
EE 520: Random Processes Fall 2021

Lecture 3
Discrete Random Variables and Expectation

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 3.1 - 3.2; Gubner: 2.1 - 2.4

1 Random Variables

We are often interested in functions of events our outcomes, rather than individual events/outcomes them-
selves. The function that maps outcomes ω in the sample space Ω is called a random variable.

Example 1. Toss a fair coin twice, yielding the sample space Ω = {HH,HT, TH, TT}. For some outcome
ω ∈ Ω, let X(ω) be the number of heads, which gives

X(HH) = 2 X(HT ) = X(TH) = 1 X(TT ) = 0.

Definition 1. A random variable (RV) is a function X : Ω→ R such that

{ω ∈ Ω : X(w) ≤ x} ∈ F

for every x ∈ R, i.e., X is F-measurable.

Note that we often omit the dependence on ω and simply write X. The measurability condition above
is a technical condition that ensures the cumulative distribution function (CDF, more on this later) exists.
Recall that a probability measure P measures the size of sets from our sample space Ω. If we want to talk
about the probability that a random variable lies below some value x, then we need to make sure we can
measure the corresponding set of outcomes.

Example 2. In the first example, what is the probability we get at least one head? In terms of the RV X,
we want to know

P (X ≥ 1) = P ({ω ∈ Ω : X(ω) ≥ 1})

= P ({HT, TH,HH}) =
3

4
.

It can be useful to discuss how likely different values of X are, i.e., to find P (X = x). However, a more
useful/general function is called the cumulative distribution function.

Definition 2. For a RV X : Ω → R, the cumulative distribution function (CDF), also referred to as
simply the distribution, is a function F : R→ [0, 1] defined by

F (x) = P (X ≤ x) = P (A(x)),

where A(x) = {ω ∈ Ω : X(ω) ≤ x}.

Note that to make statements about P (A(x)), the set A(x) must be in the σ-algebra F , which is why we
need the measurability condition in the definition of a RV. We will now look at some important examples of
RVs.
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2 Discrete Random Variables

You likely have an intuitive understanding of what a discrete RV is. Below is a formal definition.

Definition 3. The RVX : Ω→ R is called discrete if it takes values in some countable subset {x1, x2, . . . } ⊂
R only.

For discrete RVs, we can measure the probability of taking a specific value.

Definition 4. The probability mass function (PMF) of a discrete RV is

pX(x) = P (X(ω) = x),

and it holds that ∑
i

pX(xi) = 1,

where the summation is over all possible values of X.

2.1 Common random variables (a.k.a., the “big 5”)

• uniform: “Equally likely” or “random” events are drawn from the uniform distribution.

P (X = k) =
1

n
, k = 1, . . . , n

⇔ pX(k) =

{
1
n , k = 1, . . . , n

0, otherwise.

• Bernoulli: Event happens with probability p. Taking Ω = {0, 1} and F = 2Ω (set of all subsets of Ω),
this has the PMF

pX(1) = P ({1}) = p

pX(0) = p({0}) = 1− p.

• binomial: k successes in n trials, where each success occurs with probability p.

pX(k) = P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, . . . , n.

• geometric: Number of realizations/trials before first success.

pX(k) = P (X = k) = p(1− p)k−1.

Note: There is some discrepancy as to how the geometric distribution is defined, so be careful when
using Wikipedia or other sources.

• Poisson: Models many physical phenomena, especially arrival processes.

pX(k) =
λke−λ

k!
, k = 0, 1, 2, . . . .
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3 Multiple Random Variables

Multiple RVs give us a shorthand for talking about multiple functions of outcomes simultaneously. In this
case, we talk about probabilities of the form

P (X ∈ B, Y ∈ C) = P ({ω ∈ Ω : X(ω) ∈ B} ∩ {ω ∈ Ω : Y (ω) ∈ C}) .

Definition 5. Two RVs are independent if the events

{ω ∈ Ω : X(ω) ∈ B} and {ω ∈ Ω : Y (ω) ∈ C}

are independent for all B,C ∈ F , i.e., if

P (X ∈ B, Y ∈ C) = P (X ∈ B)P (Y ∈ C).

