
EE 520: Random Processes Fall 2021

Lecture 2
Conditional Probability and Combinatorics

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 1.4 - 2.1; Gubner: 1.5 - 1.7

1 Conditional Probability

We’re often interested in statements of the form, “If B occurs, then the probability of A is p,” where A and
B are events. This is known as conditional probability and is a foundational part of probability.

Definition 1. If P (B) > 0 for some event B, then the conditional probability that A occurs given B
occurs is

P (A | B) =
P (A ∩B)

P (B)
.

This is referred to as the probability of A given B.

Example 1. Roll two fair dice. Given that the first shows a 3, what is the probability the total exceeds 6?

A = {total of dice exceeds 6} = {(a, b) : a + b > 6}
B = {roll a 3 on the first die} = {(3, b) : 1 ≤ b ≤ 6}

P (A | B) =
P (A ∩B)

P (B)
=

3/36

6/36
=

1

2
,

where the above probabilities come from counting the number of outcomes in each set (check for yourself).

Now assume P (A) > 0 and suppose we know P (A | B). How can we find P (B | A)? Rearrange the
definition of conditional probability to get

P (A ∩B) = P (A | B)P (B).

Now apply the definition of P (B | A) to see that

P (B | A) =
P (A ∩B)

P (A)
=

P (A | B)P (B)

P (A)
.

This is useful if we know P (A). When we cannot find P (A) directly, we instead use a (very important) tool
called the law of total probability.

Definition 2. A partition {B1, B2, . . . , Bn} of a set Ω is a collection of sets such that

• Bi ∩Bj = ∅, ∀i 6= j (Bi’s are pairwise disjoint)

•
⋃n

i=1 Bi = Ω (Bi’s cover the entire set Ω).

Definition 3. Let {B1, B2, . . . , Bn} be a partition of the set Ω in the probability space (Ω,F , P ). The law
of total probability states that for any F-measurable event A, we can write

P (A) =

n∑
i=1

P (A | Bi)P (Bi).
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Proof. Consider n = 2. We have
A = (A ∩B) ∪ (A ∩Bc).

Since B and Bc are disjoint, the axioms of probability tell us that

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A | B)P (B) + P (A | Bc)P (Bc).

The proof of the general case can be found in Section 1.4.2 of Pishro-Nik.

Now that we can compute P (A), we can go back to our original problem of finding P (B | A). This
process is so common that it gets its own definition.

Definition 4. Let {B1, B2, . . . , Bn} form a partition of Ω. Then Bayes’ rule states that

P (Bi | A) =
P (A | Bi)P (Bi)∑n
i=1 P (A | Bi)P (Bi)

.

For n = 2, we get

P (B | A) =
P (A | B)P (B)

P (A | B)P (B) + P (A | Bc)P (Bc)
.

In words, suppose we observe A but want to know about Bi. If we know the prior probabilities {P (Bi)}ni=1

and the conditional probabilities {P (A | Bi)}ni=1, we can compute the posterior probability P (Bi | A) for
each i ∈ {1, 2, . . . , n}.

Example 2. Assume you are a zoggle magnate and own two factories. Based on your experience, you know
the defect rate at each factory

P (defective zoggle | factory 1) = 0.2

P (defective zoggle | factory 2) = 0.05.

Further, factory 1 produces twice as many zoggles as factory 2. What is the probability that a random
zoggle is satisfactory? Let A be the event that a zoggle is satisfactory and B be the event that a zoggle is
from factory 1 (what is Bc?). Then

P (A) = P (A | B)P (B) + P (A | Bc)P (Bc) = 4/5× 2/3 + 19/20× 1/3 = 51/60.

Given the above, what is the posterior probability that a zoggle is from factory 1 given that it is defective?

P (B | Ac) =
P (Ac | B)P (B)

P (Ac)
=

1/5× 2/3

9/60
=

8

9
.

2 Independence

Conditional probability implies that the occurrence of some event B impacts the probability of another event
A. When this is not the case, we say that these events are independent.

