Ex 1
a) First draw the CDE of x

Note the jump at $x=\frac{1}{4}$. This can arty be due to a point mas at that value, idicatiy X is a nixed RV.
b) $P\left(X \leq \frac{1}{3}\right)=F_{x}\left(\frac{1}{3}\right)=\left.\left(x+\frac{1}{2}\right)\right|_{x=\frac{1}{3}}=\frac{1}{3}+\frac{1}{2}$
c)

$$
\begin{aligned}
P\left(X \geq \frac{1}{4}\right) & =1-P\left(X<\frac{1}{4}\right) \\
& =1-\left(P\left(X \leq \frac{1}{4}\right)-P\left(X=\frac{1}{4}\right)\right) \\
& =1-\left(F_{x}\left(\frac{1}{4}\right)-\frac{1}{2}\right) \\
& =1-\frac{3}{4}+\frac{1}{2}=\frac{3}{4}
\end{aligned}
$$

d) We can waite $F_{y}(x)=C(x)+D(x)$, where

$$
\begin{aligned}
& C(x)= \begin{cases}0, & x<0 \\
x, & 0 \leq x \leq \frac{1}{2} \\
\frac{1}{2}, & x>\frac{1}{2}\end{cases} \\
& D(x)= \begin{cases}0, & x<\frac{1}{4}=\frac{1}{2} u\left(x-\frac{1}{4}\right) \\
\frac{1}{2}, & x \geq \frac{1}{4}\end{cases}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
c(x) & =C^{\prime}(x)=\left\{\begin{array}{lll}
0, & x<0 \text { or } x \geq \frac{1}{2} \\
1, & 0 \leq x<\frac{1}{2}
\end{array}\right. \\
\text { f) } E[x] & =\int_{-\infty}^{0} x C(x) d x+\sum_{k} x_{k} a_{x} \\
& =\int_{0}^{1 / 2} x d x+\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}
\end{aligned}
$$

Ex 2
Fad $f_{x}(x)$ by differentiation $F_{x}(x)$, payer caracal attention to the jump at $x=\frac{1}{4}$:

$$
\begin{aligned}
f_{x}(x) & =\left\{\begin{array}{ll}
1, & x \in\left[1, \frac{1}{2}\right) \\
0, & c l_{x}
\end{array}+\frac{1}{2} \delta\left(x-\frac{1}{4}\right)\right. \\
& =\frac{1}{2} \delta\left(x-\frac{1}{4}\right)+\left(u(x)-u\left(x-\frac{1}{2}\right)\right)
\end{aligned}
$$

$E+3$
Use the formula from Thu. 1. We have

$$
y=g(x)=b x+\mu \Rightarrow g^{-1}(y)=\frac{Y-\mu}{b}
$$

so $\frac{d}{d y} g^{-1}(y)=\frac{1}{b}$. Apilyiry the formula, we have

$$
\begin{aligned}
f_{-y}(y) & =\int \frac{d}{d y} g^{-1}|y|\left(\delta_{x}\left(g^{-1} \mid g\right)\right. \\
& =\frac{1}{b} \delta_{x}\left(\frac{y-\mu}{b}\right)=\frac{1}{2 b} \exp \left(-\frac{|y-\mu|}{b}\right)
\end{aligned}
$$

which is - Laplea (μ, b) PDF.

Ex 4 :
This ca either be appoachicd using the CDF or by the for al. from Thru. To cluck that we ca vo Them. 1 , note feat $g(x)=\sqrt{2 \sigma^{2} x}$ is moncton increasing for $x \geqslant 0$, and $x \geq 0$ since it is exponatial. Now find the required terms.

$$
\begin{aligned}
g(x)=y & =\sqrt{2 \sigma^{2} x} \Leftrightarrow x=\frac{y^{2}}{\partial \sigma^{2}}=j^{-1}(\jmath) \\
\Rightarrow & \frac{d}{d y} g^{-1}(y)=\frac{y}{\sigma^{2}} \\
& f_{x}\left(g^{-1}(y)\right)=\exp \left(-\frac{y^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Applying the foculo,

$$
\begin{aligned}
f_{y}(y) & =\left|\frac{d}{d y} g^{-1}(y)\right| f_{x}\left(g^{-1}(y)\right) \\
& =\frac{y}{\sigma^{2}} \exp \left(-\frac{y^{2}}{2 \sigma^{2}}\right), \quad y^{\geq 0}
\end{aligned}
$$

which is the desired PDF.

