
EE 520: Random Processes Fall 2021

Lecture 7
Transformations of Random Variables

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 4.3, 4.1.3; Gubner: 5.2 - 5.5

1 CDF of Discrete Random Variables

Recall that for continuous RVs, the CDF and PDF are related by

FX(x) =

∫ x

−∞
fX(t)dt fX(x) = F ′X(x).

For discrete RVs, these become

FX(x) =
∑
i:xi≤x

pX(xi) pX(xj) = FX(xj)− FX(xj−1).

Note that in the discrete case, fX(xj) is obtained by the finite difference approximation of the derivative.

Example 1. Consider a discrete RV X with PMF

pX(xj) =


p0 xj = 0

p1 xj = 1

p2 xj = 2.

This yields the CDF

FX(x) =


0 x < 0

p0 0 ≤ x < 1

p0 + p1 1 ≤ x < 2

1 x ≥ 2.

Notice that
pX(1) = FX(1)− FX(0) = p0 + p1 − p0 = p1.

2 Mixed Random Variables

RVs can also take on a combination of continuous and discrete distributions. These are called mixed RVs
and have density

fX(x) = f̃X(x) +

∞∑
i=−∞

pX(xi)δ(x− xi),

where δ(·) is the Dirac delta/impulse function. A common usage of a mixed RV is the case where we force
a RV to be strictly nonnegative, as in the following example.

Example 2. Consider passing a Gaussian RV through a diode, so that anything below zero is set to zero.
The resulting mixed distribution consists of

f̃X(x) =

{
1√
2π
e−x

2/2 x ≥ 0

0 otherwise
pX(xi) =

{
1
2 xi = 0

0 otherwise.
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In other words, we keep a Gaussian distribution for anything positive and account for the negative values
by placing a mass of 1/2 at xi = 0.

3 Functions of Random Variables

The CDF is a useful tool for handling functions/transformations of RVs. Suppose we have a RV X and
define Y = g(X). Then

P (Y ≤ y) = P (g(X) ≤ y)

= P (g(X) ∈ (−∞, y])

= P
(
X ∈ g−1((−∞, y])

)
,

where g−1(A) is the pre-image of A (i.e., the set of things that map to A under g), since g is not necessarily
invertible. Note that even if g is not invertible, we can still handle some simple non-invertible functions.

Example 3. Let Y = X2. Then for y ≥ 0,

P (Y ≤ y) = P (X2 ≤ y)

= P (−√y ≤ X ≤ √y)

=

∫ √y
−√y

fX(x)dx

= FX(
√
y)− FX(−√y).

Given the CDF, we can differentiate to find the PDF

fY (y) =

{
1

2
√
y

(
fX(
√
y) + fX(−√y)

)
y ≥ 0

0 y < 0.

There are two general methods for handling transformations of RVs. The above example is a case of a
“nice” transformation and stems from the following theorem.

Theorem 1. Let X ∼ fX be a continuous RV. Let g(·) be a strictly monotonic (increasing or decreasing),
differentiable function. Then Y = g(X) has PDF

fY (y) =

{∣∣∣ ddy g−1(y)
∣∣∣ fX (g−1(y)

)
if y = g(x) for some x

0 otherwise.

Example 4. Let X ≥ 0 be a RV and set Y = Xn. Note that Xn is monotonic for X ≥ 0. Then

g(x) = xn =⇒ g−1(y) = y1/n

and
d

dy
g−1(y) =

1

n
y(n−1)/n.

In the case of n = 2, this gives

fY (y) =
1

2
√
y
fX (
√
y)

as in Example 3.
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3.1 Generating arbitrary RVs from uniforms

When we restrict ourselves to invertible transformations, we can use the above idea to generate RVs with an
arbitrary distribution given only RVs from a uniform distribution. Let X ∼ Unif([0, 1]) and Y ∼ fY . Our
goal is to find g(·) such that Y = g(X). Note that

FY (y) = P (Y ≤ y)

= P (g(X) ≤ y)

= P (X ≤ g−1(Y ))

= FX(g−1(y))

= g−1(y),

where the last line follows since FX(x) = x for the uniform distribution on [0, 1]. Since X = g−1(Y ), setting
Y = F−1Y (X) will result in the desired distribution. As a sanity check, we can examine the CDF of Y

FY (y) = P
(
F−1Y (X) ≤ y

)
= P (X ≤ FY (y))

= FX (FY (y)) = FY (y),

where we use the fact that FY (y) ∈ [0, 1] by definition of the CDF.

3.2 Piecewise-monotone functions

While many functions of interest will not be monotone, it may be that if we break them into small enough
regions, they are monotone on each region. This approach is best illustrated through examples, but the
general outline is as follows.

1. Draw a picture of g(x) as a function of x.

2. Determine the “easy” regions where FY (y) = 0 and FY (y) = 1.

3. For each “interesting” region of y:

a Draw a horizontal line at y.

b Locate the values of x in terms of y.

c Solve for these values of x in terms of y.

d Use these values of x to find the set A such that x ∈ A implies g(x) ≤ y.

e We now have that P (Y ≤ y) = P (X ∈ A).

4. Differentiate FY to get fY .

Example 5. Let X ∼ Unif([−3, 1]) and Y = g(X), where

g(x) =


0 x < −2

x+ 2 −2 ≤ x < −1

x2 −1 ≤ x < 0√
x x ≥ 0.

Our goal is to find the CDF of Y . Following the instructions above, we first draw a picture, shown in
Fig. 1a. The first step is to take care of the “easy” parts.
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Figure 1: Plots associated with Example 5.
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Easy region 1: The first of these is the case of g(x) = y < 0, which never occurs, so we have

P (Y ≤ y) = 0 y < 0.

Easy region 2: The first of these is the case of g(x) = y ≥ 1, which is always true, so we have

P (Y ≤ y) = 1 y ≥ 1.

Interesting region 1: We now move on to the regions where something “interesting” happens. In this
example, there is only one of these, corresponding to the case where 0 ≤ y < 1. We fix an arbitrary y ∈ [0, 1)
and find all the locations where g(x) intersects the horizontal line at y, as depicted in Fig. 1b.

P (Y ≤ y) = 1 y ≥ 1.

Now we draw vertical lines at each location where the two lines intersect, as depicted in Fig. 1c. From the
figure, we see that we have g(x) ≤ y for x ≤ x1 and x2 ≤ x ≤ x3.

1. In the region of x1, we have g(x) = x+ 2, so solving gives x1 = y − 2.

2. In the region of x2, we have g(x) = x2, so solving gives x2 = −√y, where we have used the plot to
infer that x < 0.

3. In the region of x3, we have g(x) =
√
x, so solving gives x3 = y2.

Putting the above together, we get

P (Y ≤ y) = P
(
(X ≤ y − 2) ∪ (−√y ≤ x ≤ y2)

)
=

∫ y−2

−3

1

4
dx+

∫ y2

−√y

1

4
dx

=
1

4

(
y + 1 + y2 +

√
y
)
,

where the 1/4 comes from the fact that X is uniformly distributed on an interval of length 4.
Combining all regions above gives the CDF

FY (y) =


0 y < 0
y2+y+

√
y+1

4 0 ≤ y < 1

1 y ≥ 1.

As a sanity check, it can be good to test the end points. For example, FY (0) = 1/4, which makes sense
because P (Y = 0) = P (X ≤ −2) = 1/4. Now that we have a CDF we believe in, we can find the PDF
through differentiation

fY (y) =
1

4

(
2y + 1 +

1

2
√
y

)
.
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