Ex 1-10: See PN.

Ex 11
Intuition may suggest the answer is $\frac{1}{2}$, since the drawn card is either RB or RR. However, it could be either side of the $R R$ card, and hence the $R R$ card accomits for two of the tree possible atones. Alternatively, we can use Rajes' rule:

$$
\begin{aligned}
P(R R \mid R) & =\frac{P(R \mid R R) P(R R)}{P(R)} \\
& =\frac{1 \cdot \frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}
\end{aligned}
$$

$E_{x} \quad 12$

$$
\begin{aligned}
P(A \mid B) & \left.\left.=\frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}>P \right\rvert\, A\right) \\
& \Leftrightarrow \frac{P(B \mid A)}{P(B)}>1 .
\end{aligned}
$$

Ex 13
(c)

$$
\begin{aligned}
& \text { (c) } P(A)=\frac{1}{2} P\left(\{D D D \xi)+\frac{1}{2} P(\xi L L L \xi)=\frac{1}{4}\right. \\
& P(B)=P(0 \operatorname{dog}))+P(1 \operatorname{dog})=\frac{1}{8}+\frac{3}{8}=\frac{1}{2} \\
& P(C)=P(2 \log 3)+P(2 \operatorname{liads})=\frac{3}{4} \\
& P(A \cap B)=P \text { lall l:zards })=\frac{1}{8}=\frac{1}{4} \cdot \frac{1}{2} \\
& P(B \cap C)=\frac{3}{8}=\frac{1}{2} \cdot \frac{3}{4}
\end{aligned}
$$

(b) $P(A \cap C)=0 \neq \frac{1}{4} \cdot \frac{3}{4}$
(c) Only when the poobobility of one pet is zero.

Ex 14

Let E be the event of interest.
(a) The number of possible outcome is 40^{10}. Find $|E|$ is difficult. Instead consider the event E^{c}, in which exactly 10 stops are made. We can either view this problem as ordered ar unordered.

Ordered: There are 10 experimats with to possible atones each, so $|\Omega|=40^{\circ}$. Similarly, $\left|E^{c}\right|=\frac{40!}{(90-10)!}$. Therefore

$$
P(E)=1-\frac{40 \cdot 39 \cdot 38 \cdot \ldots \cdot 31}{40 \cdot 40 \cdot 40 \cdot \ldots \cdot 40}
$$

Unordered: Determining $|\Omega|$ is unordered sampling with replacement, which we skipped. To find $|\Omega|$, note that there are 40^{10} possibilities in the ordered case ad 10! wags to order the to people, so $|\Omega|=\frac{40^{10}}{10!} \longleftarrow \#$ ordered carcongemats

In the unordered case, $\left|E^{c}\right|=\binom{10}{10}=\frac{40!}{30!10!}$. This gives

$$
P\left(E^{c}\right)=\frac{\frac{40!}{30!10!}}{40^{10} / 10!}=\frac{40!/ 50!}{40^{10}}
$$

which matches the order case.
(b) Let $E_{1}=\left\{\right.$ stop on Bc\} , ~ $E_{2}=\{$ stop on 40$\}$.

Were interested in $P\left(E_{1} \cap E_{2}\right)$. However, it's easier to consider

$$
\begin{aligned}
& P\left(E_{1}{ }^{c} \cup E_{2}^{c}\right)=P\left(E_{1}^{c}\right)+P\left(E_{2}^{c}\right)-P\left(E_{1}^{c} \cap E_{2}^{c}\right) \\
&=\frac{39^{10}}{40^{10}}+\frac{39^{10}}{40^{10}}-\frac{38^{10}}{40^{10}} \\
& \Rightarrow P(E)= 40^{10}-\left(2\left(39^{10}\right)-38^{10}\right) \\
& 40^{10}
\end{aligned}
$$

