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b To find the PDF differentiate the CDF
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We'll use Jensen's inequality and the MGF First note that
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es
EY I Les MGF

I MY eat by monotonicity of
exp

I É I Let
Sun nddesmaximum so
it's at least as bignoteestizo

n e
tf MGF of Gaussian

No take the logof both
sides to get

SECY E leg II

Ily s If

This holds for any a 0 so we can choose the s thatgives

the tightestbound The
arithmetic mean geometric near Am Gu

inequality tells us that

AI VITAE
TYE



with equality when

1 tf
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