Ex 1
First, we wat to show that $C_{1} X+c_{2} Y$ is Gaussian for arbitron c_{1} ad c_{1}. Note that

$$
\begin{aligned}
c_{1} X+c_{2} Y & =c_{1} X+c_{2}(3 X) \\
& =\left(c_{1}+3 c_{2}\right) X \sim N\left(0_{1}\left(c_{1}+3 c_{2}\right)^{2}\right)
\end{aligned}
$$

Since X, Y are zero mean, we have that $C_{x y}=\mathbb{E}[x y]$ and $C_{y}=\mathbb{E}\left[y^{2}\right]$.

$$
\begin{aligned}
& \mathbb{E}[x y]=\mathbb{E}[x(3 x)]=3 \mathbb{E}\left[x^{2}\right]=3 \\
& \mathbb{E}\left[y^{2}\right]=\mathbb{E}[(3 x)(3 x)]=9 \mathbb{E}\left[x^{2}\right]=9
\end{aligned}
$$

Therefore

$$
C_{x y}=\left[\begin{array}{ll}
1 & 3 \\
3 & 9
\end{array}\right]
$$

$E \times 2$
Let's examine a few elements of Y to look for a pattern.

$$
\begin{aligned}
& y_{1}=x_{1} \\
& y_{2}=x_{1}+x_{2} \\
& y_{3}=x_{1}+x_{2}+x_{3}
\end{aligned}
$$

We ca quickly see that $y_{n}=y_{n-1}+x_{n-1}$ or solving for x_{n} that
$X_{n}=Y_{n}-Y_{n-1}$. We can write this in matrix form as

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\underbrace{\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
0 & -1 & 1 & \cdots & 0 \\
\vdots & & & & 1 \\
0 & \cdots & 0 & -1 & 0 \\
0 & 0 & 0 & \cdots & -1
\end{array}\right]}_{A}\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\\
y_{n-1} \\
y_{n}
\end{array}\right]
$$

So $Y=A Y$, ad Y is Gaussian so X is as well.

Ex 3
First rate the $z=x v-y u$ by evaluating the determinant. Now consider the condition $C D F$

$$
\begin{aligned}
F_{z \mid u v}\left(\left.z\right|_{u, v}\right) & =P\left(Z \leq z \mid U=u_{1} V=v\right) \\
& =P\left(X V-Y u \leq z \mid U=u_{1} V=v\right) \\
& =P\left(X_{v}-Y_{u} \leq z \mid U=u_{1} V=v\right)
\end{aligned}
$$

but $\left[\begin{array}{l}x \\ y\end{array}\right]$ ad $\left[\begin{array}{l}u \\ u\end{array}\right]$ are jointly Gaussian ad uncorrelated and therefore independent, so we can drop the condition y to see that

$$
F_{z \mid u v}\left(\left.z\right|_{u, v}\right)=P\left(X_{v}-Y_{u} \leq z\right)
$$

Since $X, Y \stackrel{i i d}{\sim} N(0,1)$, we hue

$$
X_{v}-Y_{u} \sim N\left(0, u^{2}+v^{2}\right)
$$

Therefore

$$
f_{z \mid u, v}(z \mid u, v) \sim N\left(0, u^{2}+v^{2}\right) .
$$