Ex S:
First draw a picture.

To find $F_{y}(y)$, we consider all cases where something "inferestiy" hoppers.

Region 1: $y<0$
Sine $0 \leq y \leq 2$, we have

$$
P(Y<0)=0
$$

Regin 2: $1 \leq y^{<2}$
To find $P(Y \leq j)$ in this region, draw a horizattl line at so ne $y \in[1,2)$ al examine the corresponding value ls| of x.

Note that for all $x \leq x$, and $x>3$, we here $g(x) \leq y$.

Next, we solve for
Next, we using $g\left(x_{1}\right)$. In the corresponding region, $g(x)=x_{1}$ ad so $x_{1}=y$. Further, for $x \leq 0$, we tare $g(x) \leq y$. Therefore

$$
\begin{aligned}
P(Y \leq y) & =P(g(x) \leq y) \quad\{x \leq y\} \cup\{x \geq 3\}) \\
& =P(\{x \in[-4,0]\} \cup\{x \in[0, y]\} \cup\{x \in[3,4]\}) \\
& =\frac{4}{8}+\frac{y}{8}+\frac{1}{8} \quad\left(\text { since } x \sim u_{\text {ni f }}([-4,4])\right) \\
& =\frac{y+5}{8}
\end{aligned}
$$

Region 3: $0 \leq y<1$
We again draw a
horizontal line ad consider the varia us values of x s-ah that $g(x) \leq y$.

Now we have two intersections. At x_{2}, we have $g(x)=x^{2}$, ad hence $x_{2} \in\{-\sqrt{y}, \sqrt{y}\}$. Note that we are in the region $[-1,0)$, So we have $x_{2}=-\sqrt{y}$. For the second intersection, we here $g(x)=x_{1}$ so $x_{3}=y$. Therefore

$$
g(x) \leq y \text { for } x \in(-\sqrt{y}, y)
$$

Finally, wore that $g(x) \leq y$ for $x<-2$ and $x \geq 3$ as will.
Therefore,

$$
\begin{aligned}
P(V \leq y) & =P(g(x) \leq y) \\
& =P(\{x<-2\} \cup\{-\sqrt{y}<x<y\} \cup\{x \geq 3\}) \\
& =\frac{y+\sqrt{y}+3}{8}
\end{aligned}
$$

Regin 4: $y \geq 2$
Since $y \leq 2$ for all x, we tee

$$
P(y \leq 2)=1 .
$$

Patting this all together, we see that

$$
F_{y}(y)= \begin{cases}0 & y<0 \\ (y+\sqrt{y}+3) / 8 & 0 \leq y<1 \\ (y+5) / 8 & 1 \leq y<2 \\ 1 & y \geq 2\end{cases}
$$

Differentiating yields the PDF, which is given on Pg. 204 of Gubuer.

Ex 6 :
Recall that for $Y \sim \exp (\lambda), f_{y}(y)=\lambda e^{-\lambda y}$. Thus

$$
\begin{aligned}
F_{y}(y) & =\int_{-\infty}^{y} f_{y}(t) d t=\int_{0}^{y} \lambda e^{-\lambda t} d t \\
& =-\left.e^{-\lambda t}\right|_{0} ^{y}=1-e^{-\lambda y}
\end{aligned}
$$

We then tate $y=F_{y}^{-1}(x)$, so we have

$$
\begin{aligned}
& \left.x=1-e^{-\lambda y} \Leftrightarrow 1-x=e^{-\lambda}\right] \\
& \Leftrightarrow y=-\frac{1}{\lambda} \mu(1-x)=: g(x) .
\end{aligned}
$$

