Ex 1-2: See PN.
Er $3:$
a)

$$
\begin{aligned}
f_{x}(x) & =\int_{y=-\infty}^{\infty} f_{x y}(x, y) d y \\
& =\int_{3=0}^{\infty} e^{-x y} d y=-\left.\frac{1}{x} e^{-x y}\right|_{0} ^{\infty}=\frac{1}{x} \quad \text { for } x \in[1, e]
\end{aligned}
$$

$$
\begin{aligned}
f_{y}(y) & =\int_{x=-\infty}^{\infty} f_{x y}(x, y) d x \\
& =\int_{1}^{e} e^{-x y} d x=\frac{1}{y}\left(e^{-y}-c^{-e y}\right) \text { for } y>0
\end{aligned}
$$

b) $P(0 \leq y \leq 1,1 \leq x \leq \sqrt{e})=\int_{x=1}^{\sqrt{e}} \int_{y=0}^{1} e^{-x y} d y d x$

Ex Y: See PN.
$E \times S$

$$
\begin{aligned}
\mathbb{E}[x] & =\mathbb{E}[X \mid H] P(H)+\mathbb{E}[x \mid T] P(T) \\
& =1 \cdot p+(\mathbb{E}[x]+1)(1-\rho) \\
& =(1-p \mid \mathbb{E}[x]+1 \\
\Leftrightarrow & p \mathbb{E}[x]=1 \Leftrightarrow \mathbb{E}[x]=\frac{1}{\rho}
\end{aligned}
$$

Ex 6
The inverse frections h. ad h_{2} are the poler-Catesion trasformation fuctions

$$
\begin{aligned}
& h_{1}(r, \theta)=r \cos \theta \\
& h_{2}(r, \theta)=r \sin \theta
\end{aligned}
$$

Appliyg the formulo give obove, we get

$$
\begin{aligned}
& f_{R \theta}(r, \theta)=f_{x_{1} x_{2}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(j_{1, y_{2}}\right)\right)|\operatorname{det} I| \\
& =f_{x_{1} x_{2}}\left(r \cos \theta_{1} r \sin \theta\right) r \\
& =f_{x_{1}}(r \cos \theta) f_{x_{2}}(r \sin \theta) r \\
& =\frac{1}{2 \pi} \underbrace{e^{-r^{2} / 2}}_{\text {Rogkecy }} \text { for } r \geq 0_{1}-\pi<\theta \leq \pi
\end{aligned}
$$

Note: R ad θ are indeperdut (yor shuld cleck by fidiy mavgiols)

Ex 7
Yet another method for Ladling trasformations of RUS is to condition, ie., use the low of total probability.

$$
\begin{aligned}
F_{z}(z) & =P(z \leq z)=\int_{-\infty}^{\infty} P\left(z \leq z|X=x| f_{x}(x) d x\right. \\
& =\int_{-\infty}^{\infty} P\left(e^{x} Y \leq z \mid X=x\right) f_{x}(x) d x \\
& =\int_{-\infty}^{\infty} P\left(Y \leq z e^{-x} \mid X=x\right) f_{x}(x) d x \\
& =\int_{-\infty}^{\infty} F_{Y \mid X}\left(z e^{-x} \mid x\right) f_{x}(x) d x
\end{aligned}
$$

Differatictiy with respect to z, we ob ton

$$
\begin{aligned}
f_{z}(z) & =\int_{-\infty}^{\infty} f_{y \mid x}\left(z e^{-x} \mid x\right) e^{-x} f_{x}(x) d x \\
& =\int_{-\infty}^{\infty} f_{x y}\left(x, z e^{-x}\right) e^{-x} d x
\end{aligned}
$$

Since

$$
f_{y \mid x}(b \mid a)=\frac{f_{x y}(a, b)}{f_{x}(a)}
$$

Ex 8

Look of the CDF.
$\operatorname{nan}\left(X_{1}, X_{2}\right) \leq z_{1} \Rightarrow$ at least

$$
\left.\left.\begin{array}{rl}
F_{z_{1} z_{2}}\left(z_{1}, z_{2}\right) & =P((\underbrace{\left(z_{1} \leq z_{1}\right.}_{A}) \cap\left(z_{2} \leq z_{2}\right)) \\
& =P((\underbrace{\left(x_{1} \leq z_{1}\right)}_{B} \cup \underbrace{\left(x_{2} \leq z_{1}\right)}_{C}) \cap(\underbrace{\left(x_{1} \leq z_{2}\right)} \cap\left(x_{2} \leq z_{2}\right)
\end{array}\right)\right)
$$

Note that $\min \left(x_{1}, x_{2}\right) \leq \max \left(x_{1}, x_{2}\right)$, so we most have $z_{1} \leq z_{2}$.

$$
P(A \cap C)=P\left(\left(x_{1} \leq z_{1}\right) \cap\left(x_{1} \leq z_{2}\right) \cap\left(x_{2} \leq z_{2}\right)\right)
$$

Since $z_{1} \leq z_{2}$, it follows that $X_{1} \leq z_{1} \Rightarrow X_{1} \leq z_{2}$. Hence

$$
\begin{aligned}
P(A \wedge C) & =P\left(\left(x_{1} \leq z_{1}\right) \cap\left(x_{2} \leq z_{2}\right)\right) \\
& =F_{x_{1} x_{2}}\left(z_{1}, z_{2}\right)=F_{x}\left(z_{1}\right) F_{x}\left(z_{2}\right)
\end{aligned}
$$

Similarly, since X_{1} ad X_{2} here the some distribution,

$$
P(B \wedge C)=F_{x}\left(z_{1}\right) F_{x}\left(z_{2}\right)
$$

Finally

$$
\begin{aligned}
P(A \cap B \cap C) & =P\left(\left(x_{1} \leq z_{1}\right) \cap\left(x_{2} \leq z_{1}\right) \cap\left(X_{1} \leq z_{2}\right) \cap\left(x_{2} \leq z_{2}\right)\right) \\
& =P\left(\left(x_{1} \leq z_{1}\right) \cap\left(x_{2} \leq z_{1}\right)\right) \\
& =F_{x}^{2}\left(z_{1}\right)
\end{aligned}
$$

Therefore

$$
F_{z_{1} z_{2}}\left(z_{11} z_{2}\right)=2 F_{x}\left(z_{1}\right) F_{x}\left(z_{2}\right)-F_{x}^{2}\left(z_{1}\right) \quad \text { for } z_{1} \leq z_{2}
$$

Differentiating gives

$$
f_{z_{1} z_{2}}\left(z_{1}, z_{2}\right)=2 f_{x}\left(z_{1}\right) f_{x}\left(z_{2}\right) \quad \text { for } z_{1} \leq z_{2}
$$

