
EE 520: Random Processes Fall 2021

Lecture 8
Bivariate Random Variables

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 5.1 - 5.3; Gubner: 7.1 - 7.5

1 Joint and Marginal Probabilities

We are often interested in functions of multiple RVs. For example, if X and Y are RVs, we may want to
know the distribution of min(X,Y ), XY , or X/Y . To compute such probabilities, we can use the joint CDF.

Definition 1. For two RVs X and Y , the joint cumulative distribution function (CDF) is

FXY (x, y) = P (X ≤ x, Y ≤ y) .

Note that the comma could be replaced with an intersection symbol, i.e., the above indicates the probability
that X ≤ x and Y ≤ y.

We are also interested in the probability that X and Y lie in some specified sets, i.e., that X ∈ B and
Y ∈ C.

Definition 2. The Cartesian product of two univariate sets B,C ⊂ R is

B × C = {(x, y) : x ∈ B, y ∈ C} .

Example 1. The set R × R is written R2 and is the two-dimensional Euclidean plane, which is what we
think of when we plot points in two dimensions.

Example 2. Let B = [1, 3] and C = [0, 4]. Then B × C is the set of two-dimensional points whose first
coordinate is between 1 and 3 and whose second coordinate is between 0 and 4, as depicted in blue in Fig. 1.
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Figure 1: B × C as defined in Example 2.
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For RVs, we use the shorthand notation

P (X ∈ B, Y ∈ C) = P ((X,Y ) ∈ B × C) ,

so the joint CDF is equivalently written as

FXY (x, y) = P ((X,Y ) ∈ (−∞, x]× (−∞, y]) .

Example 3. What is the probability that (X,Y ) belongs to the rectangle R = (a, b]× (c, d]? To solve this
problem, we define a few useful sets

A = (−∞, a]× (−∞, d] B = (−∞, b]× (−∞, c]
C = (a, b]× (−∞, c] D = (−∞, a]× (c, d].

If we draw a picture of each of these (do this yourself!), we see that

R ∪ (A ∪B) = (−∞, b]× (−∞, d].

Hence,
FXY (b, d) = P ((X,Y ) ∈ R) + P ((X,Y ) ∈ A ∪B) ,

where we have used the fact that R is disjoint from A ∪B. Now we can solve for P ((X,Y ) ∈ A ∪B) using
the inclusion-exclusion principle

P ((X,Y ) ∈ A ∪B) = P ((X,Y ) ∈ A) + P ((X,Y ) ∈ B)− P ((X,Y ) ∈ A ∩B)

= FXY (a, d) + FXY (b, c)− FXY (a, c).

Therefore
P ((X,Y ) ∈ R) = FXY (b, d)− FXY (a, d)− FXY (b, c) + FXY (a, c).

This equation is known as the rectangle formula.

Like with the PDF/PMF, we can also obtain the marginal CDFs from the joint CDF

FX(x) = lim
y→∞

FXY (x, y) FY (y) = lim
x→∞

FXY (x, y).

Recall that two RVs are independent if and only if

P ((X,Y ) ∈ B × C) = P (X ∈ B)P (Y ∈ C).

We may write this in terms of the CDF as well, yielding

FXY (x, y) = FX(x)FY (y).

2 Jointly-Continuous Random Variables

It turns out that not all pairs of continuous RVs have a joint PDF (though all have a joint CDF). However,
those that do have a joint PDF get a special name.

Definition 3. Two RVs X and Y are called jointly continuous with joint PDF fXY if

P ((X,Y ) ∈ A) =

∫ ∫
A

fXY (x, y)dxdy.

For jointly-continuous RVs X and Y , we have some additional useful facts:

1. ∂2

∂x∂yFXY (x, y) = ∂2

∂y∂xFXY (x, y) = fXY (x, y)

2.
∫∞
−∞ fXY (x, y)dy = fX(x)

3. fXY (x, y) = fX(x)fY (y) if and only if X and Y are independent.
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2.1 Conditional Probability and Expectation

When taking expectations, be sure to integrate over the joint density, i.e.,

E [g(X,Y )] =

∫ ∞
y=−∞

∫ ∞
x=−∞

g(x, y)fXY (x, y)dxdy.

Aside from this, all notions of conditional probability, including the Law of Total Probability and substitution
law, are the same as in the univariate case. Be sure to read all definitions and examples in the text.

2.2 Two-Dimensional Transformations

Given two jointly-continuous RVs X1 and X2, let

Y1 = g1 (X1, X2) Y2 = g2 (X1, X2) ,

where g1 and g2 are differentiable and invertible functions. Then we can compute P ((Y1, Y2) ∈ C) using a
formula we will now describe.

Definition 4. Let g : Rn → Rm. Then the Jacobian matrix (or Jacobian) is the matrix of all partial
derivatives, defined as

J =


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xn

...
∂gm
∂x1

∂gm
∂x2

. . . ∂gm
∂xn

 .
Example 4. Let g1(r, θ) = r cos θ and g2(r, θ) = r sin θ. Then g : R2 → R2 is the polar-Cartesian transfor-
mation

g(r, θ) =

[
r cos θ
r sin θ

]
and the Jacobian is

J =

[
∂
∂r r cos θ ∂

∂θ r cos θ
∂
∂r r sin θ ∂

∂θ r sin θ

]
.

We will be interested in the determinant of J , which is not easily defined in a single line. However, for a
matrix A ∈ R2×2, the determinant has a simple formula

det(A) = det

([
a11 a12
a21 a22

])
= a11a22 − a12a21.

Example 5. In the polar-Cartesian transformation example above, we have

det(J) = r cos2 θ + r sin2 θ = r
(
cos2 θ sin2 θ

)
= r.

Theorem 1. Let X1, X2 be jointly-continuous RVs and g1, g2 be differentiable and invertible. Define Y1 =
g1(X1, X2) and Y2 = g2(X1, X2). Inverting, let X1 = h1(Y1, Y2) and X2 = h2(Y1, Y2). Finally, let

J =

[
∂h1

∂y1
∂h1

∂y2
∂h2

∂y1
∂h2

∂y2

]
.

Then

P ((Y1, Y2) ∈ C) =

∫
C

fX1X2 (h1(y1, y2), h2(y1, y2)) |det(J)| dy1dy2,

and we have that
fY1Y2(y1, y2) = fX1X2 (h1(y1, y2), h2(y1, y2)) |det(J)| ,

where |det(J)| denotes the absolute value of the determinant of the Jacobian matrix J .
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As a comparison, we saw the univariate case in Lecture 7

fY (y) = fX(h(y))

∣∣∣∣ ddyh(y)

∣∣∣∣ ,
which matches the above.
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