat{X} - X\right|.$$

As you showed on Homework 3, the optimal MAE estimator is the median of the resulting distribution

$$\hat{X}_{MAE} = \underset{x}{\operatorname{median}} f_{X|Y} \left(x \mid y \right). \tag{4}$$

3 Maximum Likelihood (ML) Estimation

The ML estimator is probably the most used and has some nice properties that are discussed in future courses. It is defined as

$$X_{ML} = \arg\max_{x} f_{Y|X}(y \mid x).$$
(5)

4 Maximum a Posteriori (MAP) Estimation

Just as with detection, we can define the MAP estimator, which is the same as ML if we have uniform priors on X.

$$\ddot{X}_{MAP} = \arg\max_{x} f_{X|Y}(x \mid y) = \arg\max_{x} f_{Y|X}(y \mid x) f_X(x).$$
(6)