Definition 5. Events A and B are called independent if

P (A ∩B) = P (A)P (B).

More generally, the collection {Ai}i∈I is (mutually) independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai)

for any finite subset J ⊂ I.
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Caution: There is a strong tendency to conflate disjoint sets with independent events. Recall that A
and B are disjoint if they do not intersect, i.e., if A ∩ B = ∅. This has nothing to do with the probability
measure used, whereas independence is a function of the two sets and the probability measure.

Example 3. Roll a fair die. Let

A = {1, 2} =⇒ P (A) = 1/3

B = {2, 4, 6} =⇒ P (B) = 1/2.

Note that
P (A ∩B) = P ({2}) = 1/6 = P (A)P (B),

so we say that A and B are independent events. This example illustrates that independence does not
necessarily follow our intuition—we sometimes need to follow the math.

Example 4. Choose a playing card at random. The suit is independent of the rank (which may match our
intuition). For example

P (king of spades) = 1/52 = 1/4× 1/13 = P (spade)P (king).

3 Combinatorics and Probability

Many problems of interest in probability are called counting problems, where we compute a probability
by counting the cardinality of an event of interest and dividing it by the cardinality of the sample space.
Formally, let E be some event of interest on a sample space Ω. Then

P (E) =
|E|
|Ω|

.

The major difficulty in these problems is determining the cardinality of the event of interest. There are four
types of counting problems, and we focus on three of them in this course.

Ordered sampling with replacement. In these experiments, the order of outcomes matters. Suppose
you perform k experiments with n1, n2, . . . , nk possible outcomes for each. Then there are

∏k
i=1 ni possible

outcomes.

Example 5. Draw k cards with replacement from a deck of n cards. The number of possible sequences
(note that sequences have an order, unlike sets) is nk.

Ordered sampling without replacement. This is the case where order again matters, but once an object
is removed, it cannot be drawn again. Given n objects, the number of ordered permutations of these objects
is

n× (n− 1)× (n− 2)× · · · × 3× 2× 1 = n!,

since for the first draw, we have n options, for the second we have n − 1, and so on. If we draw k objects
without replacement, we have

n× (n− 1)× (n− 2)× · · · × (n− (k − 1)) =
n!

(n− k)!

possible outcomes.

Example 6. Draw 5 cards without replacement. The number of possible sequences is 52×51×50×49×48,
which is really large. Note that

52!

(52− 5)!
=

52× 51× 50× 49× 48× 47× 46 · · · × 1

47× 46× · · · × 1
= 52× 51× 50× 49× 48.
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Unordered sampling without replacement. Given n objects, the number of different groups of k objects
that could be formed (called combinations) is

n!

(n− k)! k!
=

(
n

k

)
,

which is called the binomial coefficient and is read as “n choose k.” To see why this is, note that there are
n!/(n − k)! possible ordered sets of k. But each set has k! possible permutations, so it is counted k! times.
Dividing by k! normalizes for this double counting.

Example 7. Deal a hand of 5 cards. The number of possible hands is
(
52
5

)
.

From counting to probability. We can apply the above principles to determine the probabilities of events
of interest. This may seem straightforward, but counting problems are often the most dreaded in this course.
Skill with these is best obtained by working as many examples as possible.

Example 8. An urn contains 11 green balls and 9 red balls. If 12 balls are chosen at random, what is the
probability of choosing exactly 5 green balls and 7 red balls?

First note that we are interested in sets of balls, so order does not matter, i.e., we are in the setting of
unordered sampling without replacement. In this case, the sample space has size

(
20
12

)
. To determine the

cardinality of E, we first note that the number of ways to choose 5 green balls is
(
11
5

)
, and similarly the

number of ways to choose 7 red balls is
(
9
7

)
. To get the cardinality of E, we multiply these to see that

P (E) =
|E|
|Ω|

=

(
11
5

)(
9
7

)(
20
12

) .
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