Definition 6. Multiple RVs are called identically distributed if P (Xj ∈ B) does not depend on j. If a
set of RVs are independent and identically distributed, we say they are i.i.d.

When dealing with multiple RVs, we can think about their joint PMF and use it to derive the individual
(marginal) PMFs.

Definition 7. For RVs X,Y , the joint PMF is

pXY (xi, yj) = P (X = xi, Y = yj).

Definition 8. For two RVs X,Y with joint PMF pXY , the marginal PMF of X is defined as

pX(xi) =
∑
j

pXY (xi, yj)

and similar for Y .

Note that by the definition of the joint PMF, two RVs are independent if and only if the joint distribution
factors, i.e., if

pXY (xi, yj) = pX(xi)pY (yj).

4 Expectation

Expectation generalizes the notion of “average” you learned in elementary school. This was the sample mean

m =
1

n

n∑
i=1

xi,

which we will see corresponds to the expectation with respect to the uniform distribution.

Definition 9. The expectation or expected value of a discrete RV is

E[X] =
∑
i

xipX(xi).

Example 3. Let X ∼ Ber(p) (X is a Bernoulli RV with parameter p). Then

E[X] =

2∑
i=1

xipX(xi) = 1× p+ 0× (1− p) = p.
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We can compute expectations of functions using the law of the unconscious statistician (LOTUS). For a
function g : R→ R, we have

E[g(X)] =
∑
i

g(xi)pX(xi).

Example 4.

E[aX] =
∑
i

axi = a
∑
i

xipX(xi) = aE[X].

Proposition 1. Expectation is linear, i.e.,

E[aX + bY ] = aE[X] + bE[Y ].

Proof. Use LOTUS and try it yourself :)

The expectation of a RV is called the first moment or first-order statistic and is loosely the most important
thing about a RV. The next most important statistic uses the second moment E[X2].

Definition 10. The variance of a RV X is

E
[
(X − E[X])

2
]

= E[X2]− (E[X])
2
.

Variance provides an idea of deviation from the mean and is the square of the standard deviation.

5 Indicator Functions

The indicator function is a very useful tool in probability and central to the analysis of machine learning
algorithms. Understanding how to correctly use indicators requires working several examples, but they are
an important tool worth developing.

Definition 11. The indicator function is defined as

1A(x) =

{
1, x ∈ A
0, x 6∈ A.

Intuitively, an indicator simply indicates whether the variable x lies in the set A. Indicators become useful
in probability for the following reason. If we take Ω as the domain of the indicator, we get 1 : Ω → {0, 1},
meaning the indicator is a valid RV. Its expectation is

E[1A] = 1× P ({ω ∈ Ω : ω ∈ A}) + 0× P ({ω ∈ Ω : ω 6∈ A}) = P (A).

In other words, the indicator gives us a way to switch between thinking about probabilities and expectations.
More generally, if X is a RV, then we can take 1A(X) to see that

E[1A(X)] = P (1A(X) = 1) = P (X ∈ A).

Example 5. Suppose N people throw their hats into the center of a room. The hats are mixed up, and
everyone selects one at random. What is the expected number of people who will find their own hat?

Let X be the number of matches, and define the indicator RV

Xi =

{
1, if person i selects their own hat

0, otherwise,

which implies

X =

N∑
i=1

Xi.
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We want E[X], and by linearity of expectation we have

E[X] =

N∑
i=1

E[Xi].

Therefore, our main task is to compute E[Xi] = P (Xi) = 1. Since each person is equally likely to select their
own hat, so

E[Xi] = P (Xi = 1) =
1

N
.

We can then easily compute

E[X] =

N∑
i=1

E[Xi] = N × 1

N
= 1.

General strategy for using indicators: When looking for some E[X] that is hard to compute, attempt
the following sequence of steps.

1. Define the indicator RV Xi such that X =
∑N
i=1Xi

2. Compute P (Xi = 1)

3. E[X] =
∑N
i=1 E[Xi] =

∑N
i=1 P (Xi = 1).
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