Ex 1-9: $\operatorname{Sec} P N$.

Ex $10:$
The sample space $S$ is the number of possible hands, so $|\Omega|=\binom{52}{14}$. There are 13 cards of each suit, so there are $\binom{13}{2}$ wags to choose 2 spaces. Similar reasoning gives $|E|=\binom{13}{2}\binom{13}{3}\binom{13}{4}\binom{13}{5}$. Therefore

$$
P(E)=\frac{\binom{13}{2}\binom{13}{3}\binom{13}{4}\binom{13}{5}}{\binom{52}{19}}
$$

Ex 11 :
There are 100 ! ways to re-order the pactects, so $|\Omega|=100!$. For the lo th to be a header. the first a mist be data. There are 96 ways to choose the first packet, 95 to choose the second, dom to 88 for the ninth. For the tenth packet, we have if options. We then have 90 ! ways to choose the last 90 packets. This gives

$$
\begin{aligned}
|E| & =96 \cdot 95 \cdot \ldots \cdot 88 \cdot 4 \cdot 90! \\
\Rightarrow P(E) & =\frac{96 \cdot 95 \cdot \ldots \cdot 88 \cdot 4 \cdot 90!}{100!} \\
& =\frac{96 \cdot \ldots \cdot 88 \cdot 4}{100 \cdot \ldots \cdot 91}
\end{aligned}
$$

Er 12 :
a) In this case, $X_{1} \sim \operatorname{Ber}\left(\frac{1}{2}\right)$, since there are two bolls in the urn. Similarly, since we put the first ball bact in, $X_{z} \sim \operatorname{Bar}\left(\frac{1}{2}\right)$, so thy are identically distributed. Ace thy independent? We read to check flat

$$
P\left(X=x_{1}, X_{2}=x_{2}\right)=P\left(X_{1}=x_{1}\right) P\left(X_{2}=x_{2}\right)
$$

This is easy to verify by noting that all four outcomes $00,01,10,11$ are equally likely.
(b) I- this case, we hare to be careful not to confuse the marginal probability $P\left(X_{2}\right)$ with the conditional probability $P\left(x_{2} \mid x_{1}\right)$. Clearly $P\left(X_{2} \mid X_{1}\right)=1$ for whichever ball was not graven first, ad hance $X_{1}$ anal $X_{2}$ are ot independent. However.

$$
\begin{aligned}
P\left(X_{2}=1\right)= & P\left(X_{2}=1 \mid X_{1}=0\right) P\left(X_{1}=0\right)+ \\
& P\left(X_{2}=1 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
= & 1 \cdot \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Thus $X_{1}$, ad $X_{2}$ we both $\operatorname{Ber}\left(\frac{1}{2}\right)$, ie., $X_{1}$ ad $X_{2}$ are identically distributed but not independent.

Ex B:
(a) Define the indicator RV
$X_{i}= \begin{cases}1 & i^{\text {th }} \text { toss is a new con } \\ 0 & \text { oflernise }\end{cases}$
Clearly $X_{1}=1$ always. Now for $X_{i}$ with $i \geq 2$, we start a new un if toss $i$ is not equal to toss $i-1$. This happens with probability $\frac{1}{2}$, so

$$
P\left(X_{i}=1\right)=\frac{1}{2} \text { for } i \geq 2 \text {. }
$$

Therefore

$$
\begin{aligned}
\mathbb{E}[\nexists \text { runs }] & =1+\sum_{i=2}^{n} P\left(X_{i}=1\right) \\
& =1+\frac{1}{2}(n-1)
\end{aligned}
$$

(b) In this case, we consider the probability of a rev sun conditioned on the previous toss. Let $T_{i}$ be the RU dating the result of the $i^{\text {th }}$ toss. Then $X_{i}=1$ if $T_{i} \neq T_{i-1}$. Therefore

$$
\begin{aligned}
P\left(X_{i}=1\right)= & P\left(T_{i} \neq T_{i-1}\right) \\
= & P\left(T_{i} \neq T_{i-1} \mid T_{i}=H\right) P\left(T_{i}=H\right)+ \\
& P\left(T_{i} \neq T_{i-1} \mid T_{i}=T\right) P\left(T_{i}=T\right) \\
= & (1-p) p+\tau(1-p)=\partial p(1-p)
\end{aligned}
$$

Thus

$$
\mathbb{E}[\# \text { runs }]=1+2(n-1) p(1-p)
$$

