Ex 1
Use the definition of inner product:

$$
\begin{aligned}
x^{\top} y & =\sum_{i=1}^{n} x_{i} y_{i} \\
& =\sum_{i=1}^{1} y_{i} x_{i}=y^{\top} x
\end{aligned}
$$

Ex 2
To prove linearity, show the two properties listed.

$$
\begin{aligned}
& f(x+y)=A(x+y)=A x+A_{y}=f(x)+f(\jmath) \\
& f(\alpha x)=A(\alpha x)=\alpha A x=\alpha f(x)
\end{aligned}
$$

Ex 3
First notice that

$$
A=\left[\begin{array}{llll}
a_{11} & & & \\
& a_{22} & & \\
& & \ddots & \\
& & & a_{n n}
\end{array}\right]
$$

Now think of A_{x} in terns of the invar product er between the rows of A ad x_{1} as in Ex 3 above

For the $i^{\text {th }}$ column all but element i will be zero, so we get $a_{i j} x:$. In general we get

$$
A_{x}=\left[\begin{array}{cc}
a_{11} & x_{1} \\
a_{22} & x_{2} \\
\vdots \\
a_{n n} & x_{n}
\end{array}\right]
$$

Ex 4
Sires are
A: m xn
$v: n \times 1 \Rightarrow A u^{r}$ is sot a valid operation but $v^{\top} v$ is $v^{\top}: 1 \times n$

Therefor we most do $A\left(v^{\top} v\right)$ (Matlab does this automatically)

Ex S
We wat $\mathbb{E}\left[Y Y^{\top}\right]=I$. With or previous choice $Y=V^{\top} X_{1}$ we had $\mathbb{E}\left[H Y^{\top}\right]=1$, so in son suse we wat to "undo" the 1 matrix. Note that

$$
\Lambda=\left[\begin{array}{llll}
\lambda_{1} & & \\
& \ddots & & \\
& & \lambda_{s} & \\
& & & 0
\end{array}\right]
$$

is a diagonal matrix with $\lambda_{i} \geq 0$, so we can define

$$
\Lambda^{-1 / 2}=\left[\begin{array}{cccc}
1 / \sqrt{x_{1}} & & & \\
& 1 / \sqrt{\lambda_{2}} & & \\
& & \ddots & \\
& & 1 / \sqrt{x_{c}} & \\
& & & 0
\end{array}\right]
$$

which gives $\Lambda^{-1 / 2} \Lambda \Lambda^{-1 / 2}=I$. Hence setting $Y=\Lambda^{-1 / 2} V^{\top} x$ achieves $\mathbb{E}\left[-1 y^{\top}\right]=I$.

Ex 6
This problem uses a foo vice tricks from linear algebra.

$$
\begin{aligned}
\mathbb{E}\left[\|x\|^{2}\right] & =\mathbb{E}\left[x^{\top} x\right] \\
& =\mathbb{E}\left[\operatorname{tr}\left(x^{\top} x\right)\right] \\
& =\mathbb{E}\left[\operatorname{tr}\left(x x^{\top}\right)\right] \\
& =\operatorname{tr}\left(\mathbb{E}\left[x x^{\top}\right]\right) \\
& =\operatorname{tr}\left(I_{n}\right)=n
\end{aligned}
$$

definition of $\|x\|^{2}$
trace of scalar
cyclic permutation

1. .rarity of trace isotropy

Ex 7
We use similar tricks to the above plus the low of total expectation.

$$
\begin{aligned}
\mathbb{E}\left[\langle x, y\rangle^{2}\right] & =\mathbb{E}_{y}\left[\mathbb{E}_{x \mid y}\left[\langle x, y\rangle^{2}\right]\right] \\
& =\mathbb{E}_{y}\left[\mathbb{E}_{x \mid y}\left[y^{\top} x y^{\top} y\right]\right] \\
& =\mathbb{E}_{y}\left[y^{\top} \mathbb{E}_{x}\left[x x^{\top}\right] y\right]
\end{aligned}
$$

by the substitution low ad the fact that XiV are independent. Now

$$
\begin{aligned}
\mathbb{E}\left[\langle X, Y\rangle^{2}\right] & =\mathbb{E}_{Y}\left[Y^{\top} I Y^{\prime}\right] \\
& =\mathbb{E}_{Y}\left[Y^{r} Y\right] \\
& =\mathbb{E}_{Y}\left[\operatorname{tr}\left(y^{\top} y\right)\right] \\
& =\mathbb{E}_{Y}\left[\operatorname{tr}\left(Y Y^{\top}\right)\right] \\
& =\operatorname{tr}\left(\mathbb{E}_{Y}\left[Y Y^{r}\right]\right) \\
& =\operatorname{tr}\left(I_{n}\right)=n
\end{aligned}
$$

Ex 8

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{n} X X^{\top}\right] & =\frac{1}{n} \mathbb{E}\left[X x^{\top}\right] \\
& =\frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[x_{i} x_{i}^{\top}\right] \\
& =\frac{1}{n} \cdot n C_{x}=C_{x}
\end{aligned}
$$

