# Lecture 6 <br> The Cumulative Distribution Function 

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 4.1-4.3, 6.2.5; Gubner: 4.4, 5.1

## 1 Expectation of Multiple Random Variables

For continuous RVs, functions such as the correlation and covariance have the same definition as the discrete case. For example

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] \\
& =\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} x y f_{X Y}(x, y) d y d x-\int_{x=-\infty}^{\infty} x f_{X}(x) d x \int_{y=-\infty}^{\infty} y f_{Y}(y) d y
\end{aligned}
$$

As stated several times in class, we often resort to bounding probabilities when we cannot compute them directly. One useful tool for doing this is Jensen's inequality. Jensen's inequality applies in the case where we are dealing with a convex function.

Definition 1. A function $g:(a, b) \rightarrow \mathbb{R}$ is called convex on $(a, b)$ if

$$
g\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)
$$

for all $\lambda \in[0,1]$ and $x_{1}, x_{2} \in(a, b)$.
Convex functions are "nice" in the sense that they only have a single minimum. An intuitive definition of a convex function is that any line segment connecting two points lies above the graph of the function.

Definition 2 (Jensen's Inequality). If $g(x)$ is convex on $(a, b)$ and $X \in(a, b)$ is a RV, then

$$
g(\mathbb{E}[X]) \leq \mathbb{E}[g(X)]
$$

We could use direct methods to show the following, but Jensen's inequality gives it to us for free.
Example 1. Let $g(x)=|x|$, which is convex (you can see this by plotting it). Then

$$
|\mathbb{E}[X]| \leq \mathbb{E}[|X|]
$$

## 2 Cumulative Distribution Functions

Definition 3. The cumulative distribution function (CDF) of a RV $X$ is defined as

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

From the definition of the CDF, two facts are immediately obvious

1. $f_{X}(x)=F_{X}^{\prime}(x)$ when $F_{X}$ is differentiable
2. $P(a \leq X \leq b)=F_{X}(b)-F_{X}(a)$.

A few other useful properties are:
3. $\lim _{x \rightarrow \infty} F_{X}(x)=1$
4. $\lim _{x \rightarrow-\infty} F_{X}(x)=0$
5. $\lim _{x \searrow x_{0}} F_{X}(x)=F_{X}\left(x_{0}\right)$ (i.e., the CDF is right continuous)
6. $\lim _{x \nearrow x_{0}} F_{X}(x)$ need not equal $F_{X}\left(x_{0}\right)$.

Example 2. Let $X \sim \operatorname{Unif}([a, b])$ (uniform distribution on the interval $[a, b])$. Then

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

This gives the CDF

$$
F_{X}(x)= \begin{cases}0 & x<a \\ \frac{x-a}{b-a} & a \leq x \leq b \\ 1 & x>b\end{cases}
$$

We conclude with an example where $\lim _{x \nearrow x_{0}} \neq F_{X}\left(x_{0}\right)$.
Example 3. Let $X \sim \operatorname{Ber}(p)$. Then

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ 1-p & 0 \leq x \leq 1 \\ 1 & x>1\end{cases}
$$

